Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1984 Dec 1;3(12):2873–2878. doi: 10.1002/j.1460-2075.1984.tb02223.x

The change of DNA structure by specific binding of the cAMP receptor protein from rotation diffusion and dichroism measurements.

D Porschke, W Hillen, M Takahashi
PMCID: PMC557780  PMID: 6396081

Abstract

The structure of complexes formed between cAMP receptor protein (CRP) and various restriction fragments from the promoter region of the lactose operon has been analysed by measurements of electrodichroism. Binding of CRP to a 62-bp fragment containing the major site leads to an increase of the rotation time constant from 0.33 to 0.43 microseconds; addition of cAMP to the complex induces a decrease to 0.25 microseconds. Similar data are obtained for a 80-bp fragment containing the operator site; however, in this case the decrease of the rotation time for the specific complex is only observed when the salt concentration is increased from 3 to 13 mM. A 203-bp fragment containing both sites showed a corresponding change after pre-incubation at 50 mM salt. The salt dependence of the rotation time for the specific complex formed with the 203-bp fragment also indicates that a compact structure is formed at 13 mM salt, whereas the structure is not as compact at 3 mM salt. A 98-bp fragment without specific CRP sites did not reveal changes corresponding to those observed for the specific fragments. The rotation time constants together with the dichroism amplitudes indicate that binding of CRP to specific sites in the presence of cAMP leads to the formation of compact structures, which are consistent with bending of DNA helices. The observed strong salt dependence of the structure is apparently due to electrostatic repulsion between adjoining helix segments.

Full text

PDF
2873

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Austin R. H., Karohl J., Jovin T. M. Rotational diffusion of Escherichia coli RNA polymerase free and bound to deoxyribonucleic acid in nonspecific complexes. Biochemistry. 1983 Jun 21;22(13):3082–3090. doi: 10.1021/bi00282a010. [DOI] [PubMed] [Google Scholar]
  2. Baudras A., Blazy B., Takahashi M. Association spécifique du complexe CRP-AMP-cyclique sur la région de contrôle de l'opéron lactose d'Escherichia coli K 12: une étude fluorimétrique directe utilisant des fragments de DNA de différentes longueurs. Biochimie. 1983 Jul;65(7):437–440. doi: 10.1016/s0300-9084(83)80063-7. [DOI] [PubMed] [Google Scholar]
  3. Cossart P., Gicquel-Sanzey B. Cloning and sequence of the crp gene of Escherichia coli K 12. Nucleic Acids Res. 1982 Feb 25;10(4):1363–1378. doi: 10.1093/nar/10.4.1363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. De Crombrugghe B., Chen B., Anderson W., Nissley P., Gottesman M., Pastan I., Perlman R. Lac DNA, RNA polymerase and cyclic AMP receptor protein, cyclic AMP, lac repressor and inducer are the essential elements for controlled lac transcription. Nat New Biol. 1971 Jun 2;231(22):139–142. doi: 10.1038/newbio231139a0. [DOI] [PubMed] [Google Scholar]
  5. Diekmann S., Hillen W., Jung M., Wells R. D., Pörschke D. Electric properties and structure of DNA-restriction fragments from measurements of the electric dichroism. Biophys Chem. 1982 May;15(2):157–167. doi: 10.1016/0301-4622(82)80028-8. [DOI] [PubMed] [Google Scholar]
  6. Diekmann S., Hillen W., Morgeneyer B., Wells R. D., Pörschke D. Orientation relaxation of DNA restriction fragments and the internal mobility of the double helix. Biophys Chem. 1982 Jul;15(4):263–270. doi: 10.1016/0301-4622(82)80009-4. [DOI] [PubMed] [Google Scholar]
  7. Diekmann S., Pörschke D. Thresholds in field-induced reactions of linear biopolymers. Strong chain-length dependence of field effects in DNA. Biophys Chem. 1982 Nov;16(3):261–267. doi: 10.1016/0301-4622(82)87009-9. [DOI] [PubMed] [Google Scholar]
  8. Epstein W., Rothman-Denes L. B., Hesse J. Adenosine 3':5'-cyclic monophosphate as mediator of catabolite repression in Escherichia coli. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2300–2304. doi: 10.1073/pnas.72.6.2300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Frederick C. A., Grable J., Melia M., Samudzi C., Jen-Jacobson L., Wang B. C., Greene P., Boyer H. W., Rosenberg J. M. Kinked DNA in crystalline complex with EcoRI endonuclease. Nature. 1984 May 24;309(5966):327–331. doi: 10.1038/309327a0. [DOI] [PubMed] [Google Scholar]
  10. Hillen W., Klein R. D., Wells R. D. Preparation of milligram amounts of 21 deoxyribonucleic acid restriction fragments. Biochemistry. 1981 Jun 23;20(13):3748–3756. doi: 10.1021/bi00516a013. [DOI] [PubMed] [Google Scholar]
  11. Hillen W., Wells R. D. Circular dichroism studies of the B goes to A conformational transition in seven small DNA restriction fragments containing the Escherichia coli lactose control region. Nucleic Acids Res. 1980 Nov 25;8(22):5427–5444. doi: 10.1093/nar/8.22.5427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hogan M., Dattagupta N., Crothers D. M. Transient electric dichroism of rod-like DNA molecules. Proc Natl Acad Sci U S A. 1978 Jan;75(1):195–199. doi: 10.1073/pnas.75.1.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kolb A., Buc H. Is DNA unwound by the cyclic AMP receptor protein? Nucleic Acids Res. 1982 Jan 22;10(2):473–485. doi: 10.1093/nar/10.2.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kolb A., Spassky A., Chapon C., Blazy B., Buc H. On the different binding affinities of CRP at the lac, gal and malT promoter regions. Nucleic Acids Res. 1983 Nov 25;11(22):7833–7852. doi: 10.1093/nar/11.22.7833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Majors J. Specific binding of CAP factor to lac promoter DNA. Nature. 1975 Aug 21;256(5519):672–674. doi: 10.1038/256672a0. [DOI] [PubMed] [Google Scholar]
  16. Marini J. C., Levene S. D., Crothers D. M., Englund P. T. Bent helical structure in kinetoplast DNA. Proc Natl Acad Sci U S A. 1982 Dec;79(24):7664–7668. doi: 10.1073/pnas.79.24.7664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McKay D. B., Steitz T. A. Structure of catabolite gene activator protein at 2.9 A resolution suggests binding to left-handed B-DNA. Nature. 1981 Apr 30;290(5809):744–749. doi: 10.1038/290744a0. [DOI] [PubMed] [Google Scholar]
  18. Ogden S., Haggerty D., Stoner C. M., Kolodrubetz D., Schleif R. The Escherichia coli L-arabinose operon: binding sites of the regulatory proteins and a mechanism of positive and negative regulation. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3346–3350. doi: 10.1073/pnas.77.6.3346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Salemme F. R. A model for catabolite activator protein binding to supercoiled DNA. Proc Natl Acad Sci U S A. 1982 Sep;79(17):5263–5267. doi: 10.1073/pnas.79.17.5263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schmitz A. Cyclic AMP receptor proteins interacts with lactose operator DNA. Nucleic Acids Res. 1981 Jan 24;9(2):277–292. doi: 10.1093/nar/9.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Takahashi M., Blazy B., Baudras A. An equilibrium study of the cooperative binding of adenosine cyclic 3',5'-monophosphate and guanosine cyclic 3',5'-monophosphate to the adenosine cyclic 3',5'-monophosphate receptor protein from Escherichia coli. Biochemistry. 1980 Oct 28;19(22):5124–5130. doi: 10.1021/bi00563a029. [DOI] [PubMed] [Google Scholar]
  22. Takahashi M., Blazy B., Baudras A., Hillen W. On the origin of selectivity in recognition by cyclic adenosine 3',5'-monophosphate receptor protein of its specific binding site of the lactose promoter region. J Mol Biol. 1983 Jul 15;167(4):895–899. doi: 10.1016/s0022-2836(83)80118-1. [DOI] [PubMed] [Google Scholar]
  23. Taniguchi T., O'Neill M., de Crombrugghe B. Interaction site of Escherichia coli cyclic AMP receptor protein on DNA of galactose operon promoters. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5090–5094. doi: 10.1073/pnas.76.10.5090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wu H. M., Crothers D. M. The locus of sequence-directed and protein-induced DNA bending. Nature. 1984 Apr 5;308(5959):509–513. doi: 10.1038/308509a0. [DOI] [PubMed] [Google Scholar]
  25. Zubay G., Schwartz D., Beckwith J. Mechanism of activation of catabolite-sensitive genes: a positive control system. Proc Natl Acad Sci U S A. 1970 May;66(1):104–110. doi: 10.1073/pnas.66.1.104. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES