Abstract
Regulation of the expression of pancreatic amylase genes was studied by comparing groups of rats fed diets with high (75%), intermediate (20%) and low (11%) carbohydrate content. Animals on the high carbohydrate diet had nine times as much amylase mRNA as those on low carbohydrate diet, and twice as much as the intermediate group, as determined by filter hybridization of equal amounts of total pancreatic RNA to an excess of a cloned rat amylase cDNA probe. Parallel results were obtained when levels of translatable amylase RNA were compared by means of an RNA-dependent rabbit reticulocyte cell-free system. Amylase mRNA-directed synthesis represented 35% of the total in the high carbohydrate group, 4% in the low group and 14% in the intermediate group. Relative rates of amylase synthesis, determined 30 min after [3H]phenylalanine injection, followed the same pattern. While 37% of total was incorporated into amylase in the high carbohydrate group, only 8% was incorporated in the low carbohydrate group, as compared with 22% in the intermediate group. These data indicate that modifications of diet composition alter the expression of pancreatic amylase genes as a consequence of changing the level of their transcript, and that pancreatic amylase production is mostly regulated at the pre-translational level.
Full text
PDF



Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bailey J. M., Davidson N. Methylmercury as a reversible denaturing agent for agarose gel electrophoresis. Anal Biochem. 1976 Jan;70(1):75–85. doi: 10.1016/s0003-2697(76)80049-8. [DOI] [PubMed] [Google Scholar]
- Beaupoil-Abadie B., Raffalli M., Cozzone P., Marchis-Mouren G. Determination of the carbohydrate content of porcine pancreatic amylase. Biochim Biophys Acta. 1973 Feb 28;297(2):436–440. doi: 10.1016/0304-4165(73)90090-1. [DOI] [PubMed] [Google Scholar]
- Beintema J. J., Campagne R. N., Gruber M. Rat pancreatic ribonuclease. I. Isolation and properties. Biochim Biophys Acta. 1973 May 17;310(1):148–160. doi: 10.1016/0005-2795(73)90019-6. [DOI] [PubMed] [Google Scholar]
- Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
- Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
- Christophe J., Camus J., Deschodt-Lanckman M., Rathe J., Robberecht P., Vandermeers-Piret M. C., Vandermeers A. Factors regulating biosynthesis, intracellular transport and secretion of amylase and lipase in the rat exocrine pancreas. Horm Metab Res. 1971 Nov;3(6):393–403. doi: 10.1055/s-0028-1094128. [DOI] [PubMed] [Google Scholar]
- Crerar M. M., Swain W. F., Pictet R. L., Nikovits W., Rutter W. J. Isolation and characterization of a rat amylase gene family. J Biol Chem. 1983 Jan 25;258(2):1311–1317. [PubMed] [Google Scholar]
- Dagorn J. C., Lahaie R. G. Dietary regulation of pancreatic protein synthesis. I. Rapid and specific modulation of enzyme synthesis by changes in dietary composition. Biochim Biophys Acta. 1981 Jun 26;654(1):111–118. doi: 10.1016/0005-2787(81)90142-8. [DOI] [PubMed] [Google Scholar]
- Dagorn J. C., Mongeau R. Different action of hormonal stimulation on the biosynthesis of three pancreatic enzymes. Biochim Biophys Acta. 1977 Jun 23;498(1):76–82. doi: 10.1016/0304-4165(77)90088-5. [DOI] [PubMed] [Google Scholar]
- Favaloro J., Treisman R., Kamen R. Transcription maps of polyoma virus-specific RNA: analysis by two-dimensional nuclease S1 gel mapping. Methods Enzymol. 1980;65(1):718–749. doi: 10.1016/s0076-6879(80)65070-8. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lahaie R. G., Dagorn J. C. Dietary regulation of pancreatic protein synthesis. II. Kinetics of adaptation of protein synthesis and its effect on enzyme content. Biochim Biophys Acta. 1981 Jun 26;654(1):119–123. doi: 10.1016/0005-2787(81)90143-x. [DOI] [PubMed] [Google Scholar]
- MacDonald R. J., Crerar M. M., Swain W. F., Pictet R. L., Thomas G., Rutter W. J. Structure of a family of rat amylase genes. Nature. 1980 Sep 11;287(5778):117–122. doi: 10.1038/287117a0. [DOI] [PubMed] [Google Scholar]
- MacDonald R. J., Swift G. H., Quinto C., Swain W., Pictet R. L., Nikovits W., Rutter W. J. Primary structure of two distinct rat pancreatic preproelastases determined by sequence analysis of the complete cloned messenger ribonucleic acid sequences. Biochemistry. 1982 Mar 16;21(6):1453–1463. doi: 10.1021/bi00535a053. [DOI] [PubMed] [Google Scholar]
- Maniatis T., Jeffrey A., Kleid D. G. Nucleotide sequence of the rightward operator of phage lambda. Proc Natl Acad Sci U S A. 1975 Mar;72(3):1184–1188. doi: 10.1073/pnas.72.3.1184. [DOI] [PMC free article] [PubMed] [Google Scholar]
- REBOUD J. P., BEN ABDEL JLIL A., DESNUELLE P. [Variations in the enzyme content of the rat pancreas as a function of the composition of the diet]. Biochim Biophys Acta. 1962 Apr 9;58:326–337. doi: 10.1016/0006-3002(62)91016-8. [DOI] [PubMed] [Google Scholar]
- Scheele G., Jacoby R., Carne T. Mechanism of compartmentation of secretory proteins: transport of exocrine pancreatic proteins across the microsomal membrane. J Cell Biol. 1980 Dec;87(3 Pt 1):611–628. doi: 10.1083/jcb.87.3.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Snook J. T. Dietary regulation of pancreatic enzymes in the rat with emphasis on carbohydrate. Am J Physiol. 1971 Nov;221(5):1383–1387. doi: 10.1152/ajplegacy.1971.221.5.1383. [DOI] [PubMed] [Google Scholar]
- Swift G. H., Dagorn J. C., Ashley P. L., Cummings S. W., MacDonald R. J. Rat pancreatic kallikrein mRNA: nucleotide sequence and amino acid sequence of the encoded preproenzyme. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7263–7267. doi: 10.1073/pnas.79.23.7263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- White B. A., Bancroft F. C. Cytoplasmic dot hybridization. Simple analysis of relative mRNA levels in multiple small cell or tissue samples. J Biol Chem. 1982 Aug 10;257(15):8569–8572. [PubMed] [Google Scholar]
- Wicker C., Scheele G., Puigserver A. Adaptation au régime alimentaire du niveau des ARNm codant pour l'amylase et les protéases à sérine pancréatiques chez le rat. C R Seances Acad Sci III. 1983;297(6):281–284. [PubMed] [Google Scholar]
- Wormsley K. G., Goldberg D. M. The interrelationships of the pancreatic enzymes. Gut. 1972 May;13(5):398–412. doi: 10.1136/gut.13.5.398. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yap S. H., Strair R. K., Shafritz D. A. Effect of a short term fast on the distribution of cytoplasmic albumin messenger ribonucleic acid in rat liver. Evidence for formation of free albumin messenger ribonucleoprotein particles. J Biol Chem. 1978 Jul 25;253(14):4944–4950. [PubMed] [Google Scholar]