Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1984 Nov;3(11):2621–2626. doi: 10.1002/j.1460-2075.1984.tb02183.x

Unshadowed myosin molecules: STEM mass-maps of myosin heads.

D Walzthöny, M Bähler, H M Eppenberger, T Wallimann, A Engel
PMCID: PMC557739  PMID: 6510411

Abstract

Myosin molecules were directly visualized without heavy metal shadowing by scanning transmission electron microscopy (STEM) under low dose conditions. The general appearance and dimensions of heavy metal-free molecules were similar to those of shadowed myosin, either after freeze-drying without or air-drying with glycerol. Two characteristic configurations of myosin head regions were found, a first type showing two pear-shaped heads with narrow necks and a second type showing two heads connected by an extra mass in the central regulatory domain where the light chains are located. The mass of the latter type (mol. wt. = 265 +/- 39 kd) is in excellent accordance with biochemical data whereas the mass of the first type is somewhat lower (mol. wt. 219 +/- 44 kd).

Full text

PDF
2621

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burridge K., Bray D. Purification and structural analysis of myosins from brain and other non-muscle tissues. J Mol Biol. 1975 Nov 25;99(1):1–14. doi: 10.1016/s0022-2836(75)80154-9. [DOI] [PubMed] [Google Scholar]
  2. Driedonks R. A., Engel A., tenHeggeler B., van Driel Gene 20 product of bacteriophage T4 its purification and structure. J Mol Biol. 1981 Nov 15;152(4):641–662. doi: 10.1016/0022-2836(81)90121-2. [DOI] [PubMed] [Google Scholar]
  3. Elliott A., Offer G. Shape and flexibility of the myosin molecule. J Mol Biol. 1978 Aug 25;123(4):505–519. doi: 10.1016/0022-2836(78)90204-8. [DOI] [PubMed] [Google Scholar]
  4. Engel A., Baumeister W., Saxton W. O. Mass mapping of a protein complex with the scanning transmission electron microscope. Proc Natl Acad Sci U S A. 1982 Jul;79(13):4050–4054. doi: 10.1073/pnas.79.13.4050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Engel A., Meyer J. Preparation of unstained protein structures for mass determination by electron scattering. J Ultrastruct Res. 1980 Aug;72(2):212–222. doi: 10.1016/s0022-5320(80)90059-3. [DOI] [PubMed] [Google Scholar]
  6. Engel A. Molecular weight determination by scanning transmission electron microscopy. Ultramicroscopy. 1978;3(3):273–281. doi: 10.1016/s0304-3991(78)80037-0. [DOI] [PubMed] [Google Scholar]
  7. Flicker P. F., Wallimann T., Vibert P. Electron microscopy of scallop myosin. Location of regulatory light chains. J Mol Biol. 1983 Sep 25;169(3):723–741. doi: 10.1016/s0022-2836(83)80167-3. [DOI] [PubMed] [Google Scholar]
  8. HALL C. E. Method for the observation of macromolecules with the electron microscope illustrated with micrographs of DNA. J Biophys Biochem Cytol. 1956 Sep 25;2(5):625–628. doi: 10.1083/jcb.2.5.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HUXLEY H., HANSON J. Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature. 1954 May 22;173(4412):973–976. doi: 10.1038/173973a0. [DOI] [PubMed] [Google Scholar]
  10. Hardwicke P. M., Wallimann T., Szent-Györgyi A. G. Light-chain movement and regulation in scallop myosin. Nature. 1983 Feb 10;301(5900):478–482. doi: 10.1038/301478a0. [DOI] [PubMed] [Google Scholar]
  11. Huxley H. E., Faruqi A. R., Bordas J., Koch M. H., Milch J. R. The use of synchrotron radiation in time-resolved X-ray diffraction studies of myosin layer-line reflections during muscle contraction. Nature. 1980 Mar 13;284(5752):140–143. doi: 10.1038/284140a0. [DOI] [PubMed] [Google Scholar]
  12. Kendrick-Jones J., Szentkiralyi E. M., Szent-Györgyi A. G. Regulatory light chains in myosins. J Mol Biol. 1976 Jul 15;104(4):747–775. doi: 10.1016/0022-2836(76)90180-7. [DOI] [PubMed] [Google Scholar]
  13. Kretzschmar K. M., Mendelson R. A., Morales M. F. Investigation of the shape and size of myosin subfragment 1 using small-angle X-ray scattering. Biochemistry. 1978 Jun 13;17(12):2314–2318. doi: 10.1021/bi00605a009. [DOI] [PubMed] [Google Scholar]
  14. Lowey S., Benfield P. A., LeBlanc D. D., Waller G. S. Myosin isozymes in avian skeletal muscles. I. Sequential expression of myosin isozymes in developing chicken pectoralis muscles. J Muscle Res Cell Motil. 1983 Dec;4(6):695–716. doi: 10.1007/BF00712161. [DOI] [PubMed] [Google Scholar]
  15. Lowey S., Risby D. Light chains from fast and slow muscle myosins. Nature. 1971 Nov 12;234(5324):81–85. doi: 10.1038/234081a0. [DOI] [PubMed] [Google Scholar]
  16. Lowey S., Slayter H. S., Weeds A. G., Baker H. Substructure of the myosin molecule. I. Subfragments of myosin by enzymic degradation. J Mol Biol. 1969 May 28;42(1):1–29. doi: 10.1016/0022-2836(69)90483-5. [DOI] [PubMed] [Google Scholar]
  17. Margossian S. S., Bhan A. K., Slayter H. S. Role of the regulatory light chains in skeletal muscle actomyosin ATPase and in minifilament formation. J Biol Chem. 1983 Nov 10;258(21):13359–13369. [PubMed] [Google Scholar]
  18. Moore P. B., Huxley H. E., DeRosier D. J. Three-dimensional reconstruction of F-actin, thin filaments and decorated thin filaments. J Mol Biol. 1970 Jun 14;50(2):279–295. doi: 10.1016/0022-2836(70)90192-0. [DOI] [PubMed] [Google Scholar]
  19. Offer G., Elliott A. Can a myosin molecule bind to two actin filaments? Nature. 1978 Jan 26;271(5643):325–329. doi: 10.1038/271325a0. [DOI] [PubMed] [Google Scholar]
  20. Offer G., Moos C., Starr R. A new protein of the thick filaments of vertebrate skeletal myofibrils. Extractions, purification and characterization. J Mol Biol. 1973 Mar 15;74(4):653–676. doi: 10.1016/0022-2836(73)90055-7. [DOI] [PubMed] [Google Scholar]
  21. Rayment I., Winkelmann D. A. Crystallization of myosin subfragment 1. Proc Natl Acad Sci U S A. 1984 Jul;81(14):4378–4380. doi: 10.1073/pnas.81.14.4378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Shotton D. M., Burke B. E., Branton D. The molecular structure of human erythrocyte spectrin. Biophysical and electron microscopic studies. J Mol Biol. 1979 Jun 25;131(2):303–329. doi: 10.1016/0022-2836(79)90078-0. [DOI] [PubMed] [Google Scholar]
  23. Slayter H. S., Lowey S. Substructure of the myosin molecule as visualized by electron microscopy. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1611–1618. doi: 10.1073/pnas.58.4.1611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Starr R., Offer G. Preparation of C-protein, H-protein, X-protein, and phosphofructokinase. Methods Enzymol. 1982;85(Pt B):130–138. doi: 10.1016/0076-6879(82)85016-7. [DOI] [PubMed] [Google Scholar]
  25. Trinick J., Elliott A. Electron microscope studies of thick filaments from vertebrate skeletal muscle. J Mol Biol. 1979 Jun 15;131(1):133–136. doi: 10.1016/0022-2836(79)90304-8. [DOI] [PubMed] [Google Scholar]
  26. Vibert P., Craig R. Three-dimensional reconstruction of thin filaments decorated with a Ca2+-regulated myosin. J Mol Biol. 1982 May 15;157(2):299–319. doi: 10.1016/0022-2836(82)90236-4. [DOI] [PubMed] [Google Scholar]
  27. Wallimann T., Szent-Györgyi A. G. An immunological approach to myosin light-chain function in thick filament linked regulation. 1. Characterization, specificity, and cross-reactivity of anti-scallop myosin heavy- and light-chain antibodies by competitive, solid-phase radioimmunoassay. Biochemistry. 1981 Mar 3;20(5):1176–1187. doi: 10.1021/bi00508a020. [DOI] [PubMed] [Google Scholar]
  28. Walzthöny D., Bähler M., Wallimann T., Eppenberger H. M., Moor H. Visualization of freeze-dried and shadowed myosin molecules immobilized on electron microscopic films. Eur J Cell Biol. 1983 May;30(2):177–181. [PubMed] [Google Scholar]
  29. Weeds A. G., Lowey S. Substructure of the myosin molecule. II. The light chains of myosin. J Mol Biol. 1971 Nov 14;61(3):701–725. doi: 10.1016/0022-2836(71)90074-x. [DOI] [PubMed] [Google Scholar]
  30. Weeds A. G., Pope B. Chemical studies on light chains from cardiac and skeletal muscle myosins. Nature. 1971 Nov 12;234(5324):85–88. doi: 10.1038/234085a0. [DOI] [PubMed] [Google Scholar]
  31. Winkelmann D. A., Almeda S., Vibert P., Cohen C. A new myosin fragment: visualization of the regulatory domain. Nature. 1984 Feb 23;307(5953):758–760. doi: 10.1038/307758a0. [DOI] [PubMed] [Google Scholar]
  32. Winkelmann D. A., Lowey S., Press J. L. Monoclonal antibodies localize changes on myosin heavy chain isozymes during avian myogenesis. Cell. 1983 Aug;34(1):295–306. doi: 10.1016/0092-8674(83)90160-5. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES