Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Aug 25;73(Pt 9):1372–1374. doi: 10.1107/S2056989017012142

Crystal structure of N-[2-(cyclo­hexyl­sulfan­yl)eth­yl]quinolinic acid imide

Hyunjin Park a, Myong Yong Choi a,*, Cheol Joo Moon a, Tae Ho Kim a,*
PMCID: PMC5588583  PMID: 28932477

In the crystal of the title compound, C—H⋯O hydrogen bonds and C—O⋯π inter­actions form a two-dimensional network lying parallel to the ab plane.

Keywords: crystal structure, theoretical calculations, quinolinic acid imide, hydrogen bonding

Abstract

The title compound, C15H18N2O2S {systematic name: 6-[2-(cyclo­hexyl­sulfan­yl)eth­yl]-5H-pyrrolo­[3,4-b]pyridine-5,7(6H)-dione}, was obtained from the reaction of pyridine-2,3-di­carb­oxy­lic anhydride (synonym: quinolinic anhydride) with 2-(cyclo­hexyl­sulfan­yl)ethyl­amine. The dihedral angle between the mean plane of the cyclo­hexyl ring and the quinolinic acid imide ring is 25.43 (11)°. In the crystal, each mol­ecule forms two C—H⋯O hydrogen bonds and one weak C—O⋯π [O⋯ring centroid = 3.255 (2) Å] inter­action with neighbouring mol­ecules to generate a ladder structure along the b-axis direction. The ladders are linked by weak C—O⋯π [O⋯ring centroid = 3.330 (2) Å] inter­actions, resulting in sheets extending parallel to the ab plane. The mol­ecular structure is broadly consistent with theoretical calculations performed by density functional theory (DFT).

Chemical context  

Quinolinic anhydrides have been used extensively as versatile inter­mediates in the synthesis of various heterocyclic systems, such as aphthyridines, nicotinamides and isotonic derivatives. Recently, they have been exploited in anti­viral, dementia, anti-allergy and anti­tumor targets (Metobo et al., 2013). In addition, it is expected that various metal complexes may be formed because they are composed of N/S-donor atoms. In particular, our group reported copper(I) coordination polymers with N/S-donor-atom ligands, which showed their various luminescence and reversible/irreversible structural transformations (Jeon et al., 2014; Cho et al., 2015). As part of our ongoing studies in this area, we designed and synthesized a new N/S-donor ligand, namely N-[2-(cyclo­hexyl­sulfan­yl)ethyl]quinolinic acid imide, which was prepared from the reaction of quinolinic anhydride with 2-(cyclo­hexyl­sulfan­yl)ethyl­amine. Herein, we report its crystal structure.graphic file with name e-73-01372-scheme1.jpg

Structural commentary  

The crystal structure of the title compound is shown in Fig. 1. The cyclo­hexyl ring adopts a chair conformation, with the exocyclic C—S bond in an equatorial orientation; the dihedral angle between the mean plane (r.m.s. deviation = 0.2317 Å) of the cyclo­hexyl ring and the quinolinic acid imide ring is 25.43 (11)°. All bond lengths and angles are normal and comparable to those observed in similar crystal structures (Garduño-Beltrán et al., 2009; Inoue et al., 2009).

Figure 1.

Figure 1

The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

Supra­molecular features  

In the crystal, mol­ecules are linked by C2—H2⋯O1i and C3—H3⋯O1i hydrogen bonds [H⋯O = 2.50 and 2.55 Å, respectively; symmetry code: (i) x, y + 1, z; Table 1], and weak C6—O1⋯Cg1ii (Cg1 is the centroid of the N1/C1–C5 ring) inter­actions [O⋯π = 3.255 (2) Å; symmetry code: (ii) 1 − x, −Inline graphic + y, Inline graphic − z], forming a one-dimensional ladder structure along the b axis. The ladders are packed in an ABAB pattern along the c axis (yellow dashed lines in Fig. 2). In addition, the ladders are linked by C7—O2⋯Cg1iii inter­actions [O⋯π = 3.330 (2) Å; symmetry code: (iii) −1 + x, y, z], resulting in the formation of a two-dimensional network structure lying parallel to the ab plane (red dashed lines in Fig. 3).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.95 2.50 3.119 (3) 123
C3—H3⋯O1i 0.95 2.55 3.129 (3) 119

Symmetry code: (i) Inline graphic.

Figure 2.

Figure 2

The crystal packing of the title compound, indicating the C—H⋯O hydrogen bonds and C—O⋯π inter­actions (yellow dashed lines) [symmetry codes: (i) x, y + 1, z; (ii) 1 − x, −Inline graphic + y, Inline graphic − z], which results in a one-dimensional ladder structure along the b axis.

Figure 3.

Figure 3

The packing diagram, showing the two-dimensional network structure formed by C—O⋯π inter­actions (red dashed lines) [symmetry code: (iii) −1 + x, y, z]. H atoms and cyclo­hexa­nesulfanyl groups not involved in inter­molecular inter­actions have been omitted for clarity.

Theoretical calculations  

To support the experimental data based on the diffraction study, computational calculations on the N-[2-(cyclo­hexyl­sulfan­yl)eth­yl]quinolinic acid imide mol­ecule were performed using the GAUSSIAN09 software package (Frisch et al., 2009). Full geometry optimizations were calculated at the DFT level of theory using a basis set of 6-311++G(d,p). The optimized parameters, such as bond lengths and angles, are in generally good agreement (the largest bond-length deviation is less than 0.03 Å) with the experimental crystallographic data (Table 2). The calculated and experimental torsion angles for N2—C8—C9—S1 (C8—C9—S1—C10) are 53.64 (65.80) and 64.2 (3)° [97.4 (2)°], respectively. The calculated and experimental dihedral angle between the ring systems were 25.34 and 25.43 (11)°, respectively. However, several relatively large differences between the experimental and theoretical data (see Table 2) may be due to the packing effects induced by the inter­molecular inter­actions in the crystal.

Table 2. Experimental and calculated bond lengths (Å).

Bond X-ray B3LYP (6–311++G(d,p)) Difference
S1—C9 1.813 (3) 1.830 −0.017
S1—C10 1.827 (3) 1.853 −0.026
O1—C6 1.212 (3) 1.205 0.007
O2—C7 1.209 (3) 1.210 0.001
N1—C5 1.325 (3) 1.324 0.001
N1—C1 1.342 (4) 1.342 0.000
N2—C6 1.394 (3) 1.407 −0.013
N2—C7 1.395 (4) 1.399 −0.004
N2—C8 1.460 (3) 1.456 0.004
C1—C2 1.382 (4) 1.400 −0.018
C2—C3 1.381 (4) 1.396 −0.015
C3—C4 1.380 (4) 1.385 −0.005
C4—C5 1.376 (4) 1.392 −0.016
C4—C7 1.490 (4) 1.492 −0.002
C5—C6 1.497 (4) 1.508 −0.011
C8—C9 1.522 (4) 1.536 −0.014
C10—C11 1.516 (4) 1.534 −0.018
C10—C15 1.530 (4) 1.536 −0.006
C11—C12 1.523 (4) 1.539 −0.016
C12—C13 1.523 (4) 1.534 −0.011
C13—C14 1.514 (4) 1.535 −0.021
C14—C15 1.524 (5) 1.537 −0.013

Synthesis and crystallization  

A mixture of quinolinic anhydride (0.67 g, 5.0 mmol) and 2-(cyclo­hexyl­sulfan­yl)ethyl­amine (0.83 g, 5.3 mmol) in toluene (15 ml) was heated at 433 K with stirring for 8 h. The crude product was extracted with di­chloro­methane. The di­chloro­methane layer was dried with anhydrous Na2SO4 and evaporated to give a crude solid. The reaction mixture was then concentrated and purified by chromatography on silica gel (MeCOOEt/n-C6H14 = 30/70 v/v, R F = 0.28) (Kang et al., 2015). Colourless plates were obtained by slow evaporation of a hexane solution of the title compound. 1H NMR (300 MHz, CDCl3): δ 7.40 (dd, H, Py), 8.02 (t, H, Py), 7.52 (dd, H, Py), 3.74 (t, 2H, NCH2), 2.64 (t, 2H, CH2S), 2.56 (d, H, SCH), 1.82–1.04 [m, 10H, (CH2)5]; 13C NMR (75.4 MHz, CDCl3): δ 166.84, 166.47, 155.60, 144.65, 139.31, 125.76, 116.76, 42.95, 37.89, 33.36, 27.71, 25.91, 25.68

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å and U iso(H) = 1.2U eq(C) for aromatic C—H groups, C—H = 0.99 Å and U iso(H) = 1.2U eq(C) for CH2 groups, and C—H = 1.00 Å and U iso(H) = 1.2U eq(C) for Csp 3—H groups.

Table 3. Experimental details.

Crystal data
Chemical formula C15H18N2O2S
M r 290.37
Crystal system, space group Orthorhombic, P212121
Temperature (K) 173
a, b, c (Å) 5.5322 (2), 7.8707 (3), 32.9092 (14)
V3) 1432.94 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.23
Crystal size (mm) 0.28 × 0.10 × 0.09
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014)
T min, T max 0.690, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 11035, 2536, 2302
R int 0.046
(sin θ/λ)max−1) 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.034, 0.072, 1.04
No. of reflections 2536
No. of parameters 181
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.19
Absolute structure Flack x determined using 839 quotients [(I +) − (I )]/[(I +) + (I )] (Parsons et al., 2013)
Absolute structure parameter 0.05 (5)

Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), DIAMOND (Brandenburg, 2010), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989017012142/hb7685sup1.cif

e-73-01372-sup1.cif (401.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017012142/hb7685Isup2.hkl

e-73-01372-Isup2.hkl (139.4KB, hkl)

CCDC reference: 1570205

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The main calculations were carried out by the Supercomputing Center/Korea Institute of Science and Technology Information (KISTI) (KSC-2017-C1-0002).

supplementary crystallographic information

Crystal data

C15H18N2O2S Dx = 1.346 Mg m3
Mr = 290.37 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121 Cell parameters from 2024 reflections
a = 5.5322 (2) Å θ = 2.5–27.2°
b = 7.8707 (3) Å µ = 0.23 mm1
c = 32.9092 (14) Å T = 173 K
V = 1432.94 (10) Å3 Plate, colourless
Z = 4 0.28 × 0.10 × 0.09 mm
F(000) = 616

Data collection

Bruker APEXII CCD diffractometer 2302 reflections with I > 2σ(I)
φ and ω scans Rint = 0.046
Absorption correction: multi-scan (SADABS; Bruker, 2014) θmax = 25.0°, θmin = 1.2°
Tmin = 0.690, Tmax = 0.746 h = −6→6
11035 measured reflections k = −8→9
2536 independent reflections l = −39→39

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0215P)2 + 0.3497P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.072 (Δ/σ)max < 0.001
S = 1.04 Δρmax = 0.20 e Å3
2536 reflections Δρmin = −0.19 e Å3
181 parameters Absolute structure: Flack x determined using 839 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraints Absolute structure parameter: 0.05 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.53243 (13) 0.93377 (11) 0.09181 (3) 0.0414 (2)
O1 0.5825 (3) 0.9636 (2) 0.20137 (6) 0.0362 (5)
O2 0.1331 (3) 1.3885 (3) 0.14389 (6) 0.0360 (5)
N1 0.8186 (4) 1.2919 (3) 0.22791 (7) 0.0292 (6)
N2 0.3211 (4) 1.1461 (3) 0.16766 (7) 0.0268 (5)
C1 0.8794 (5) 1.4552 (4) 0.23364 (8) 0.0306 (7)
H1 1.0179 1.4779 0.2498 0.037*
C2 0.7561 (5) 1.5929 (4) 0.21783 (8) 0.0320 (7)
H2 0.8111 1.7050 0.2233 0.038*
C3 0.5532 (5) 1.5678 (3) 0.19413 (8) 0.0301 (6)
H3 0.4639 1.6597 0.1829 0.036*
C4 0.4884 (5) 1.4006 (3) 0.18778 (7) 0.0235 (6)
C5 0.6241 (5) 1.2727 (3) 0.20487 (8) 0.0234 (6)
C6 0.5174 (5) 1.1058 (3) 0.19241 (8) 0.0262 (6)
C7 0.2900 (5) 1.3212 (4) 0.16376 (8) 0.0281 (7)
C8 0.1681 (5) 1.0227 (4) 0.14678 (9) 0.0335 (7)
H8A −0.0035 1.0559 0.1499 0.040*
H8B 0.1895 0.9095 0.1594 0.040*
C9 0.2300 (5) 1.0119 (4) 0.10179 (9) 0.0369 (8)
H9A 0.2130 1.1263 0.0896 0.044*
H9B 0.1120 0.9361 0.0883 0.044*
C10 0.4745 (5) 0.7095 (3) 0.08142 (8) 0.0278 (6)
H10 0.3597 0.6645 0.1023 0.033*
C11 0.3645 (5) 0.6857 (4) 0.03962 (8) 0.0318 (7)
H11A 0.4706 0.7395 0.0191 0.038*
H11B 0.2057 0.7435 0.0387 0.038*
C12 0.3313 (6) 0.4988 (4) 0.02908 (10) 0.0448 (9)
H12A 0.2117 0.4476 0.0478 0.054*
H12B 0.2676 0.4887 0.0011 0.054*
C13 0.5693 (6) 0.4026 (4) 0.03229 (10) 0.0463 (8)
H13A 0.5408 0.2803 0.0271 0.056*
H13B 0.6831 0.4450 0.0114 0.056*
C14 0.6795 (6) 0.4253 (4) 0.07406 (10) 0.0438 (8)
H14A 0.8382 0.3672 0.0750 0.053*
H14B 0.5734 0.3716 0.0946 0.053*
C15 0.7133 (5) 0.6123 (4) 0.08458 (9) 0.0388 (8)
H15A 0.8329 0.6633 0.0658 0.047*
H15B 0.7773 0.6223 0.1126 0.047*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0268 (4) 0.0445 (5) 0.0529 (5) −0.0066 (4) 0.0022 (3) −0.0203 (4)
O1 0.0412 (12) 0.0199 (11) 0.0474 (12) 0.0036 (10) −0.0046 (10) 0.0019 (10)
O2 0.0354 (11) 0.0345 (12) 0.0380 (11) 0.0093 (10) −0.0109 (9) −0.0026 (10)
N1 0.0318 (13) 0.0227 (14) 0.0332 (13) 0.0016 (11) −0.0039 (11) −0.0014 (11)
N2 0.0258 (12) 0.0212 (13) 0.0333 (13) −0.0014 (11) −0.0006 (11) −0.0047 (10)
C1 0.0334 (15) 0.0274 (17) 0.0310 (16) 0.0000 (14) −0.0036 (12) −0.0047 (13)
C2 0.0432 (17) 0.0200 (17) 0.0329 (16) −0.0009 (14) −0.0028 (13) −0.0022 (13)
C3 0.0408 (15) 0.0212 (15) 0.0282 (14) 0.0072 (14) −0.0074 (13) −0.0001 (12)
C4 0.0302 (14) 0.0186 (14) 0.0217 (13) 0.0009 (13) −0.0013 (11) −0.0016 (11)
C5 0.0263 (13) 0.0186 (15) 0.0252 (14) 0.0002 (12) 0.0010 (12) −0.0010 (12)
C6 0.0275 (14) 0.0215 (15) 0.0297 (14) 0.0013 (13) 0.0031 (12) −0.0012 (12)
C7 0.0304 (15) 0.0289 (17) 0.0251 (14) 0.0027 (14) 0.0033 (12) −0.0035 (13)
C8 0.0253 (14) 0.0272 (17) 0.0478 (18) −0.0047 (13) 0.0013 (14) −0.0099 (14)
C9 0.0290 (14) 0.0363 (18) 0.0455 (18) 0.0024 (13) −0.0079 (13) −0.0159 (14)
C10 0.0245 (14) 0.0323 (16) 0.0265 (14) −0.0028 (13) 0.0030 (12) −0.0022 (12)
C11 0.0361 (16) 0.0329 (18) 0.0265 (15) 0.0029 (14) −0.0032 (13) −0.0027 (13)
C12 0.0435 (19) 0.039 (2) 0.052 (2) 0.0007 (16) −0.0084 (16) −0.0145 (16)
C13 0.0491 (19) 0.0342 (19) 0.056 (2) 0.0052 (17) 0.0069 (16) −0.0118 (16)
C14 0.0379 (17) 0.042 (2) 0.051 (2) 0.0103 (18) 0.0047 (15) 0.0076 (17)
C15 0.0307 (15) 0.049 (2) 0.0372 (17) 0.0036 (15) −0.0018 (13) −0.0023 (16)

Geometric parameters (Å, º)

S1—C9 1.813 (3) C8—H8B 0.9900
S1—C10 1.827 (3) C9—H9A 0.9900
O1—C6 1.212 (3) C9—H9B 0.9900
O2—C7 1.209 (3) C10—C11 1.516 (4)
N1—C5 1.325 (3) C10—C15 1.530 (4)
N1—C1 1.342 (4) C10—H10 1.0000
N2—C6 1.394 (3) C11—C12 1.523 (4)
N2—C7 1.395 (4) C11—H11A 0.9900
N2—C8 1.460 (3) C11—H11B 0.9900
C1—C2 1.382 (4) C12—C13 1.523 (4)
C1—H1 0.9500 C12—H12A 0.9900
C2—C3 1.381 (4) C12—H12B 0.9900
C2—H2 0.9500 C13—C14 1.514 (4)
C3—C4 1.380 (4) C13—H13A 0.9900
C3—H3 0.9500 C13—H13B 0.9900
C4—C5 1.376 (4) C14—C15 1.524 (5)
C4—C7 1.490 (4) C14—H14A 0.9900
C5—C6 1.497 (4) C14—H14B 0.9900
C8—C9 1.522 (4) C15—H15A 0.9900
C8—H8A 0.9900 C15—H15B 0.9900
C9—S1—C10 101.54 (14) H9A—C9—H9B 107.7
C5—N1—C1 113.2 (2) C11—C10—C15 110.3 (2)
C6—N2—C7 112.0 (2) C11—C10—S1 111.1 (2)
C6—N2—C8 125.1 (2) C15—C10—S1 108.6 (2)
C7—N2—C8 122.8 (2) C11—C10—H10 109.0
N1—C1—C2 125.0 (3) C15—C10—H10 109.0
N1—C1—H1 117.5 S1—C10—H10 109.0
C2—C1—H1 117.5 C10—C11—C12 112.0 (2)
C3—C2—C1 120.1 (3) C10—C11—H11A 109.2
C3—C2—H2 120.0 C12—C11—H11A 109.2
C1—C2—H2 120.0 C10—C11—H11B 109.2
C4—C3—C2 115.7 (3) C12—C11—H11B 109.2
C4—C3—H3 122.2 H11A—C11—H11B 107.9
C2—C3—H3 122.2 C13—C12—C11 111.1 (3)
C5—C4—C3 119.6 (2) C13—C12—H12A 109.4
C5—C4—C7 108.2 (2) C11—C12—H12A 109.4
C3—C4—C7 132.2 (2) C13—C12—H12B 109.4
N1—C5—C4 126.4 (2) C11—C12—H12B 109.4
N1—C5—C6 125.3 (2) H12A—C12—H12B 108.0
C4—C5—C6 108.3 (2) C14—C13—C12 110.6 (3)
O1—C6—N2 125.7 (2) C14—C13—H13A 109.5
O1—C6—C5 128.7 (2) C12—C13—H13A 109.5
N2—C6—C5 105.5 (2) C14—C13—H13B 109.5
O2—C7—N2 124.8 (3) C12—C13—H13B 109.5
O2—C7—C4 129.2 (3) H13A—C13—H13B 108.1
N2—C7—C4 106.0 (2) C13—C14—C15 111.7 (3)
N2—C8—C9 111.4 (2) C13—C14—H14A 109.3
N2—C8—H8A 109.4 C15—C14—H14A 109.3
C9—C8—H8A 109.4 C13—C14—H14B 109.3
N2—C8—H8B 109.4 C15—C14—H14B 109.3
C9—C8—H8B 109.4 H14A—C14—H14B 107.9
H8A—C8—H8B 108.0 C14—C15—C10 111.2 (3)
C8—C9—S1 113.7 (2) C14—C15—H15A 109.4
C8—C9—H9A 108.8 C10—C15—H15A 109.4
S1—C9—H9A 108.8 C14—C15—H15B 109.4
C8—C9—H9B 108.8 C10—C15—H15B 109.4
S1—C9—H9B 108.8 H15A—C15—H15B 108.0
C5—N1—C1—C2 0.3 (4) C6—N2—C7—C4 1.1 (3)
N1—C1—C2—C3 0.1 (4) C8—N2—C7—C4 −177.0 (2)
C1—C2—C3—C4 −0.3 (4) C5—C4—C7—O2 −179.3 (3)
C2—C3—C4—C5 0.2 (4) C3—C4—C7—O2 −0.8 (5)
C2—C3—C4—C7 −178.2 (3) C5—C4—C7—N2 −0.6 (3)
C1—N1—C5—C4 −0.4 (4) C3—C4—C7—N2 177.9 (3)
C1—N1—C5—C6 178.4 (3) C6—N2—C8—C9 −103.0 (3)
C3—C4—C5—N1 0.2 (4) C7—N2—C8—C9 74.9 (3)
C7—C4—C5—N1 179.0 (2) N2—C8—C9—S1 64.2 (3)
C3—C4—C5—C6 −178.8 (2) C10—S1—C9—C8 97.4 (2)
C7—C4—C5—C6 0.0 (3) C9—S1—C10—C11 75.0 (2)
C7—N2—C6—O1 178.8 (3) C9—S1—C10—C15 −163.5 (2)
C8—N2—C6—O1 −3.1 (4) C15—C10—C11—C12 55.5 (3)
C7—N2—C6—C5 −1.1 (3) S1—C10—C11—C12 175.9 (2)
C8—N2—C6—C5 176.9 (2) C10—C11—C12—C13 −56.0 (4)
N1—C5—C6—O1 1.7 (4) C11—C12—C13—C14 55.3 (4)
C4—C5—C6—O1 −179.3 (3) C12—C13—C14—C15 −55.8 (4)
N1—C5—C6—N2 −178.4 (2) C13—C14—C15—C10 56.0 (3)
C4—C5—C6—N2 0.6 (3) C11—C10—C15—C14 −55.2 (3)
C6—N2—C7—O2 179.9 (3) S1—C10—C15—C14 −177.1 (2)
C8—N2—C7—O2 1.8 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2···O1i 0.95 2.50 3.119 (3) 123
C3—H3···O1i 0.95 2.55 3.129 (3) 119

Symmetry code: (i) x, y+1, z.

Funding Statement

This work was funded by National Research Foundation of Korea grants 2015R1D1A3A01020410 and 2016R1D1A1B03934376.

References

  1. Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cho, S., Jeon, Y., Lee, S., Kim, J. & Kim, T. H. (2015). Chem. Eur. J. 21, 1439–1443. [DOI] [PubMed]
  4. Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. http://www.gaussian.com.
  5. Garduño-Beltrán, O., Román-Bravo, P., Medrano, F. & Tlahuext, H. (2009). Acta Cryst. E65, o2581. [DOI] [PMC free article] [PubMed]
  6. Inoue, S., Shiota, H., Fukumoto, Y. & Chatani, N. (2009). J. Am. Chem. Soc. 131, 6898–6899. [DOI] [PubMed]
  7. Jeon, Y., Cheon, S., Cho, S., Lee, K. Y., Kim, T. H. & Kim, J. (2014). Cryst. Growth Des. 14, 2105–2109.
  8. Kang, G., Jeon, Y., Lee, K. Y., Kim, J. & Kim, T. H. (2015). Cryst. Growth Des. 15, 5183–5187.
  9. Metobo, S. E., Jabri, S. Y., Aktoudianakis, E., Evans, J., Jin, H. & Kim, C. U. (2013). Tetrahedron Lett. 54, 6782–6784.
  10. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  13. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989017012142/hb7685sup1.cif

e-73-01372-sup1.cif (401.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017012142/hb7685Isup2.hkl

e-73-01372-Isup2.hkl (139.4KB, hkl)

CCDC reference: 1570205

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES