Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Aug 1;73(Pt 9):1271–1274. doi: 10.1107/S2056989017010830

Crystal structure of a 1,1,2,2-tetra­chloro­ethane-solvated hydrazinecarbo­thio­amide compound

Sayed Riyadh a, David L Hughes b,*, Musa A Said a,*
PMCID: PMC5588558  PMID: 28932452

The crystal structure of the title compound, which contains azomethine groups, is reported; its keto and enol tautomeric forms are investigated.

Keywords: crystal structure, Schiff base, hydrogen bonding, tautomerism

Abstract

The title compound, [(1-{4-[2-(2,4-di­hydroxy­phen­yl)diazen-1-yl]phen­yl}ethyl­idene)amino]­thio­urea, 1,1,2,2-tetra­chloro­ethane monosolvate, C15H15N5O2S·C2H2Cl4, was prepared from 4-(4-acetyl­phenyl­diazendi­yl)resorcinol and thio­semicarbazide and recrystallized from mixed solvents of tetra­chloro­ethane and n-hexane. 1H NMR and X-ray diffraction data are in support of the thione tautomeric form. The X-ray analysis shows the mol­ecule crystallizes as a zwitterion, with proton transfer from the nominal phenol to the azide group; the N—N bond length is 1.291 (5) Å, and an intra­molecular N—H⋯O hydrogen bond is formed. In the crystal, N—H⋯O, N—H⋯N and O—H⋯S hydrogen bonds connect the mol­ecules into a three-dimensional network. The tetra­chloro­ethane solvent mol­ecules are linked to this network through weak C—H⋯O linkages.

Chemical context  

Ethyl­idene­thio­semicarbazides are polyfunctional compounds with several nucleophilic centers (NH, SH, NH2). These compounds exist in both thione and thiol tautomeric forms, Fig. 1. 1-(1-Aryl­ethyl­idene)thio­semicarbazides have been found to exhibit potent inhibitory activities against mushroom-tyrosinase (a multifunctional copper-containing enzyme that causes dermatological disorders) (Liu et al., 2008, 2009). Also, 1-[1-(heterocyclic)ethyl­idene]thio­semicarbazides and their metal complexes have been investigated as potential anti­cancer agents (Finch et al., 2000; Soares et al., 2012; Serda et al., 2012). On the other hand, ethyl­idene­thio­semicarbazides are reactive building blocks for the construction of bioactive heterocycles, such as: [1,2,3]-thia­diazo­les (El-Sadek et al., 2012], imidazolinones (Thanusu et al., 2010), thia­zoles (Chimenti et al., 2010; Abdel-Gawad et al., 2010; Vazzana et al., 2004; Vigato & Tamburini, 2004), and thia­zolidin-4-ones (Abdel-Gawad et al., 2010). It has been demonstrated that the azomethine group is accountable for biological activities shown by various types of Schiff bases (Vazzana et al., 2004; Vigato & Tamburini, 2004). As part of our studies in this area, we now report the synthesis and crystal structure of the solvated title compound, (I), containing azomethine groups and we investigate its keto and enol tautomeric forms.graphic file with name e-73-01271-scheme1.jpg

Figure 1.

Figure 1

Tautomeric structures of ethyl­idene­thio­semicarbazides.

Structural commentary  

The main mol­ecule comprises two essentially planar groups, which share the C12—C15 bond; the angle between the normals to the two planes is 13.77 (8)°, Fig. 2.

Figure 2.

Figure 2

The mol­ecular structure of (I) and the hydrogen-bond inter­actions (not including the ‘weak’ hydrogen bonds). Displacement ellipsoids are drawn at the 50% probability level. Symmetry operations (in the text and all figures): (i) 2 + x, Inline graphic − y, z − Inline graphic; (ii) x + 1, Inline graphic − y, Inline graphic − z; (iii) −x − 1, 1 − y, 1 − z; (iv) x − 1, Inline graphic − y, Inline graphic + z; (v) x − 2, Inline graphic − y, Inline graphic + z; (vi) x + 1, y, z; (vii) −x, 1 − y, 1 − z; (viii) x − 1, y, z.

This mol­ecule is a zwitterion, with a negative charge on O1 and a positive charge on N8: this nitro­gen atom is bonded to a hydrogen atom (clearly identified in the X-ray analysis) and forms an intra­molecular hydrogen bond N8—H8N⋯O1. There is delocalized bonding throughout the O1—C1—C2—N7—N8—C9 chain, with bond dimensions very similar to those found in a series of 1-(2-phenyl­diazen-2-ium-1-yl)naphthalen-2-olate compounds studied by Benosmane et al. (2013), Bougueria et al. (2013a ,b ) and Chetioui et al. (2013), showing a structure midway between the keto and phenolate forms of compound 3 in the Scheme; in particular, the C1—O1 bond length is 1.296 (5) Å and N7—N8 is 1.291 (5) Å.

There is a more pronounced arrangement of double and single bonds for the C=N—N group further along the mol­ecule, with C15=N16 at 1.280 (5) Å, and N16—N17 at 1.377 (5) Å; N16 is the acceptor of a strained hydrogen bond from H19B.

The structure of the product was substanti­ated via spectroscopic data. For example, 1H NMR spectra of compounds 3 revealed two singlet signals at δ = 2.35 and 10.28 ppm, attributed to the methyl group adjacent to hydrazone (CH3–C=N–NH) (de Oliveira et al., 2014) and NH of the hydrazone group (C=N–NH), respectively; there are also two signals (δ = 8.11 and 8.43 ppm) for the NH2 group. A singlet signal at δ = 10.70 ppm is due to the OH group whereas the C=O⋯HN appears at δ = 12.53 ppm, see Fig. 3.

Figure 3.

Figure 3

The 1H NMR spectrum for compound 3, showing one form of the product.

Supra­molecular features  

Inter­molecular hydrogen bonds are shown in Table 1 and Fig. 4, and connect the mol­ecules into a three-dimensional network. The solvent tetra­chloro­ethane mol­ecules are linked to this network through weak hydrogen bonds C10—H10⋯Cl25vi and C22—H22⋯O1iv. Other short inter­molecular contacts connect mol­ecules by π–π stacking along the a axis, Fig. 5; the phenyl ring of C1–C6 lies over the almost parallel ring of C9–C14 in the adjacent mol­ecule, with C1⋯C14vi = 3.309 Å, C3⋯C10vi = 3.360 Å, and C5⋯N8vi = 3.263 Å. The hydrazone group of C15⋯N17 is sandwiched between the C15⋯C18 section of an inverted mol­ecule [with closest contacts of N17⋯N17vii = 3.405 Å and C18⋯H15C vii = 2.83Å] and the chain of N7⋯C11 of the stacked contact [with closest contacts N16⋯C10viii = 3.314 Å and H15A⋯C14viii = 2.93 Å].

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯S20i 0.93 2.89 3.634 (4) 137
C10—H10⋯Cl25ii 0.93 2.88 3.807 (5) 172
C151—H15C⋯S20iii 0.96 2.87 3.458 (4) 121
N17—H17⋯S20iii 0.86 2.63 3.483 (4) 173
C22—H22⋯O1iv 0.98 2.37 3.345 (8) 175
O5—H5O⋯S20i 0.80 (2) 2.43 (2) 3.227 (4) 173 (5)
N8—H8N⋯O1 0.85 (2) 1.78 (3) 2.528 (4) 147 (4)
N19—H19A⋯O1iv 0.84 (2) 2.05 (2) 2.862 (5) 163 (4)
N19—H19B⋯N16 0.84 (2) 2.16 (5) 2.578 (5) 111 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 4.

Figure 4

View of the packing in (I) along the a-axis direction, showing the hydrogen-bonded system.

Figure 5.

Figure 5

View of the overlapping mol­ecules, showing some of the shorter π–π stacking contacts.

Synthesis and crystallization  

4-Acetyl­phenyl­azoresorcinol (Torrey & MacPherson, 1909) (1) (12.8 g, 50 mmol) was dissolved in 100ml of ethanol and stirred with an equimolar qu­antity of thio­semicarbazide (2) (4.55 g, 50 mmol) for 24 h at room temperature using catalytic amounts of HCl. The product, precipitated from the reaction mixture, was filtered, washed with ethanol and recrystallized from hot ethanol solution to give compound 3 as dark-red microcrystals (12.34g, 75%). Dark-red prisms of (I) were obtained by recrystallization from mixed solvents of tetra­chloro­methane and n-hexane 1:1; m.p. 521–523 K; IR (KBr): ν (cm−1) 3456–3257 (OH+NH+NH2), 1596 (C=N); 1H NMR (DMSO-d 6): δ 2.35 (s, 3H, CH3-C=N-NH), 6.37 (s, 1H, =CH—CO), 6.56 (d, 1H, J = 4 Hz, =CH—C=N), 7.69 (d, 1H, J = 4 Hz, =CH—C—OH), 7.90 (d, 2H, J = 7 Hz, Ar-H), 8.25 (d, 2H, J = 7 Hz, Ar-H), 8.11 & 8.50 (2s, 2H, NH2), 10.28 (s, 1H, NH—C=S), 10.75 (s, 1H, OH), 12.50 (s, 1H, NH—O=C) ppm; 13C-NMR (DMSO-d 6): δ 13.86 CH3—C=N—NH), 102.99 (C6), 109.33 (C3), 121.39 (C10 & C14), 127.64 (C12), 132.54 (C11 & C13), 134.35 (C2), 138.86 (C4), 146.86 (C9), 150.79 (C15), 156.64 (C5), 163.28 (C=O), 179.02 (C=S) ppm; MS m/z (%): 329 (M +, 38), 227 (35), 171 (70), 146 (70). Analysis calculated for C15H15N5O2S (329.09): C, 54.70; H, 4.59; N, 21.26; S, 9.74. Found: C, 54.61; H, 4.66; N, 21.33; S, 9.51%.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms on the O and N atoms were located in difference maps and were refined with distance constraints viz O—H distances were set to 0.82 (2) Å and N—H distances to 0.86 Å; their isotropic thermal parameters were refined freely. The remaining H atoms were included in idealized positions with their U iso values set to ride on the U eq values of the parent carbon atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C15H15N5O2S·C2H2Cl4
M r 497.21
Crystal system, space group Monoclinic, P21/c
Temperature (K) 295
a, b, c (Å) 5.9124 (2), 17.6155 (5), 20.3351 (6)
β (°) 96.563 (3)
V3) 2104.02 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.69
Crystal size (mm) 0.42 × 0.09 × 0.08
 
Data collection
Diffractometer Oxford Diffraction Xcalibur 3/Sapphire3 CCD
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014)
T min, T max 0.728, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 28750, 3675, 3213
R int 0.053
(sin θ/λ)max−1) 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.076, 0.204, 1.09
No. of reflections 3675
No. of parameters 279
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.72, −0.79

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXS97 (Sheldrick, 2008), ORTEP (Johnson, 1976; Farrugia, 2012), SHELXL2014 (Sheldrick, 2015) and WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017010830/hb7686sup1.cif

e-73-01271-sup1.cif (1.5MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017010830/hb7686Isup2.hkl

e-73-01271-Isup2.hkl (293.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017010830/hb7686Isup3.cdx

Supporting information file. DOI: 10.1107/S2056989017010830/hb7686Isup4.cml

CCDC reference: 1564085

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C15H15N5O2S·C2H2Cl4 F(000) = 1016
Mr = 497.21 Dx = 1.570 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 5.9124 (2) Å Cell parameters from 5694 reflections
b = 17.6155 (5) Å θ = 3.5–28.7°
c = 20.3351 (6) Å µ = 0.69 mm1
β = 96.563 (3)° T = 295 K
V = 2104.02 (11) Å3 Prism, dark red
Z = 4 0.42 × 0.09 × 0.08 mm

Data collection

Oxford Diffraction Xcalibur 3/Sapphire3 CCD diffractometer 3675 independent reflections
Radiation source: Enhance (Mo) X-ray Source 3213 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.053
Detector resolution: 16.0050 pixels mm-1 θmax = 25.0°, θmin = 3.6°
Thin slice φ and ω scans h = −7→7
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) k = −20→20
Tmin = 0.728, Tmax = 1.000 l = −24→24
28750 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076 Hydrogen site location: mixed
wR(F2) = 0.204 H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0938P)2 + 8.2654P] where P = (Fo2 + 2Fc2)/3
3675 reflections (Δ/σ)max < 0.001
279 parameters Δρmax = 0.72 e Å3
4 restraints Δρmin = −0.79 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.9543 (5) 0.22114 (17) 0.20187 (14) 0.0225 (7)
C1 1.0971 (7) 0.1827 (2) 0.2420 (2) 0.0183 (9)
C2 1.0684 (7) 0.1769 (2) 0.3120 (2) 0.0181 (9)
C3 1.2286 (7) 0.1342 (2) 0.3548 (2) 0.0217 (9)
H3 1.2112 0.1308 0.3996 0.026*
C4 1.4060 (7) 0.0984 (3) 0.3313 (2) 0.0239 (10)
H4 1.5092 0.0706 0.3596 0.029*
C5 1.4325 (7) 0.1039 (2) 0.2629 (2) 0.0203 (9)
O5 1.6154 (5) 0.06701 (19) 0.24376 (17) 0.0270 (7)
C6 1.2855 (7) 0.1452 (2) 0.2200 (2) 0.0187 (9)
H6 1.3101 0.1486 0.1757 0.022*
N7 0.8994 (6) 0.2111 (2) 0.34044 (17) 0.0189 (8)
N8 0.7553 (6) 0.2510 (2) 0.30244 (17) 0.0184 (8)
C9 0.5772 (7) 0.2898 (2) 0.3284 (2) 0.0170 (8)
C10 0.5488 (7) 0.2886 (2) 0.3949 (2) 0.0189 (9)
H10 0.6486 0.2612 0.4246 0.023*
C11 0.3698 (7) 0.3286 (2) 0.4168 (2) 0.0194 (9)
H11 0.3503 0.3277 0.4615 0.023*
C12 0.2182 (7) 0.3702 (2) 0.3729 (2) 0.0159 (8)
C13 0.2511 (7) 0.3713 (2) 0.3063 (2) 0.0205 (9)
H13 0.1541 0.3996 0.2765 0.025*
C14 0.4281 (7) 0.3304 (3) 0.2839 (2) 0.0221 (9)
H14 0.4468 0.3303 0.2391 0.027*
C15 0.0244 (7) 0.4110 (2) 0.3983 (2) 0.0158 (8)
C151 −0.1144 (7) 0.4677 (3) 0.3562 (2) 0.0235 (10)
H15A −0.2643 0.4477 0.3439 0.035*
H15B −0.0428 0.4779 0.3171 0.035*
H15C −0.1251 0.5139 0.3807 0.035*
N16 −0.0111 (5) 0.39265 (19) 0.45721 (17) 0.0156 (7)
N17 −0.1850 (5) 0.42611 (19) 0.48636 (17) 0.0165 (7)
H17 −0.2660 0.4619 0.4670 0.020*
C18 −0.2233 (7) 0.4003 (2) 0.5467 (2) 0.0166 (9)
N19 −0.0835 (7) 0.3482 (2) 0.57381 (19) 0.0249 (9)
S20 −0.44392 (18) 0.43497 (6) 0.58404 (5) 0.0214 (3)
C21 0.2745 (18) 0.1205 (5) 0.5978 (4) 0.091 (3)
H21 0.3296 0.1016 0.6421 0.109*
C22 0.0344 (16) 0.1387 (4) 0.5960 (4) 0.076 (2)
H22 0.0155 0.1820 0.6251 0.091*
Cl23 0.4115 (4) 0.21230 (11) 0.58528 (10) 0.0710 (6)
Cl24 0.3333 (5) 0.05129 (12) 0.53859 (10) 0.0888 (8)
Cl25 −0.0877 (4) 0.16005 (11) 0.51483 (9) 0.0729 (6)
Cl26 −0.0903 (5) 0.05355 (12) 0.62934 (11) 0.0894 (8)
H5O 1.612 (8) 0.068 (3) 0.2043 (10) 0.019 (13)*
H8N 0.776 (8) 0.249 (3) 0.2620 (11) 0.021 (12)*
H19A −0.101 (7) 0.330 (2) 0.6111 (13) 0.006 (10)*
H19B 0.023 (6) 0.336 (3) 0.552 (2) 0.025 (13)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0237 (16) 0.0269 (17) 0.0174 (15) 0.0069 (13) 0.0040 (12) −0.0021 (13)
C1 0.018 (2) 0.016 (2) 0.021 (2) −0.0031 (16) 0.0043 (17) −0.0043 (17)
C2 0.016 (2) 0.016 (2) 0.023 (2) −0.0029 (16) 0.0061 (16) −0.0041 (17)
C3 0.024 (2) 0.022 (2) 0.021 (2) 0.0003 (17) 0.0072 (18) 0.0012 (17)
C4 0.022 (2) 0.024 (2) 0.026 (2) 0.0029 (18) 0.0021 (18) 0.0023 (18)
C5 0.016 (2) 0.016 (2) 0.029 (2) −0.0015 (16) 0.0068 (17) −0.0071 (18)
O5 0.0237 (16) 0.0311 (18) 0.0277 (19) 0.0112 (14) 0.0090 (14) −0.0021 (15)
C6 0.020 (2) 0.019 (2) 0.018 (2) 0.0012 (17) 0.0079 (17) −0.0043 (17)
N7 0.0172 (17) 0.0191 (18) 0.0212 (18) −0.0015 (14) 0.0056 (14) −0.0021 (15)
N8 0.0173 (18) 0.0221 (19) 0.0167 (19) 0.0001 (14) 0.0065 (14) −0.0041 (15)
C9 0.0158 (19) 0.017 (2) 0.020 (2) −0.0013 (16) 0.0074 (16) −0.0032 (16)
C10 0.017 (2) 0.019 (2) 0.021 (2) 0.0003 (16) 0.0023 (16) −0.0008 (17)
C11 0.020 (2) 0.024 (2) 0.015 (2) 0.0007 (17) 0.0057 (16) −0.0029 (17)
C12 0.0152 (19) 0.013 (2) 0.020 (2) −0.0036 (15) 0.0046 (16) −0.0029 (16)
C13 0.020 (2) 0.020 (2) 0.022 (2) 0.0050 (17) 0.0049 (17) 0.0043 (17)
C14 0.026 (2) 0.025 (2) 0.017 (2) 0.0006 (18) 0.0104 (18) −0.0005 (17)
C15 0.0140 (19) 0.014 (2) 0.020 (2) −0.0013 (15) 0.0043 (16) −0.0029 (16)
C151 0.024 (2) 0.025 (2) 0.024 (2) 0.0067 (18) 0.0113 (18) 0.0018 (18)
N16 0.0137 (16) 0.0143 (17) 0.0198 (18) 0.0004 (13) 0.0061 (13) −0.0023 (14)
N17 0.0137 (16) 0.0159 (17) 0.0205 (18) 0.0026 (13) 0.0054 (13) 0.0006 (14)
C18 0.017 (2) 0.016 (2) 0.017 (2) −0.0047 (16) 0.0062 (16) −0.0034 (16)
N19 0.028 (2) 0.031 (2) 0.019 (2) 0.0117 (17) 0.0143 (16) 0.0073 (16)
S20 0.0186 (5) 0.0267 (6) 0.0208 (6) 0.0054 (4) 0.0112 (4) 0.0042 (4)
C21 0.134 (8) 0.088 (6) 0.049 (4) 0.040 (6) −0.003 (5) −0.025 (4)
C22 0.122 (7) 0.052 (4) 0.053 (4) 0.027 (4) 0.004 (4) −0.005 (3)
Cl23 0.0926 (14) 0.0562 (11) 0.0691 (12) −0.0062 (10) 0.0310 (10) −0.0010 (9)
Cl24 0.136 (2) 0.0733 (13) 0.0533 (11) 0.0549 (13) −0.0076 (11) −0.0175 (9)
Cl25 0.1051 (15) 0.0583 (11) 0.0539 (10) 0.0306 (10) 0.0031 (10) 0.0093 (8)
Cl26 0.136 (2) 0.0649 (13) 0.0658 (13) −0.0453 (13) 0.0050 (12) 0.0031 (10)

Geometric parameters (Å, º)

O1—C1 1.296 (5) C12—C15 1.494 (5)
C1—C6 1.412 (6) C13—C14 1.389 (6)
C1—C2 1.456 (6) C13—H13 0.9300
C2—N7 1.351 (5) C14—H14 0.9300
C2—C3 1.426 (6) C15—N16 1.280 (5)
C3—C4 1.356 (6) C15—C151 1.499 (6)
C3—H3 0.9300 C151—H15A 0.9600
C4—C5 1.420 (6) C151—H15B 0.9600
C4—H4 0.9300 C151—H15C 0.9600
C5—O5 1.356 (5) N16—N17 1.377 (5)
C5—C6 1.369 (6) N17—C18 1.352 (5)
O5—H5O 0.801 (19) N17—H17 0.8600
C6—H6 0.9300 C18—N19 1.314 (6)
N7—N8 1.291 (5) C18—S20 1.696 (4)
N8—C9 1.408 (5) N19—H19A 0.841 (19)
N8—H8N 0.846 (19) N19—H19B 0.84 (2)
C9—C10 1.381 (6) C21—C22 1.451 (13)
C9—C14 1.388 (6) C21—Cl24 1.776 (8)
C10—C11 1.387 (6) C21—Cl23 1.840 (11)
C10—H10 0.9300 C21—H21 0.9800
C11—C12 1.398 (6) C22—Cl25 1.766 (8)
C11—H11 0.9300 C22—Cl26 1.834 (9)
C12—C13 1.392 (6) C22—H22 0.9800
O1—C1—C6 121.7 (4) C14—C13—H13 119.8
O1—C1—C2 120.8 (4) C12—C13—H13 119.8
C6—C1—C2 117.5 (4) C9—C14—C13 120.0 (4)
N7—C2—C3 116.5 (4) C9—C14—H14 120.0
N7—C2—C1 124.2 (4) C13—C14—H14 120.0
C3—C2—C1 119.3 (4) N16—C15—C12 114.6 (4)
C4—C3—C2 121.1 (4) N16—C15—C151 124.4 (4)
C4—C3—H3 119.4 C12—C15—C151 121.0 (4)
C2—C3—H3 119.4 C15—C151—H15A 109.5
C3—C4—C5 119.3 (4) C15—C151—H15B 109.5
C3—C4—H4 120.3 H15A—C151—H15B 109.5
C5—C4—H4 120.3 C15—C151—H15C 109.5
O5—C5—C6 122.7 (4) H15A—C151—H15C 109.5
O5—C5—C4 115.4 (4) H15B—C151—H15C 109.5
C6—C5—C4 121.8 (4) C15—N16—N17 120.3 (3)
C5—O5—H5O 110 (4) C18—N17—N16 117.3 (3)
C5—C6—C1 120.9 (4) C18—N17—H17 121.4
C5—C6—H6 119.6 N16—N17—H17 121.4
C1—C6—H6 119.6 N19—C18—N17 116.9 (4)
N8—N7—C2 117.1 (4) N19—C18—S20 122.9 (3)
N7—N8—C9 120.7 (3) N17—C18—S20 120.2 (3)
N7—N8—H8N 114 (3) C18—N19—H19A 121 (3)
C9—N8—H8N 125 (3) C18—N19—H19B 116 (3)
C10—C9—C14 120.5 (4) H19A—N19—H19B 124 (5)
C10—C9—N8 122.7 (4) C22—C21—Cl24 113.7 (6)
C14—C9—N8 116.9 (4) C22—C21—Cl23 104.3 (6)
C9—C10—C11 119.3 (4) Cl24—C21—Cl23 112.7 (5)
C9—C10—H10 120.4 C22—C21—H21 108.7
C11—C10—H10 120.4 Cl24—C21—H21 108.7
C10—C11—C12 121.2 (4) Cl23—C21—H21 108.7
C10—C11—H11 119.4 C21—C22—Cl25 111.4 (6)
C12—C11—H11 119.4 C21—C22—Cl26 104.1 (6)
C13—C12—C11 118.6 (4) Cl25—C22—Cl26 112.4 (5)
C13—C12—C15 121.9 (4) C21—C22—H22 109.6
C11—C12—C15 119.5 (4) Cl25—C22—H22 109.6
C14—C13—C12 120.4 (4) Cl26—C22—H22 109.6
O1—C1—C2—N7 −1.3 (6) C10—C11—C12—C13 −0.5 (6)
C6—C1—C2—N7 178.5 (4) C10—C11—C12—C15 178.5 (4)
O1—C1—C2—C3 180.0 (4) C11—C12—C13—C14 1.5 (6)
C6—C1—C2—C3 −0.2 (6) C15—C12—C13—C14 −177.6 (4)
N7—C2—C3—C4 −179.3 (4) C10—C9—C14—C13 1.1 (6)
C1—C2—C3—C4 −0.5 (6) N8—C9—C14—C13 −178.7 (4)
C2—C3—C4—C5 0.2 (7) C12—C13—C14—C9 −1.7 (6)
C3—C4—C5—O5 179.5 (4) C13—C12—C15—N16 166.6 (4)
C3—C4—C5—C6 0.9 (7) C11—C12—C15—N16 −12.5 (5)
O5—C5—C6—C1 180.0 (4) C13—C12—C15—C151 −12.8 (6)
C4—C5—C6—C1 −1.6 (6) C11—C12—C15—C151 168.2 (4)
O1—C1—C6—C5 −178.9 (4) C12—C15—N16—N17 −179.9 (3)
C2—C1—C6—C5 1.2 (6) C151—C15—N16—N17 −0.6 (6)
C3—C2—N7—N8 178.9 (4) C15—N16—N17—C18 175.4 (4)
C1—C2—N7—N8 0.2 (6) N16—N17—C18—N19 3.4 (5)
C2—N7—N8—C9 −178.6 (4) N16—N17—C18—S20 −176.5 (3)
N7—N8—C9—C10 1.1 (6) Cl24—C21—C22—Cl25 −50.4 (9)
N7—N8—C9—C14 −179.1 (4) Cl23—C21—C22—Cl25 72.7 (6)
C14—C9—C10—C11 −0.1 (6) Cl24—C21—C22—Cl26 71.0 (7)
N8—C9—C10—C11 179.6 (4) Cl23—C21—C22—Cl26 −165.9 (4)
C9—C10—C11—C12 −0.1 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C6—H6···S20i 0.93 2.89 3.634 (4) 137
C10—H10···Cl25ii 0.93 2.88 3.807 (5) 172
C151—H15C···S20iii 0.96 2.87 3.458 (4) 121
N17—H17···S20iii 0.86 2.63 3.483 (4) 173
C22—H22···O1iv 0.98 2.37 3.345 (8) 175
O5—H5O···S20i 0.80 (2) 2.43 (2) 3.227 (4) 173 (5)
N8—H8N···O1 0.85 (2) 1.78 (3) 2.528 (4) 147 (4)
N19—H19A···O1iv 0.84 (2) 2.05 (2) 2.862 (5) 163 (4)
N19—H19B···N16 0.84 (2) 2.16 (5) 2.578 (5) 111 (4)

Symmetry codes: (i) x+2, −y+1/2, z−1/2; (ii) x+1, y, z; (iii) −x−1, −y+1, −z+1; (iv) x−1, −y+1/2, z+1/2.

References

  1. Abdel-Gawad, H., Mohamed, H. A., Dawood, K. M. & Badria, F. A.-R. (2010). Chem. Pharm. Bull. 58, 1529–1531. [DOI] [PubMed]
  2. Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.
  3. Benosmane, A., Mili, A., Bouguerria, H. & Bouchoul, A. (2013). Acta Cryst. E69, o1021. [DOI] [PMC free article] [PubMed]
  4. Bougueria, H., Benaouida, M. A., Bouacida, S. & Bouchoul, A. El K. (2013a). Acta Cryst. E69, o1175–o1176. [DOI] [PMC free article] [PubMed]
  5. Bougueria, H., Benosmane, A., Benaouida, M. A., Bouchoul, A. El K. & Bouaoud, S. E. (2013b). Acta Cryst. E69, o1052. [DOI] [PMC free article] [PubMed]
  6. Cardoso, M. V. de O., de Siqueira, L. R. P., da Silva, E. B., Costa, L. B., Hernandes, M. Z., Rabello, M. M., Ferreira, R. S., da Cruz, L. F., Magalhães Moreira, D. R., Pereira, V. R. A., de Castro, M. C. A. B., Bernhardt, P. V. & Leite, A. C. L. (2014). Eur. J. Med. Chem. 86, 48–59. [DOI] [PubMed]
  7. Chetioui, S., Boudraa, I., Bouacida, S., Bouchoul, A. & Bouaoud, S. E. (2013). Acta Cryst. E69, o1322–o1323. [DOI] [PMC free article] [PubMed]
  8. Chimenti, F., Bolasco, A., Secci, D., Chimenti, P., Granese, A., Carradori, S., Yáñez, M., Orallo, F., Ortuso, F. & Alcaro, S. (2010). Bioorg. Med. Chem. 18, 5715–5723. [DOI] [PubMed]
  9. El-Sadek, M. M., Hassan, S. Y., Abdelwahab, H. E. & Yacout, G. A. (2012). Molecules, 17, 8378–8396. [DOI] [PMC free article] [PubMed]
  10. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  11. Finch, R. A., Liu, M.-C., Grill, S. P., Rose, W. C., Loomis, R., Vasquez, K. M., Cheng, Y.-C. & Sartorelli, A. C. (2000). Biochem. Pharmacol. 59, 983–991. [DOI] [PubMed]
  12. Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  13. Liu, J., Cao, R., Yi, W., Ma, C., Wan, Y., Zhou, B., Ma, L. & Song, H. (2009). Eur. J. Med. Chem. 44, 1773–1778. [DOI] [PubMed]
  14. Liu, J., Yi, W., Wan, Y., Ma, L. & Song, H. (2008). Bioorg. Med. Chem. 16, 1096–1102. [DOI] [PubMed]
  15. Serda, M., Kalinowski, D. S., Mrozek-Wilczkiewicz, A., Musiol, R., Szurko, A., Ratuszna, A., Pantarat, N., Kovacevic, Z., Merlot, A. M., Richardson, D. R. & Polanski, J. (2012). Bioorg. Med. Chem. Lett. 22, 5527–5531. [DOI] [PubMed]
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  18. Soares, M. A., Lessa, J. A., Mendes, I. C., Da Silva, J. G., Dos Santos, R. G., Salum, L. B., Daghestani, H., Andricopulo, A. D., Day, B. W., Vogt, A., Pesquero, J. L., Rocha, W. R. & Beraldo, H. (2012). Bioorg. Med. Chem. 20, 3396–3409. [DOI] [PubMed]
  19. Thanusu, J., Kanagarajan, V. & Gopalakrishnan, M. (2010). Bioorg. Med. Chem. Lett. 20, 713–717. [DOI] [PubMed]
  20. Torrey, H. A. & MacPherson, W. (1909). J. Am. Chem. Soc. 31, 579–583.
  21. Vazzana, I., Terranova, E., Mattioli, F. & Sparatore, F. (2004). Arkivoc, (v), 364–374.
  22. Vigato, P. A. & Tamburini, S. (2004). Coord. Chem. Rev. 248, 1717–2128.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017010830/hb7686sup1.cif

e-73-01271-sup1.cif (1.5MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017010830/hb7686Isup2.hkl

e-73-01271-Isup2.hkl (293.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017010830/hb7686Isup3.cdx

Supporting information file. DOI: 10.1107/S2056989017010830/hb7686Isup4.cml

CCDC reference: 1564085

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES