Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1984 Nov;3(11):2653–2657. doi: 10.1002/j.1460-2075.1984.tb02189.x

Does the guanine nucleotide regulatory protein Ni mediate progesterone inhibition of Xenopus oocyte adenylate cyclase?

M Goodhardt, N Ferry, M Buscaglia, E E Baulieu, J Hanoune
PMCID: PMC557745  PMID: 6439557

Abstract

In Xenopus laevis oocytes progesterone is able to inhibit directly the plasma membrane adenylate cyclase activity and induce reinitiation of meiotic maturation. To determine whether progesterone inhibition is mediated by the inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase, Ni, the effect of the Bordetella pertussis toxin (IAP) and limited proteolysis on progesterone action in oocytes was investigated. Treatment of oocyte membranes with islet activating protein (IAP) in the presence of [32P]NAD led to incorporation of radiolabel into a 41 000-dalton membrane protein. However, exposure of isolated oocytes to 100 ng/ml IAP for up to 24 h, or oocyte membranes with concentrations of toxin as high as 100 micrograms/ml, had no effect on either progesterone inhibition of adenylate cyclase or induction of maturation. Similarly, limited alpha-chymotrypsin proteolysis of oocyte membranes failed to modify progesterone-induced inhibition of adenylate cyclase. In contrast, inhibition of human platelet adenylate cyclase by epinephrine, acting via a GTP-dependent, alpha 2-adrenergic receptor-mediated pathway, is almost completely abolished by both IAP treatment and limited proteolysis of platelet membranes. These data indicate that unlike attenuation of platelet enzyme activity, the inhibition of adenylate cyclase in oocyte membranes by progesterone does not occur via a classical Ni-mediated pathway.

Full text

PDF
2653

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aktories K., Schultz G., Jakobs K. H. Inactivation of the guanine nucleotide regulatory site mediating inhibition of the adenylate cyclase in hamster adipocytes. Naunyn Schmiedebergs Arch Pharmacol. 1982 Dec;321(4):247–252. doi: 10.1007/BF00498508. [DOI] [PubMed] [Google Scholar]
  2. Aktories K., Schultz G., Jakobs K. H. Islet-activating protein impairs alpha 2-adrenoceptor-mediated inhibitory regulation of human platelet adenylate cyclase. Naunyn Schmiedebergs Arch Pharmacol. 1983 Nov;324(3):196–200. doi: 10.1007/BF00503894. [DOI] [PubMed] [Google Scholar]
  3. Baulieu E. E., Godeau F., Schorderet M., Schorderet-Slatkine S. Steroid-induced meiotic division in Xenopus laevis oocytes: surface and calcium. Nature. 1978 Oct 19;275(5681):593–598. doi: 10.1038/275593a0. [DOI] [PubMed] [Google Scholar]
  4. Blondeau J. P., Baulieu E. E. Progesterone receptor characterized by photoaffinity labelling in the plasma membrane of Xenopus laevis oocytes. Biochem J. 1984 May 1;219(3):785–792. doi: 10.1042/bj2190785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burns D. L., Hewlett E. L., Moss J., Vaughan M. Pertussis toxin inhibits enkephalin stimulation of GTPase of NG108-15 cells. J Biol Chem. 1983 Feb 10;258(3):1435–1438. [PubMed] [Google Scholar]
  6. Codina J., Hildebrandt J., Iyengar R., Birnbaumer L., Sekura R. D., Manclark C. R. Pertussis toxin substrate, the putative Ni component of adenylyl cyclases, is an alpha beta heterodimer regulated by guanine nucleotide and magnesium. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4276–4280. doi: 10.1073/pnas.80.14.4276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ferry N., Adnot S., Borsodi A., Lacombe M. L., Guellaën G., Hanoune J. Uncoupling by proteolysis of alpha-adrenergic receptor-mediated inhibition of adenylate cyclase in human platelets. Biochem Biophys Res Commun. 1982 Sep 30;108(2):708–714. doi: 10.1016/0006-291x(82)90887-7. [DOI] [PubMed] [Google Scholar]
  8. Finidori-Lepicard J., Schorderet-Slatkine S., Hanoune J., Baulieu E. E. Progesterone inhibits membrane-bound adenylate cyclase in Xenopus laevis oocytes. Nature. 1981 Jul 16;292(5820):255–257. doi: 10.1038/292255a0. [DOI] [PubMed] [Google Scholar]
  9. Finidori J., Hanoune J., Baulieu E. E. Adenylate cyclase in Xenopus laevis oocytes: characterization of the progesterone-sensitive, membrane-bound form. Mol Cell Endocrinol. 1982 Oct;28(2):211–227. doi: 10.1016/0303-7207(82)90033-8. [DOI] [PubMed] [Google Scholar]
  10. Florio V. A., Ross E. M. Regulation of the catalytic component of adenylate cyclase. Potentiative interaction of stimulatory ligands and 2',5'-dideoxyadenosine. Mol Pharmacol. 1983 Sep;24(2):195–202. [PubMed] [Google Scholar]
  11. Gilman A. G. G proteins and dual control of adenylate cyclase. Cell. 1984 Mar;36(3):577–579. doi: 10.1016/0092-8674(84)90336-2. [DOI] [PubMed] [Google Scholar]
  12. Hazeki O., Ui M. Modification by islet-activating protein of receptor-mediated regulation of cyclic AMP accumulation in isolated rat heart cells. J Biol Chem. 1981 Mar 25;256(6):2856–2862. [PubMed] [Google Scholar]
  13. Hildebrandt J. D., Hanoune J., Birnbaumer L. Guanine nucleotide inhibition of cyc- S49 mouse lymphoma cell membrane adenylyl cyclase. J Biol Chem. 1982 Dec 25;257(24):14723–14725. [PubMed] [Google Scholar]
  14. Hildebrandt J. D., Sekura R. D., Codina J., Iyengar R., Manclark C. R., Birnbaumer L. Stimulation and inhibition of adenylyl cyclases mediated by distinct regulatory proteins. Nature. 1983 Apr 21;302(5910):706–709. doi: 10.1038/302706a0. [DOI] [PubMed] [Google Scholar]
  15. Insel P. A., Stengel D., Ferry N., Hanoune J. Regulation of adenylate cyclase of human platelet membranes by forskolin. J Biol Chem. 1982 Jul 10;257(13):7485–7490. [PubMed] [Google Scholar]
  16. Jakobs K. H., Schultz G. Occurrence of a hormone-sensitive inhibitory coupling component of the adenylate cyclase in S49 lymphoma cyc- variants. Proc Natl Acad Sci U S A. 1983 Jul;80(13):3899–3902. doi: 10.1073/pnas.80.13.3899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jordana X., Olate J., Allende C. C., Allende J. E. Studies on the mechanism of inhibition of amphibian oocyte adenylate cyclase by progesterone. Arch Biochem Biophys. 1984 Feb 1;228(2):379–387. doi: 10.1016/0003-9861(84)90001-8. [DOI] [PubMed] [Google Scholar]
  18. Katada T., Bokoch G. M., Northup J. K., Ui M., Gilman A. G. The inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. Properties and function of the purified protein. J Biol Chem. 1984 Mar 25;259(6):3568–3577. [PubMed] [Google Scholar]
  19. Katada T., Ui M. Direct modification of the membrane adenylate cyclase system by islet-activating protein due to ADP-ribosylation of a membrane protein. Proc Natl Acad Sci U S A. 1982 May;79(10):3129–3133. doi: 10.1073/pnas.79.10.3129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Katada T., Ui M. Islet-activating protein. A modifier of receptor-mediated regulation of rat islet adenylate cyclase. J Biol Chem. 1981 Aug 25;256(16):8310–8317. [PubMed] [Google Scholar]
  21. Kurose H., Katada T., Amano T., Ui M. Specific uncoupling by islet-activating protein, pertussis toxin, of negative signal transduction via alpha-adrenergic, cholinergic, and opiate receptors in neuroblastoma x glioma hybrid cells. J Biol Chem. 1983 Apr 25;258(8):4870–4875. [PubMed] [Google Scholar]
  22. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  23. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  24. Londos C., Wolff J. Two distinct adenosine-sensitive sites on adenylate cyclase. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5482–5486. doi: 10.1073/pnas.74.12.5482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Michel T., Lefkowitz R. J. Hormonal inhibition of adenylate cyclase. alpha 2 Adrenergic receptors promote release of [3H]guanylylimidodiphosphate from platelet membranes. J Biol Chem. 1982 Nov 25;257(22):13557–13563. [PubMed] [Google Scholar]
  26. Motulsky H. J., Hughes R. J., Brickman A. S., Farfel Z., Bourne H. R., Insel P. A. Platelets of pseudohypoparathyroid patients: evidence that distinct receptor-cyclase coupling proteins mediate stimulation and inhibition of adenylate cyclase. Proc Natl Acad Sci U S A. 1982 Jul;79(13):4193–4197. doi: 10.1073/pnas.79.13.4193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Motulsky H. J., Insel P. A. ADP- and epinephrine-elicited release of [3H]guanylylimidodiphosphate from platelet membranes. Implications for receptor-Ni stoichiometry. FEBS Lett. 1983 Nov 28;164(1):13–16. doi: 10.1016/0014-5793(83)80008-8. [DOI] [PubMed] [Google Scholar]
  28. Murayama T., Ui M. Loss of the inhibitory function of the guanine nucleotide regulatory component of adenylate cyclase due to its ADP ribosylation by islet-activating protein, pertussis toxin, in adipocyte membranes. J Biol Chem. 1983 Mar 10;258(5):3319–3326. [PubMed] [Google Scholar]
  29. Premont J., Guillon G., Bockaert J. Specific MG2+ and adenosine sites involved in a bireactant mechanism for adenylate cyclase inhibition and their probable localization on this enzyme's catalytic component. Biochem Biophys Res Commun. 1979 Sep 27;90(2):513–519. doi: 10.1016/0006-291x(79)91265-8. [DOI] [PubMed] [Google Scholar]
  30. Sadler S. E., Maller J. L. Identification of a steroid receptor on the surface of Xenopus oocytes by photoaffinity labeling. J Biol Chem. 1982 Jan 10;257(1):355–361. [PubMed] [Google Scholar]
  31. Sadler S. E., Maller J. L. Inhibition of Xenopus oocyte adenylate cyclase by progesterone and 2',5'-dideoxyadenosine is associated with slowing of guanine nucleotide exchange. J Biol Chem. 1983 Jul 10;258(13):7935–7941. [PubMed] [Google Scholar]
  32. Sadler S. E., Maller J. L. Progesterone inhibits adenylate cyclase in Xenopus oocytes. Action on the guanine nucleotide regulatory protein. J Biol Chem. 1981 Jun 25;256(12):6368–6373. [PubMed] [Google Scholar]
  33. Schorderet-Slatkine S., Schorderet M., Boquet P., Godeau F., Baulieu E. E. Progesterone-induced meiosis in Xenopus laevis oocytes: a role for cAMP at the "maturation-promoting factor" level. Cell. 1978 Dec;15(4):1269–1275. doi: 10.1016/0092-8674(78)90052-1. [DOI] [PubMed] [Google Scholar]
  34. Sekura R. D., Fish F., Manclark C. R., Meade B., Zhang Y. L. Pertussis toxin. Affinity purification of a new ADP-ribosyltransferase. J Biol Chem. 1983 Dec 10;258(23):14647–14651. [PubMed] [Google Scholar]
  35. Smith S. K., Limbird L. E. Evidence that human platelet alpha-adrenergic receptors coupled to inhibition of adenylate cyclase are not associated with the subunit of adenylate cyclase ADP-ribosylated by cholera toxin. J Biol Chem. 1982 Sep 10;257(17):10471–10478. [PubMed] [Google Scholar]
  36. Stiles G. L., Lefkowitz R. J. Hormone-sensitive adenylate cyclase. Delineation of a trypsin-sensitive site in the pathway of receptor-mediated inhibition. J Biol Chem. 1982 Jun 10;257(11):6287–6291. [PubMed] [Google Scholar]
  37. Yamamura H., Lad P. M., Rodbell M. GTP stimulates and inhibits adenylate cyclase in fat cell membranes through distinct regulatory processes. J Biol Chem. 1977 Nov 25;252(22):7964–7966. [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES