Skip to main content
Oncotarget logoLink to Oncotarget
. 2017 Jun 21;8(33):55489–55510. doi: 10.18632/oncotarget.18590

Prognostic value of microRNAs in gastric cancer: a meta-analysis

Yue Zhang 1, Dong-Hui Guan 2, Rong-Xiu Bi 2, Jin Xie 2, Chuan-Hua Yang 3, Yue-Hua Jiang 4
PMCID: PMC5589675  PMID: 28903436

Abstract

Background

Previous articles have reported that expression levels of microRNAs (miRNAs) are associated with survival time of patients with gastric cancer (GC). A systematic review and meta-analysis was performed to study the outcome of it.

Design

Meta-analysis.

Methods

English studies estimating expression levels of miRNAs with any of survival curves in GC were identified up till March 19, 2017 through performing online searches in PubMed, EMBASE, Web of Science and Cochrane Database of Systematic Reviews by two authors independently. The pooled hazard ratios (HR) with 95% confidence intervals (CI) were used to estimate the correlation between miRNA expression and overall survival (OS).

Results

Sixty-nine relevant articles about 26 miRNAs with 6148 patients were ultimately included. GC patients with high expression of miR-20b (HR=2.38, 95%CI=1.16-4.87), 21 (HR=1.77, 95%CI=1.01-3.08), 106b (HR=1.84, 95%CI=1.15-2.94), 196a (HR=2.66, 95%CI=1.94-3.63), 196b (HR=1.67, 95%CI=1.38-2.02), 214 (HR=1.84, 95%CI=1.27-2.67) or low expression of miR-125a (HR=2.06, 95%CI=1.26-3.37), 137 (HR=3.21, 95%CI=1.68-6.13), 141 (HR=2.47, 95%CI=1.34-4.56), 145 (HR=1.62, 95%CI=1.07-2.46), 146a (HR=2.60, 95%CI=1.63-4.13), 206 (HR=2.85, 95%CI=1.73-4.70), 218 (HR=2.61, 95%CI=1.74-3.92), 451 (HR=1.73, 95%CI=1.19-2.52), 486-5p (HR=2.45, 95%CI=1.65-3.65), 506 (HR=2.07, 95%CI=1.33-3.23) have significantly poor OS (P<0.05).

Conclusions

In summary, miR-20b, 21, 106b, 125a, 137, 141, 145, 146a, 196a, 196b, 206, 214, 218, 451, 486-5p and 506 demonstrate significantly prognostic value. Among them, miR-20b, 125a, 137, 141, 146a, 196a, 206, 218, 486-5p and 506 are strong biomarkers of prognosis in GC.

Keywords: microRNA, gastric cancer, prognosis, meta-analysis

INTRODUCTION

Great quantities of previous articles have reported that expression levels of microRNAs (miRNAs) are associated with survival time of gastric cancer (GC) patients [1167]. GC is still the fourth most common cancer all over the world and the second most universal cause of cancer death globally, although there has been a constant descent in morbidity and mortality in the past few decades [168, 169]. The early clinical inspection of GC was under 15%, and cases of advanced GC accounted for 85% [170]. At present, the primary treatment choices are surgical intervention, chemotherapy, immunogene therapy, and target therapy. The clinical result of GC mainly depends on the stage of tumor. Unfortunately, GC patients’ median survival time is no more than 6-9 months [171]. It is unlimited proliferation of cancer cells and ability of intense invasive and metastasis that mainly causes high malignancy degree and poorer survival time. As a result, a novel diagnostic means and improved prognosis of GC might be created through identification of molecular aberrations, which can predict cancer progression and survival rate.

During the past decade, the associations between non-coding RNAs (ncRNAs) and GC have been widely researched. Generally speaking, ncRNAs have been classified as small ncRNAs, consisting of miRNAs and long non-coding RNAs (lncRNAs).

MiRNAs, a novel class of small (20-24 nucleotides [nt]) non-coding regulatory RNAs, play a significant role in multiple biological processes, such as cell division, differentiation, senescence and apoptosis [172, 173]. An increasing number of evidence shows that various miRNAs are unconventionally expressed in diverse types of human cancers, and a few miRNAs have been shown to be related with tumor formation, development, progression, and response to treatment by miRNA expression profiling [174].

Moreover, a series of studies have already demonstrated that lncRNAs also play crucial roles in GC progression. A previous investigation reported that, compared with non-tumor tissues, H19 was one of the most elevated lncRNAs with a ˜8.91-fold change in human primary GC [175]. In addition, Li et al. [176] recognized certain potential lncRNAs that abnormally expressed between GC and normal tissues by screening a cohort of 74 GC patients as well, among which, H19 was chosen as a result of a significant overexpression. Furthermore, expression levels of the lncRNAs H19, ANRIL, GHET1, HOTAIR, GAS5, LET, GAPLINC and FENDRR are also significantly associated with the 5-year survival rate of GC patients [176183].

In GC research area, quite a number of investigations have demonstrated that miRNAs are associated with survival time of patients [1167]. However, the number of patients during the articles mentioned above is generally not big enough. Therefore, a systematic review and meta-analysis was performed for the sake of better understanding accurate prognostic value between expression levels of numerous miRNAs and HR of GC patients.

RESULTS

Study selection

A flow diagram with details of the study selection process was presented in Figure 1.

Figure 1. Flow diagram of literature search and selection.

Figure 1

Study frequency

Frequency of studies estimating prognostic value of miRNAs in GC were shown in Table 1 (highlighted studies were included in the present meta-analysis), including miRNA name, number of studies estimating prognostic value, and reference.

Table 1. Frequency of studies estimating prognostic value of miRNAs in gastric cancer.

miRNA N R miRNA N R miRNA N R miRNA N R miRNA N R miRNA N R miRNA N R
let-7g 1 1 27b 3 32-34 126 2 54,55 148a 1 78 200a 1 3 328 1 126 485-5p 1 146
10b 1 2 29a 2 35,36 128 2 32,34 150-5p 1 77 200b 2 96,97 335 3 41,127,128 486-5p 3 56,147,148
15a 1 3 29b 1 36 129-5p 1 56 150 2 12,79 200c 4 66,96,98,99 337-3p 1 129 493 1 149
16 2 3,4 29c 1 36 130a 1 57 153 1 80 203 2 100,101 340 1 130 494 1 150
17-5p 2 5,6 29 1 19 132 1 58 181a-5p 1 81 204 2 102,103 342-3p 1 79 500 1 151
18a 2 7,8 31 1 37 133a-3p 1 56 181b 1 16 206 3 104-106 361-5p 1 131 501-5p 1 152
19a 1 9 34a 5 3,38-41 133 2 59,60 181c 1 82 210 1 107 363 1 132 503 1 153
19b 1 10 92a 2 11,42 135a 1 61 182-5p 1 56 211 1 108 375 1 68 506 3 154-156
20a 3 3,5,11 93 2 43,44 135b-5p 1 56 183-5p 1 56 212 1 109 377 1 133 508-5p 2 33,157
20b 3 3,12,13 100 1 34 135b 1 61 183 2 83,84 214 4 1,34,110,111 378 1 134 520c 1 158
21-5p 1 14 101 2 32,34 137 3 62-64 185 2 3,85 215 1 87 381 1 135 520d-3p 1 159
21 7 3,6,15-19 103 1 3 141 3 65-67 187 1 86 217 2 112,113 421 2 136,137 558 1 160
22 2 20,21 106a 2 3,6 142-5p 1 68 192 3 48,79,87 218 3 114-116 425 1 3 590-5p 1 161
23b-3p 1 22 106b 3 3,6,45 143 3 3,69,70 193b 1 88 221 2 117,118 429 1 138 630 1 162
23b 1 23 107 3 3,46,47 144-5p 1 56 194 1 89 222 2 118,119 433 1 1 873 1 163
24 1 24 122 1 48 144 1 71 196a 4 88,90-92 223 2 120,121 448 1 139 939 1 164
25 2 25,26 125a-3p 1 49 145-5p 2 56,72 196b-5p 1 56 224 2 79,122 449c 1 140 940 1 165
26a 2 27,28 125a-5p 1 50 145 2 34,73 196b 3 91-93 300 1 123 451 4 4,141-143 1207-5p 1 166
26b 1 29 125a 1 51 146a 3 74-76 198 1 94 301a 1 124 452 1 144 1225-5p 1 167
27a 2 30,31 125b 2 52,53 146b-5p 1 77 199a 1 95 326 1 125 455-5p 1 145 1266 1 166

Highlighted studies were included in the present meta-analysis; N: Number of studies estimating prognostic value; R: Reference.

Study characteristics

Characteristics of articles with Kaplan-Meier survival curves in GC were comprehensively detailed in Table 2, including miRNA name, names of the first authors, publication year, reference number, country, study design, detected sample, number of patients, stage, cut-off value, main miRNA method, maximum months of follow-up, survival analysis and HR of low or high expression on the basis of relevant survival analysis with 95%CI. If the data were not provided visually and only as Kaplan-Meier survival curves, the data were extracted from the graphical survival plots, and estimations of the HR with 95%CI were then performed using a previously described method [184] with the software Engauge Digitizer version 4.1. Furthermore, if both the univariate and multivariate results were reported, then only the latter was selected, since these results were adjusted for confounding factors.

Table 2. Characteristics of articles with Kaplan-Meier survival curves in gastric cancer.

miRNA Study Country Study design Sample Number Stage Cut-off Method Follow-up (month) Result HR(L/H) HR(H/L) 95%CI
20a Osawa S, 2011 [3] Japan R FFPE 37 II-III 70% qRT-PCR 60 OSu 1.93 0.48-7.87
20a Wang M, 2012 [5] China R Plasma 65 I-IV 0.26 RT-qPCR 36 OSm 1.58 1.10-2.25
20a Wu Q, 2013 [11] China R FFPE 97 None Median qRT-PCR 66 OSm 1.01 1.00-1.02
20b Katada T, 2009 [12] Japan R Frozen 42 None None qRT-PCR 60 OSm 2.01 0.59-6.85
20b Osawa S, 2011 [3] Japan R FFPE 34 II-III 70% qRT-PCR 60 OSu 1.21 0.20-7.23
20b Xue TM, 2015 [13] China R Tissue 102 I-IV Median RT-qPCR 75 OSm 3.32 1.20-9.14
21-5p Park SK, 2016 [14] Korea R FFPE 50 III ROC qRT-PCR 168 RFSu 2.05 1.26-3.34
21 Jiang J, 2011 [15] China R FFPE 55 III-IV None qRT-PCR 17 OSu 5.88 2.22-16.67
21 Osawa S, 2011 [3] Japan R FFPE 33 II-III 70% qRT-PCR 60 OSu 2.58 0.34-19.79
21 Xu Y, 2012 [16] China R Frozen 86 I-IV 5.12 qRT-PCR 36 OSu 1.15 0.59-2.25
21 Hirata K, 2013 [17] Japan P Tissue 61 None 3.58 IHC 42 RFSu 0.82 0.27-2.43
21 Komatsu S, 2013 [6] Japan R Plasma 69 I-IV 0.03 qRT-PCR 40 CSSm 13.39 1.72-104.42
21 Song J, 2013 [18] China R Serum 103 I-IV 0.64 qRT-PCR 54 OSu 0.99 0.48-2.07
21 Wang D, 2015 [19] China R Tissue 50 I-IV ROC qRT-PCR 12 OSu 1.89 1.17-3.07
27b Liu HT, 2015 [32] China R FFPE 103 I-IV None qRT-PCR 66 OSu 0.80 0.46-1.41
27b Shang Y, 2016 [33] China R Tissue 114 I-IV None ISH 84 OSu 1.61 0.92-2.80
27b Liu HT, 2017 [34] China R FFPE 102 I-IV Median RT-qPCR 67 OSm 1.33 0.60-2.98
34a Osawa S, 2011 [3] Japan R FFPE 37 II-III 70% qRT-PCR 60 OSu 0.20 0.06-0.68
34a Hui WT, 2015 [38] China R Frozen 76 I-III Mean qRT-PCR >60 OSm 2.33 1.10-4.93
34a Wei B, 2015 [39] TCGA R Tissue 157 I-IV X-tile Downloaded >100 OSu 2.31 0.13-40.12
34a Zhang H, 2015 [40] China R Frozen 137 I-IV 2.44 qRT-PCR 68 OSm 1.33 1.14-1.61
34a Yang B, 2016 [41] China R Tissue 50 I-IV Median qRT-PCR 60 OSu 3.05 0.60-15.50
106b Osawa S, 2011 [3] Japan R FFPE 37 II-III 70% qRT-PCR 60 OSu 2.70 0.43-17.06
106b Komatsu S, 2013 [6] Japan R Plasma 69 I-IV 0.05 qRT-PCR 40 CSSu 1.22 0.52-2.84
106b Yang TS, 2014 [45] China R Tissue 120 None Median qRT-PCR 45 OSu 1.79 1.10-2.90
107 Li X, 2011 [46] China R FFPE 50 None 90.95 qRT-PCR 48 OSu 0.48 0.28-0.82
107 Osawa S, 2011 [3] Japan R FFPE 37 II-III 70% qRT-PCR 60 OSu 4.09 1.26-13.32
107 Inoue T, 2012 [47] Japan R Frozen 161 I-IV 2.74 RT-qPCR 60 OSm 2.21 1.18-4.61
125a-3p Hashiguchi Y, 2012 [49] Japan R Frozen 70 I-IV 7.42 RT-qPCR 147.6 OSu 3.01 1.26-7.20
125a-5p Nishida N, 2011 [50] Japan R Frozen 87 I-IV None RT-qPCR 147.6 OSu 2.16 0.96-4.86
125a Dai J, 2015 [51] China R FFPE 73 I-IV None qRT-PCR 62 OSu 1.31 0.54-3.18
137 Gu Q, 2015 [62] China Set IChina Set II R Frozen 6787 I-III Median qRT-PCR 96 OSm
OSm
6.802.41 2.06-22.481.13-5.11
137 Zheng X, 2015 [63] China R FFPE 38 I-IV Median qRT-PCR 56 DFSu 2.70 1.18-6.17
137 Du Y, 2016 [64] China R Tissue 14 I-IV 0.01 qRT-PCR 96 OSu 2.49 0.32-19.59
141 Lu YB, 2015 [65] China R Frozen 95 I-IV Median qRT-PCR 60 OSm 2.97 1.30-10.00
141 Zhou X, 2015 [66] China R Frozen 63 IIB-IV Median qRT-PCR >30 DFSu 2.47 1.22-5.00
141 Huang M, 2016 [67] China R Frozen 30 I-IV None qRT-PCR 26.83 OSu 2.23 1.04-4.79
143 Osawa S, 2011 [3] Japan R FFPE 37 II-III 70% qRT-PCR 60 OSu 2.95 0.19-46.23
143 Naito Y, 2014 [69] Japan R Frozen 66 I-IV 1/3 qRT-PCR 50 CSSm 2.62 1.21-5.80
143 Li JH, 2016 [70] China R Frozen 44 I-IV 1.18 qRT-PCR 26 OSu 0.40 0.23-0.70
145-5p Zhang Y, 2016 [72] China R Frozen 145 I-IV None RT-qPCR 66 OSm 3.87 1.13-11.44
145-5p Li CY, 2017 [56] TCGA R Tissue 361 I-IV None Downloaded 60 OSu 1.37 1.08-1.74
145 Naito Y, 2014 [73] Japan R FFPE 71 I-IV Median qRT-PCR 66.67 CSSm 0.71 0.33-1.49
145 Liu HT, 2017 [34] China R FFPE 102 I-IV Median RT-qPCR 67 OSu 1.68 0.87-3.25
146a Kogo R, 2011 [74] Japan R Frozen 90 I-IV Median qRT-PCR 132 OSu 2.20 1.31-3.70
146a Hou Z, 2012 [75] China R FFPE 30 I-IV 0.34 qRT-PCR 36 OSu 2.59 1.24-5.39
146a Luo Z, 2017 [76] China R Frozen 93 III-IV ROC RT-qPCR 72 OSu 7.75 1.66-35.71
150-5p Yoon SO, 2016 [77] Korea R FFPE 140118 I-IV 2.00 RT-qPCR 101.8 OSm
RFSu
0.881.84 0.37-2.090.98-3.43
150 Katada T, 2009 [12] Japan R Frozen 42 None None qRT-PCR 60 OSm 6.10 0.76-50.00
150 Smid D, 2016 [79] Czech R FFPE 4140 None 6.006.70 qRT-PCR >100 OSu
PFSu
1.912.08 1.14-3.211.11-3.91
183-5p Li CY, 2017 [56] TCGA R Tissue 361 I-IV None Downloaded 60 OSu 0.64 0.47-0.87
183 Cao LL, 2014 [83] China R Frozen 52 I-IV 3.55 qRT-PCR 60 OSu 2.83 1.31-6.10
183 Xu L, 2014 [84] China R Tissue 65 I-IV Median RT-qPCR 102 OSu 1.94 1.11-3.39
192 Chen Q, 2014 [48] China R Plasma 61 III-IV 2.00 qRT-PCR 43 OSm 0.89 0.39-2.04
192 Xu YJ, 2015 [87] China R Frozen 38 I-IV None qRT-PCR 81 OSu 0.99 0.96-1.02
192 Smid D, 2016 [79] Czech R FFPE 41 None 2.30 qRT-PCR >100 OSu 7.43 2.71-20.41
196a Sun M, 2012 [90] China R Frozen 31 II-IV 40.90 RT-qPCR 36 OSu 4.19 1.78-9.83
196a Mu YP, 2014 [88] China R Frozen 48 I-IV 5.69 qRT-PCR 60 OSu 2.88 1.43-5.79
196a Tsai MM, 2014 [91] China R Tissue 109 I-IV 77.30 qRT-PCR 60 OSu 2.27 1.50-3.43
196a Tsai MM, 2016 [92] China R Plasma 98 I-IV 1.15 qRT-PCR 72 OSm 3.06 1.10-8.50
196b-5p Li CY, 2017 [56] TCGA R Tissue 361 I-IV None Downloaded 60 OSu 2.07 1.37-3.13
196b Lim JY, 2013 [93] South Korea R Frozen 57 I-IV None qRT-PCR 75 OSu 1.50 1.06-2.12
196b Tsai MM, 2014 [91] China R Tissue 109 I-IV 21.70 qRT-PCR 60 OSu 1.55 1.16-2.06
196b Tsai MM, 2016 [92] China R Plasma 98 I-IV 0.93 qRT-PCR 72 OSm 2.91 1.04-8.17
200c Valladares-Ayerbes M, 2012 [98] Spain R Blood 52 I-IV 62.4 qRT-PCR 54 OSm
PFSm
0.450.44 0.22-0.920.21-0.92
200c Tang H, 2013 [96] China R Tissue 126 I-IV 2.00 qRT-PCR 58 OSu
DFSu
2.291.83 1.38-3.811.15-2.92
200c Zhang HP, 2015 [99] China R Serum 98 I-IV Median qRT-PCR 60 OSm 0.25 0.10-0.37
200c Zhou X, 2015 [66] China R Frozen 63 IIB-IV Median qRT-PCR >30 DFSu 1.70 1.21-2.38
206 Yang Q, 2013 [104] China R Tissue 98 I-IV 2.40 RT-qPCR 139 OSm 2.56 1.13-5.82
206 Shi H, 2015 [105] China R Frozen 220 I-IV Median qRT-PCR 60 OSm 6.82 1.51-21.29
206 Hou CG, 2016 [106] China R Serum 150 I-III Median RT-qPCR 60 OSm 2.39 1.16-4.91
214 Ueda T, 2010 [1] Japan R Frozen 101 I-IV None qRT-PCR 102.33 OSm 2.70 1.30-5.61
214 Yang TS, 2013 [110] China R Frozen 120 I-IV None qRT-PCR 45 OSu 1.77 1.06-2.96
214 Wang YW, 2014 [111] China R FFPE 80 I-IV Median RT-qPCR 72 OSu 1.20 0.67-2.15
214 Liu HT, 2017 [34] China R FFPE 102 I-IV Median RT-qPCR 67 OSm 2.75 1.12-6.76
218 Tie J, 2010 [114] China R Frozen 40 I-IV 13.81 qRT-PCR 72 OSu 2.33 1.40-3.89
218 Xin SY, 2014 [115] China R Serum 68 I-IV None qRT-PCR 36 OSm 3.16 1.06-9.40
218 Wang XX, 2016 [116] China R Tissue 112 I-IV Median qRT-PCR 60 OSm 3.19 1.55-8.37
335 Yan Z, 2012 [127] China R Both 74 I-IV None RT-qPCR 108 OSu 0.14 0.04-0.49
335 Yang B, 2016 [41] China R Tissue 50 I-IV Median qRT-PCR 60 OSu 4.88 1.90-12.55
335 Zhang JK, 2017 [128] China R Frozen 221 I-IV Median qRT-PCR 60 DFSu 1.65 1.11-2.45
451 Ren C, 2016 [4] China R FFPE 180 I-IV None ISH 97.2 OSm 2.01 1.36-2.96
451 Bandres E, 2009 [141] Spain R FFPE 45 I-III Median qRT-PCR 172 OSu
DFSm
2.023.70 0.76-5.381.57-8.70
451 Brenner B, 2011 [142] Israel R FFPE 45 I-III Median qRT-PCR 50 RFSu 0.05 0.01-0.29
451 Su Z, 2015 [143] China R FFPE 107 I-IV Mean qRT-PCR 72 OSu 1.08 0.53-2.19
486-5p Li CY, 2017 [56] TCGA R Tissue 361 I-IV None Downloaded 60 OSu 1.85 1.22-2.81
486-5p Chen H, 2015 [147] China R FFPE 84 I-IV None ISH 75 OSm 3.61 1.99-6.54
486-5p Ren C, 2016 [148] China R FFPE 84 I-IV None ISH 93.6 OSm 2.55 1.39-4.69
506 Deng J, 2015 [154] China R Frozen 63 None None qRT-PCR >60 OSu 3.05 1.19-7.79
506 Li Z, 2015 [155] China R Frozen 84 I-IV Mean qRT-PCR >60 OSu 1.76 0.73-4.27
506 Sakimura S, 2015 [156] Japan R Tissue 141 I-IV Median qRT-PCR >140 OSm 1.90 1.05-3.59

HR (L/H): hazard ratios of low expression versus high expression of miRNAs; HR (H/L): hazard ratios of high expression versus low expression of miRNAs; CI: confidence intervals; TCGA: The Cancer Genome Atlas; R: retrospective; P: prospective; FFPE: formalin-fixed paraffin-embedded; ROC: receiver operating characteristic; qRT-PCR: quantitative real-time polymerase chain reaction; RT-qPCR: reverse transcription quantitative real-time polymerase chain reaction; IHC: immunohistochemistry; ISH: in-situ hybridization; OS: overall survival; RFS: recurrence-free survival; CSS: cause-specific survival; DFS: disease-free survival; PFS: progression-free survival; uUnivariate analysis; mMultivariate analysis. In order to facilitate read and statistics, studies estimating prognostic value of different miRNAs are shown in blue and white; studies which cannot be merged are shown in yellow.

Meta-analysis

A summary of the HR evaluated from the whole combined analysis for all the miRNAs was shown in Table 3.

Table 3. Summary of the HR for miRNA expression in gastric cancer.

miRNA Survival analysis Number of articles Included references HR 95%CI Figure P value Heterogeneity (Higgins I2 statistic) Total patients
High miR-20a OS 3 3,5,11 1.25 0.84-1.87 3 0.27 I2=70.7%, P=0.03 199
High miR-20b OS 3 3,12,13 2.38 1.16-4.87 3 0.02 I2=0.0%, P=0.60 178
High miR-21 RFS/CSS 3 6,14,17 2.10 0.72-6.12 2A 0.17 I2=65.6%, P=0.06 180
High miR-21 OS 5 3,15,16,18,19 1.77 1.01-3.08 2A <0.05 I2=57.8%, P=0.05 327
Low miR-27b OS 3 32-34 1.18 0.75-1.85 3 0.47 I2=36.1%, P=0.21 319
Low miR-34a OS 5 3,38-41 1.25 0.59-2.65 2D 0.56 I2=68.4%, P=0.13 457
Low miR-34a OSm 2 38,40 1.56 0.95-2.55 2D 0.08 I2=51.0%, P=0.15 213
High miR-106b OS 2 3,45 1.84 1.15-2.94 3 0.01 I2=0.0%, P=0.67 157
High miR-107 OS 3 3,46,47 1.52 0.42-5.57 3 0.52 I2=88.8%, P<0.01 248
Low miR-125a OS 3 49-51 2.06 1.26-3.37 4 <0.01 I2=0.0%, P=0.42 230
Low miR-137 OS 2 62,64 3.21 1.68-6.13 4 <0.01 I2=6.0%, P=0.35 168
Low miR-141 OS 2 65,67 2.47 1.34-4.56 4 <0.01 I2=0.0%, P=0.66 125
High miR-143 OS 2 3,70 0.68 0.12-3.81 4 0.66 I2=48.8%, P=0.16 81
Low miR-145 OS 3 34,56,72 1.62 1.07-2.46 4 0.02 I2=36.9%, P=0.21 608
Low miR-146a OS 3 74-76 2.60 1.63-4.13 5 <0.01 I2=14.1%, P=0.31 213
High miR-150 OS 3 12,77,79 1.63 0.77-3.45 5 0.20 I2=47.8%, P=0.15 223
High miR-150 RFS/PFS 2 77,79 1.96 1.25-3.05 5 <0.01 I2=0.0%, P=0.79 158
Low miR-183 OS 3 56,83,84 1.46 0.55-3.83 5 0.45 I2=90.2%, P<0.01 478
High miR-192 OS 3 48,79,87 1.71 0.60-4.85 5 0.31 I2=87.0%, P<0.01 140
High miR-196a OS 4 88,90-92 2.66 1.94-3.63 6 <0.01 I2=0.0%, P=0.62 286
High miR-196b OS 4 56,91-93 1.67 1.38-2.02 6 <0.01 I2=0.0%, P=0.62 625
Low miR-200c OS 3 96,98,99 0.65 0.16-2.64 6 0.54 I2=93.6%, P<0.01 276
Low miR-200c PFS/DFS 3 66,96,98 1.20 0.60-2.38 6 0.61 I2=83.1%, P<0.01 241
Low miR-206 OS 3 104-106 2.85 1.73-4.70 7 <0.01 I2=0.0%, P=0.37 468
High miR-214 OS 4 1,34,110,111 1.84 1.27-2.67 7 <0.01 I2=23.0%, P=0.27 403
Low miR-218 OS 3 114-116 2.61 1.74-3.92 7 <0.01 I2=0.0%, P=0.77 220
Low miR-335 OS 2 41,127 0.85 0.03-27.50 7 0.93 I2=94.9%, P<0.01 124
Low miR-451 OS 3 4,141,143 1.73 1.19-2.52 8 <0.01 I2=14.7%, P=0.31 332
Low miR-451 DFS/RFS 2 141,142 0.46 0.01-31.06 8 0.72 I2=95.0%, P<0.01 90
Low miR-486-5p OS 3 56,147,148 2.45 1.65-3.65 8 <0.01 I2=40.0%, P=0.19 529
Low miR-506 OS 3 154-156 2.07 1.33-3.23 8 <0.01 I2=0.0%, P=0.65 288

HR: hazard ratios; CI: confidence intervals; OS: overall survival; RFS: recurrence-free survival; CSS: cause-specific survival; PFS: progression-free survival; DFS: disease-free survival; mMultivariate analysis.

High expression of miR-21 predicts poor OS

Five studies [3, 15, 16, 18, 19] analyzed associations between high expression of miR-21 and OS, indicating that GC patients with high miR-21 expression had a significantly shorter OS than those with low miR-21 expression (HR=1.77, 95%CI=1.01-3.08, P<0.05, Figure 2A).

Figure 2.

Figure 2

(A) Forest plot of the analyses about high expression of miR-21 and RFS/CSS or OS; (B) Publication bias of the analysis about high expression of miR-21 and OS; (C) Sensitivity analysis of the study about high expression of miR-21 and OS; and (D) Forest plot of the analyses about low expression of miR-34a and OS or OS (multivariate analysis).

No significant association between high expression of miR-21 and RFS/CSS

Three researches [6, 14, 17] focused on connections between high expression of miR-21 and RFS/CSS, suggesting that there was no significant association between high expression of miR-21 and RFS/CSS (HR=2.10, 95%CI=0.72-6.12, P=0.17, Figure 2A).

Publication bias

In order to evaluate publication bias for OS of GC patients with high miR-21 expression, the Begg's funnel plot was used by us (Figure 2B). And the P value was 0.62, indicating absence of publication bias.

Sensitivity analysis

During the study about OS of GC patients with high miR-21 expression, our sensitivity analysis did not indicate alterations in the results according to the exclusion of any individual study (Figure 2C), suggesting that no single research significantly influenced the pooled HR and the 95%CI.

No significant association between low expression of miR-34a and OS or OS (multivariate analysis)

There was no significant association between low expression of miR-34a and OS (HR=1.25, 95%CI=0.59-2.65, P=0.56, Figure 2D) or OS (multivariate analysis, HR=1.56, 95%CI=0.95-2.55, P=0.08, Figure 2D).

GC patients with high expression of miR-20b, 106b, 196a, 196b, 214 or low expression of miR-125a, 137, 141, 145, 146a, 206, 218, 451, 486-5p, 506 have a significantly poor OS

The details were shown in Table 3 and Figures 3-8.

Figure 3. Forest plot of the analyses about high expression of miR-20a, 20b, 106b, 107 or low expression of miR-27b and OS.

Figure 3

Figure 8. Forest plot of the analyses about low expression of miR-451, 486-5p, 506 and OS or DFS/RFS.

Figure 8

No significant association between high expression of miR-20a, 107, 143, 150, 192 or low expression of miR-27b, 183, 200c, 335 and OS

The details were shown in Table 3 and Figures 3-7.

Figure 7. Forest plot of the analyses about high expression of miR-214 or low expression of miR-206, 218, 335 and OS.

Figure 7

Figure 4. Forest plot of the analyses about high expression of miR-143 or low expression of miR-125a, 137, 141, 145 and OS.

Figure 4

Figure 5. Forest plot of the analyses about high expression of miR-150, 192 or low expression of miR-146a, 183 and OS or RFS/PFS.

Figure 5

Figure 6. Forest plot of the analyses about high expression of miR-196a, 196b or low expression of miR-200c and OS or PFS/DFS.

Figure 6

DISCUSSION

Present situation

Increasing evidence has shown that various miRNAs are associated with survival outcome in GC patients [1167]. However, inconsistent results have emerged. For example, expression levels of miR-200c are up-regulated in blood [98, 99] but down-regulated [66, 96] in tissue compared with normal samples. Furthermore, expression levels of miR-214 [1, 34, 110, 111] and miR-451 [4, 141143] are unsteadily expressed (up or down). Surprisingly, there are significant associations between aberrant expression levels of them and OS (P<0.05, Table 3, Figures 7 and 8). Therefore, it is essential to conduct a meta-analysis to better understand associations between expression levels of miRNAs and prognosis of GC patients.

Main findings

We performed the meta-analyses about 26 miRNAs and OS. As the most studied miRNA, GC patients with high miR-21 expression have a significantly poorer OS than those with low miR-21 expression (P<0.05). But there is no significant association between high miR-21 expression and RFS/CSS (P=0.17). According to our reference standard, miR-21 is still considered to be a significantly prognostic biomarker. There are some other miRNAs with significantly prognostic value in GC, including miR-20b, 106b, 125a, 137, 141, 145, 146a, 196a, 196b, 206, 214, 218, 451, 486-5p and 506 (P<0.05). Among them, miR-20b, 125a, 137, 141, 146a, 196a, 206, 218, 486-5p and 506 are strong biomarkers of prognosis in GC (HR≥2).

Molecular mechanisms for studied miRNAs

In addition to the findings mentioned above, a summary of miRNAs with altered expression, their potential targets and pathways entered this study is detailed in Table 4. It is remarkable that there is functional overlapping or connection among those miRNAs. Twenty miRNAs (miR-20a, 27b, 34a, 106b, 107, 125a, 137, 141, 143, 146a, 183, 192, 196a, 196b, 200c, 214, 218, 335, 451 and 506) are involved in cell functions, including cell apoptosis, colony formation, cycle, differentiation and so on. Zhou et al. [66] reported that miR-200c/141 likely increased E-cadherin expression indirectly through down-regulating ZEB1/2, indicating that this pathway may participate in GC migration and invasion. Additionally, Tsai et al. [91] found that GC cell migration and invasion was enhanced by overexpression of miR-196a/-196b and radixin was recognized as a target of miR-196a/-196b. In a word, these relationships may be involved in the progression of GC.

Table 4. Summary of miRNAs with altered expression, their potential targets and pathways entered this study.

miRNA Reference Expression Potential target Pathway
20a 3,5,11 Up E2F1, HIPK1 Cell differentiation, proliferation, self-renewal and Wnt/β-catenin signaling
20b 3,12,13 Up None None
21 3,6,14-19 Up None None
27b 32-34 Down CCNG1, VEGF-C Cell migration and proliferation
34a 3,38-41 Down MET, Survivin Cell apoptosis, colony formation, invasion and proliferation
106b 3,6,45 Up PTEN Cell invasion and migration
107 3,46,47 Up DICER1 Cell invasion and migration
125a 49-51 Down VEGF-A, ERBB2 Cell proliferation
137 62-64 Down KLF12, MYO1C, CDK6 Cell cycle, differentiation, migration and proliferation
141 65-67 Down ZEB1/2, E-cadherin, IGF1R Cell colony formation, cycle, invasion, migration, viability and TGF-β/ZEB signaling
143 3,69,70 Down BACH1 Cell invasion, proliferation and TGF-β/Mad signaling
145 34,56,72,73 Down α-SMA None
146a 74-76 Down EGFR, IRAK1, LIN52 Cell apoptosis, invasion, migration and proliferation
150 12,77,79 Up None None
183 56,83,84 Down EZR, BMI1 Cell colony formation, invasion and proliferation
192 48,79,87 Up None Cell invasion
196a 88,90-92 Up CDKN1B, Rdx Cell colony formation, cycle, invasion, migration and proliferation
196b 56,91-93 Up Rdx Cell invasion and migration
200c 98,9966,96 Up (blood)Down (tissue) ZEB1/2, E-cadherin Cell invasion, migration and TGF-β/ZEB signaling
206 104-106 Down None None
214 1,34,110,111 Up or Down CSF1, PTEN Cell invasion, migration and proliferation
218 114-116 Down ROBO1 Cell invasion and sli/ROBO1 signaling
335 41,127,128 Down Survivin, BIRC5, CRKL Cell apoptosis, cycle, growth, invasion, migration and proliferaion
451 4,141-143 Up or Down MIF Cell invasion, migration and proliferation
486-5p 56,147-148 Down FGF9 None
506 154-156 Down Yap1, ETS1, SNAI2 Cell epithelial-mesenchymal transition, growth, invasion, migration and proliferation

E2F1: E2F transcription factor 1; HIPK1: homeodomain interacting protein kinase 1; CCNG1: cyclin G1; VEGF: vascular endothelial growth factor; PTEN: protein tyrosine phosphatase and tensin homologue; DICER1: dicer 1, ribonuclease type III; ERBB2: erb-b2 receptor tyrosine kinase 2; KLF12: krűppel-likefactor 12; MYO1C: myosin 1C; ZEB1/2: zinc finger E-boxbinding homeobox 1/2; IGF1R: insulin-like growth factor 1 receptor; BACH1: BTB domain and CNC homolog 1; α-SMA: α smooth muscle actin; EGFR: epidermal growth factor receptor; IRAK1: interleukin 1 receptor associated kinase 1; LIN52: lin-52 homolog (C. elegans); EZR: ezrin; BMI1: BMI1 proto-oncogene, polycomb ring finger; CDKN1B: cyclin dependent kinase inhibitor 1B; Rdx: radixin; CSF1: colony stimulating factor 1; Robo1: roundabout guidance receptor 1; BIRC5: baculoviral IAP repeat containing 5; CRKL: CRK like proto-ongogene, adaptor protein; MIF: macrophage migration inhibitory factor (glycosylation-inhibiting factor); FGF9: fibroblast growth factor 9; YAP1: Yes associated protein 1; ETS1: ETS proto-oncogene 1, transcription factor; SNAI2: snail family transcriptional repressor 2; TGF-β: transforming growth factor-β; Mad: mothers against dpp; AKT1: AKT serine/threonine kinase 1; sli: slit.

Strengths of the meta-analysis

This meta-analysis has several strengths which are as follows: (1) we searched almost all articles with survival outcomes in GC patients with diverse miRNAs. Moreover, the present expression profile of miRNAs was clearly listed in Table 1 in terms of names of miRNAs; (2) articles measuring at least one of survival curves about OS, CSS, DFS, RFS, PFS and MFS were finally included and articles only reporting HR or 95%CI without any of survival curves were excluded by us; (3) miRNAs investigated more than or equal to 3 times were conducted meta-analyses; (4) almost all sample sizes of included studies are more than or equal to 30 (except 1 study [64]), enhancing the power and broadening the applicability of the outcomes to GC patients.

Limitations

However, one should keep in mind the following limitations: (1) 1 miRNA considered as significant biomarker of prognosis contained a high heterogeneity (miR-21); (2) there are many variables among the present meta-analysis, such as different types of samples (tissue, plasma and serum), disease stages, cut-off values and miRNA methods; (3) our meta-analysis only included English articles, which might exclude certain relevant articles with other languages; (4) articles only reporting HR or 95%CI without survival curves were excluded by us, reducing the sample sizes of included articles; (5) as a result of substantial relevant articles and data about GC, we subjectively and selectively included some researches according to the criteria of inclusion and exclusion (Table 5), leading to ignore a few potential miRNAs with prognostic value.

Table 5. Information of search methods and criteria of inclusion and exclusion.

Methods Information
Search strategy 4 search engines, including PubMed, EMBASE, Web ofScience and Cochrane Database of Systematic Reviews
Search deadline March 19, 2017
Search term mir and gastric cancer
Inclusion criteria (1) Patients with gastric cancer;(2) Expression of miRNAs and survival outcome intissue, plasma or serum were measured;(3) At least, one of survival curves about overall survival(OS), cause-specific survival (CSS), disease-free survival(DFS), recurrence-free survival (RFS), progression-freesurvival (PFS) and metastasis-free survival (MFS)was measured, with or without the HR or 95%CI;(4) Full text articles in English
Exclusion criteria (1) Reviews, letters or laboratory studies withoutoriginal data and retracted articles;(2) Frequency of studies estimating prognostic valueof miRNAs ≤2;(3) Studies which cannot be merged;(4) If more than one article had been published on theidentical study cohort, only the most comprehensivestudy was selected for the present meta-analysis

Implications for future clinical and scientific research

It is worth mentioning that this meta-analysis is the first systematic estimation of the relevance between miRNA expression and prognosis of GC patients. There are some implications for future clinical and scientific research in the present meta-analysis: (1) for clinical doctors and other healthcare providers, combined detection of miRNA expression can greatly enhance the estimation about survival time of GC patients and timely treatment can be offered; (2) for scientific researchers, the present study trend on associations between miRNAs and prognosis of GC patients can be conveniently seen in Table 1. As a result, selectively basic experiments can be performed by them (Table 4); (3) inconsistent outcomes of prognosis about miRNAs may be solved according to the basement of the current meta-analysis.

MATERIALS AND METHODS

Search strategy, inclusion criteria and exclusion criteria

The details were presented in Table 5. Two authors (Yue Zhang and Dong-Hui Guan) independently performed this comprehensive online search.

Quality assessment

Yue Zhang and Dong-Hui Guan confirmed all eligible investigations that analyzed the prognostic value of miRNAs in GC, and Yue-Hua Jiang reassessed uncertain data.

Statistical analysis

All analyses were conducted using Stata version 13.0 (StataCorp, College Station, Texas, USA). The relative effect sizes for HR were characterized as moderate (protective [0.51-0.75] or contributory [1.35-1.99]) and large (≤0.50 or≥2). The HR was considered significant at the P<0.05 level if the 95%CI did not include the value 1. If the P values from OS and other survival results about corresponding miRNAs were inconsistent, the HR from OS was considered to the main reference standard. Because different types of samples (tissue, plasma and serum) from GC patients at different disease stages, cut-off values and miRNA methods were used in individual studies, random-effects models (DerSimonian-Laird method) were more appropriate than fixed-models (Mantel-Haenszel method) for most of the analyses. Consequently, the random-effects models were used in the current meta-analysis. Publication bias was estimated using the Begg's funnel plot. A two-tailed P value <0.05 was considered significant. Sensitivity analysis (influence analysis) was carried out to test how powerful the combined effect size was to removal of individual investigations. If the point assessment was out the 95%CI of the pooled effect size after it was removed from the analysis, an individual study was doubted to have excessive influence.

CONCLUSIONS

In summary, miR-20b, 21, 106b, 125a, 137, 141, 145, 146a, 196a, 196b, 206, 214, 218, 451, 486-5p and 506 demonstrate significantly prognostic value. Among them, miR-20b, 125a, 137, 141, 146a, 196a, 206, 218, 486-5p and 506 are strong biomarkers of prognosis in GC.

Acquisition of data: Yue Zhang and Dong-Hui Guan.

Analysis and interpretation of data: Yue Zhang, Dong-Hui Guan, Rong-Xiu Bi and Jin Xie.

Drafting of the manuscript: Yue Zhang.

Revision of manuscript: Yue Zhang, Dong-Hui Guan, Rong-Xiu Bi, Jin Xie, Chuan-Hua Yang and Yue-Hua Jiang.

Supervision of work: Rong-Xiu Bi, Jin Xie, Chuan-Hua Yang and Yue-Hua Jiang.

All authors read and approved the final manuscript.

Role of funding source: The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Footnotes

Author contributions

Study concept and design: Yue Zhang and Yue-Hua Jiang.

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest.

FUNDING

This work was supported by the National Natural Science Foundation of China (No. 81673807).

REFERENCES

  • 1.Ueda T, Volinia S, Okumura H, Shimizu M, Taccioli C, Rossi S, Alder H, Liu CG, Oue N, Yasui W, Yoshida K, Sasaki H, Nomura S, et al. Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis. Lancet Oncol. 2010;11:136–146. doi: 10.1016/S1470-2045(09)70343-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Wang YY, Ye ZY, Zhao ZS, Li L, Wang YX, Tao HQ, Wang HJ, He XJ. Clinicopathologic significance of miR-10b expression in gastric carcinoma. Hum Pathol. 2013;44:1278–1285. doi: 10.1016/j.humpath.2012.10.014. [DOI] [PubMed] [Google Scholar]
  • 3.Osawa S, Shimada Y, Sekine S, Okumura T, Nagata T, Fukuoka J, Tsukada K. MicroRNA profiling of gastric cancer patients from formalin-fixed paraffin-embedded samples. Oncol Lett. 2011;2:613–619. doi: 10.3892/ol.2011.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Ren C, Chen H, Han C, Fu D, Wang D, Shen M. High expression of miR-16 and miR-451 predicating better prognosis in patients with gastric cancer. J Cancer Res Clin Oncol. 2016;142:2489–2496. doi: 10.1007/s00432-016-2243-z. [DOI] [PubMed] [Google Scholar]
  • 5.Wang M, Gu H, Wang S, Qian H, Zhu W, Zhang L, Zhao C, Tao Y, Xu W. Circulating miR-17-5p and miR-20a: Molecular markers for gastric cancer. Mol Med Rep. 2012;5:1514–1520. doi: 10.3892/mmr.2012.828. [DOI] [PubMed] [Google Scholar]
  • 6.Komatsu S, Ichikawa D, Tsujiura M, Konishi H, Takeshita H, Nagata H, Kawaguchi T, Hirajima S, Arita T, Shiozaki A, Kubota T, Fujiwara H, Okamoto K, Otsuji E. Prognostic impact of circulating miR-21 in the plasma of patients with gastric carcinoma. Anticancer Res. 2013;33:271–276. [PubMed] [Google Scholar]
  • 7.Su ZX, Zhao J, Rong ZH, Wu YG, Geng WM, Qin CK. Diagnostic and prognostic value of circulating miR-18a in the plasma of patients with gastric cancer. Tumour Biol. 2014;35:12119–12125. doi: 10.1007/s13277-014-2516-6. [DOI] [PubMed] [Google Scholar]
  • 8.Chen YJ, Wu H, Zhu JM, Li XD, Luo SW, Dong L, Liu TT, Shen XZ. MicroRNA-18a modulates P53 expression by targeting IRF2 in gastric cancer patients. J Gastroenterol Hepatol. 2016;31:155–163. doi: 10.1111/jgh.13041. [DOI] [PubMed] [Google Scholar]
  • 9.Wu Q, Yang Z, An Y, Hu H, Yin J, Zhang P, Nie Y, Wu K, Shi Y, Fan D. MiR-19a/b modulate the metastasis of gastric cancer cells by targeting the tumour suppressor MXD1. Cell Death Dis. 2014;5:e1144. doi: 10.1038/cddis.2014.110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Wang H, Xiong M, Hu Y, Sun Y, Ma Q. MicroRNA-19b inhibits proliferation of gastric cancer cells by targeting B-cell CLL/lymphoma 3. Oncol Rep. 2016;36:2079–2086. doi: 10.3892/or.2016.5029. [DOI] [PubMed] [Google Scholar]
  • 11.Wu Q, Yang Z, Wang F, Hu S, Yang L, Shi Y, Fan D. MiR-19b/20a/92a regulates the self-renewal and proliferation of gastric cancer stem cells. J Cell Sci. 2013;126:4220–4229. doi: 10.1242/jcs.127944. [DOI] [PubMed] [Google Scholar]
  • 12.Katada T, Ishiguro H, Kuwabara Y, Kimura M, Mitui A, Mori Y, Ogawa R, Harata K, Fujii Y. microRNA expression profile in undifferentiated gastric cancer. Int J Oncol. 2009;34:537–542. [PubMed] [Google Scholar]
  • 13.Xue TM, Tao LD, Zhang M, Xu GC, Zhang J, Zhang PJ. miR-20b overexpression is predictive of poor prognosis in gastric cancer. Onco Targets Ther. 2015;8:1871–1876. doi: 10.2147/OTT.S85236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Park SK, Park YS, Ahn JY, Do EJ, Kim D, Kim JE, Jung K, Byeon JS, Ye BD, Yang DH, Park SH, Hwang SW, Jung HY, Myung SJ. MiR 21-5p as a predictor of recurrence in young gastric cancer patients. J Gastroenterol Hepatol. 2016;31:1429–1435. doi: 10.1111/jgh.13300. [DOI] [PubMed] [Google Scholar]
  • 15.Jiang J, Zheng X, Xu X, Zhou Q, Yan H, Zhang X, Lu B, Wu C, Ju J. Prognostic significance of miR-181b and miR-21 in gastric cancer patients treated with S-1/Oxaliplatin or Doxifluridine/Oxaliplatin. PLoS One. 2011;6:e23271. doi: 10.1371/journal.pone.0023271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Xu Y, Sun J, Xu J, Li Q, Guo Y, Zhang Q. miR-21 is a promising novel biomarker for lymph node metastasis in patients with gastric cancer. Gastroenterol Res Pract. 2012;2012:640168. doi: 10.1155/2012/640168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Hirata K, Suzuki H, Imaeda H, Matsuzaki J, Tsugawa H, Nagano O, Asakura K, Saya H, Hibi T. CD44 variant 9 expression in primary early gastric cancer as a predictive marker for recurrence. Br J Cancer. 2013;109:379–386. doi: 10.1038/bjc.2013.314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Song J, Bai Z, Zhang J, Meng H, Cai J, Deng W, Bi J, Ma X, Zhang Z. Serum microRNA-21 levels are related to tumor size in gastric cancer patients but cannot predict prognosis. Oncol Lett. 2013;6:1733–1737. doi: 10.3892/ol.2013.1626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Wang D, Fan Z, Liu F, Zuo J. Hsa-miR-21 and Hsa-miR-21 and Hsa-miR-29 in tissue as potential diagnostic and prognostic biomarkers for gastric cancer. Cell Physiol Biochem. 2015;37:1454–1462. doi: 10.1159/000438514. [DOI] [PubMed] [Google Scholar]
  • 20.Wang W, Li F, Zhang Y, Tu Y, Yang Q, Gao X. Reduced expression of miR-22 in gastric cancer is related to clinicopathologic characteristics or patient prognosis. Diagn Pathol. 2013;8:102. doi: 10.1186/1746-1596-8-102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Zuo QF, Cao LY, Yu T, Gong L, Wang LN, Zhao YL, Xiao B, Zou QM. MicroRNA-22 inhibits tumor growth and metastasis in gastric cancer by directly targeting MMP14 and Snail. Cell Death Dis. 2015;6:e2000. doi: 10.1038/cddis.2015.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.An Y, Zhang Z, Shang Y, Jiang X, Dong J, Yu P, Y3 Nie, Zhao Q. miR-23b-3p regulates the chemoresistance of gastric cancer cells by targeting ATG12 and HMGB2. Cell Death Dis. 2015;6:e1766. doi: 10.1038/cddis.2015.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Zhuang K, Han K, Tang H, Yin X, Zhang J, Zhang X, Zhang L. Up-regulation of plasma miR-23b is associated with poor prognosis of gastric cancer. Med Sci Monit. 2016;22:356–361. doi: 10.12659/MSM.895428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Wu X, Liu Z, Long J, Ge C, Song S. Knockdown of miR-24 suppresses the proliferation, migration and invasion of gastric cancer cells and predicts a poor prognosis in gastric cancer. Int J Clin Exp Med. 2017;10:2911–2917. [Google Scholar]
  • 25.Li BS, Zuo QF, Zhao YL, Xiao B, Zhuang Y, Mao XH, Wu C, Yang SM, Zeng H, Zou QM, Guo G. MicroRNA-25 promotes gastric cancer migration, invasion and proliferation by directly targeting transducer of ERBB2, 1 and correlates with poor survival. Oncogene. 2015;34:2556–2565. doi: 10.1038/onc.2014.214. [DOI] [PubMed] [Google Scholar]
  • 26.Gong J, Cui Z, Li L, Ma Q, Wang Q, Gao Y, Sun H. MicroRNA-25 promotes gastric cancer proliferation, invasion, and migration by directly targeting F-box and WD-40 Domain Protein 7, FBXW7. Tumour Biol. 2015;36:7831–7840. doi: 10.1007/s13277-015-3510-3. [DOI] [PubMed] [Google Scholar]
  • 27.Deng M, Tang HL, Lu XH, Liu MY, Lu XM, Gu YX, Liu JF, He ZM. miR-26a suppresses tumor growth and metastasis by targeting FGF9 in gastric cancer. PLoS One. 2013;8:e72662. doi: 10.1371/journal.pone.0072662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Ding K, Wu Z, Wang N, Wang X, Wang Y, Qian P, Meng G, Tan S. MiR-26a performs converse roles in proliferation and metastasis of different gastric cancer cells via regulating of PTEN expression. Pathol Res Pract. 2017;S0344-0338:3036630361. doi: 10.1016/j.prp.2017.01.026. [DOI] [PubMed] [Google Scholar]
  • 29.Tsai MM, Huang HW, Wang CS, Lee KF, Tsai CY, Lu PH, Chi HC, Lin YH, Kuo LM, Lin KH. MicroRNA-26b inhibits tumor metastasis by targeting the KPNA2/c-jun pathway in human gastric cancer. Oncotarget. 2016;7:39511–39526. doi: 10.18632/oncotarget.8629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Huang D, Wang H, Liu R, Li H, Ge S, Bai M, Deng T, Yao G, Ba Y. miRNA27a is a biomarker for predicting chemosensitivity and prognosis in metastatic or recurrent gastric cancer. J Cell Biochem. 2014;115:549–556. doi: 10.1002/jcb.24689. [DOI] [PubMed] [Google Scholar]
  • 31.Park JL, Kim M, Song KS, Kim SY, Kim YS. Cell-free miR-27a, a potential diagnostic and prognostic biomarker for gastric cancer. Genomics Inform. 2015;13:70–75. doi: 10.5808/GI.2015.13.3.70. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Liu HT, Xing AY, Chen X, Ma RR, Wang YW, Shi DB, Zhang H, Li P, Chen HF, Li YH, Gao P. MicroRNA-27b, microRNA-101 and microRNA-128 inhibit angiogenesis by down-regulating vascular endothelial growth factor C expression in gastric cancers. Oncotarget. 2015;6:37458–37470. doi: 10.18632/oncotarget.6059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Shang Y, Feng B, Zhou L, Ren G, Zhang Z, Fan X, Sun Y, Luo G, Liang J, Wu K, Nie Y, Fan D. The miR27b-CCNG1-P53-miR-508-5p axis regulates multidrug resistance of gastric cancer. Oncotarget. 2016;7:538–549. doi: 10.18632/oncotarget.6374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Liu HT, Wang YW, Xing AY, Shi DB, Zhang H, Guo XY, Xu J, Gao P. Prognostic value of microRNA signature in patients with gastric cancers. Sci Rep. 2017;7:42806. doi: 10.1038/srep42806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.He B, Xiao YF, Tang B, Wu YY, Hu CJ, Xie R, Yang X, Yu ST, Dong H, Zhao XY, Li JL, Yang SM. hTERT mediates gastric cancer metastasis partially through the indirect targeting of ITGB1 by microRNA-29a. Sci Rep. 2016;6:21955. doi: 10.1038/srep21955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Wang Y, Liu C, Luo M, Zhang Z, Gong J, Li J, You L, Dong L, Su R, Lin H, Ma Y, Wang F, Wang Y, et al. Chemotherapy-induced miRNA-29c/catenin-δ signaling suppresses metastasis in gastric cancer. Cancer Res. 2015;75:1332–1344. doi: 10.1158/0008-5472.CAN-14-0787. [DOI] [PubMed] [Google Scholar]
  • 37.Wang H, Zhang X, Liu Y, Ni Z, Lin Y, Duan Z, Shi Y, Wang G, Li F. Downregulated miR-31 level associates with poor prognosis of gastric cancer and its restoration suppresses tumor cell malignant phenotypes by inhibiting E2F2. Oncotarget. 2016;7:36577–36589. doi: 10.18632/oncotarget.9288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Hui WT, Ma XB, Zan Y, Wang XJ, Dong L. Prognostic significance of MiR-34a expression in patients with gastric cancer after radical gastrectomy. Chin Med J (Engl) 2015;128:2632–2637. doi: 10.4103/0366-6999.166019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Wei B, Huang QY, Huang SR, Mai W, Zhong XG. MicroRNA-34a attenuates the proliferation, invasion and metastasis of gastric cancer cells via downregulation of MET. Mol Med Rep. 2015;12:5255–5261. doi: 10.3892/mmr.2015.4110. [DOI] [PubMed] [Google Scholar]
  • 40.Zhang H, Li S, Yang J, Liu S, Gong X, Yu X. The prognostic value of miR-34a expression in completely resected gastric cancer: tumor recurrence and overall survival. Int J Clin Exp Med. 2015;8:2635–2641. [PMC free article] [PubMed] [Google Scholar]
  • 41.Yang B, Huang J, Liu H, Guo W, Li G. miR-335 directly, while miR-34a indirectly modulate survivin expression and regulate growth, apoptosis, and invasion of gastric cancer cells. Tumour Biol. 2016;37:1771–1779. doi: 10.1007/s13277-015-3951-8. [DOI] [PubMed] [Google Scholar]
  • 42.Ren C, Wang W, Han C, Chen H, Fu D, Luo Y, Yao H, Wang D, Ma L, Zhou L, Han D, Shen M. Expression and prognostic value of miR-92a in patients with gastric cancer. Tumour Biol. 2016;37:9483–9491. doi: 10.1007/s13277-016-4865-9. [DOI] [PubMed] [Google Scholar]
  • 43.Chen L, Jiang M, Yuan W, Tang H. Prognostic value of miR-93 overexpression in resectable gastric adenocarcinomas. Acta Gastroenterol Belg. 2012;75:22–27. [PubMed] [Google Scholar]
  • 44.Yu BQ, Su LP, Li JF, Cai Q, Yan M, Chen XH, Yu YY, Gu QL, Zhu ZG, Liu BY. microRNA expression signature of gastric cancer cells relative to normal gastric mucosa. Mol Med Rep. 2012;6:821–826. doi: 10.3892/mmr.2012.1006. [DOI] [PubMed] [Google Scholar]
  • 45.Yang TS, Yang XH, Chen X, Wang XD, Hua J, Zhou DL, Zhou B, Song ZS. MicroRNA-106b in cancer-associated fibroblasts from gastric cancer promotes cell migration and invasion by targeting PTEN. FEBS Lett. 2014;588:2162–2169. doi: 10.1016/j.febslet.2014.04.050. [DOI] [PubMed] [Google Scholar]
  • 46.Li X, Zhang Y, Shi Y, Dong G, Liang J, Han Y, Wang X, Zhao Q, Ding J, Wu K, Fan D. MicroRNA-107, an oncogene microRNA that regulates tumour invasion and metastasis by targeting DICER1 in gastric cancer. J Cell Mol Med. 2011;15:1887–1895. doi: 10.1111/j.1582-4934.2010.01194.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Inoue T, Iinuma H, Ogawa E, Inaba T, Fukushima R. Clinicopathological and prognostic significance of microRNA-107 and its relationship to DICER1 mRNA expression in gastric cancer. Oncol Rep. 2012;27:1759–1764. doi: 10.3892/or.2012.1709. [DOI] [PubMed] [Google Scholar]
  • 48.Chen Q, Ge X, Zhang Y, Xia H, Yuan D, Tang Q, Chen L, Pang X, Leng W, Bi F. Plasma miR-122 and miR-192 as potential novel biomarkers for the early detection of distant metastasis of gastric cancer. Oncol Rep. 2014;31:1863–1870. doi: 10.3892/or.2014.3004. [DOI] [PubMed] [Google Scholar]
  • 49.Hashiguchi Y, Nishida N, Mimori K, Sudo T, Tanaka F, Shibata K, Ishii H, Mochizuki H, Hase K, Doki Y, Mori M. Down-regulation of miR-125a-3p in human gastric cancer and its clinicopathological significance. Int J Oncol. 2012;40:1477–1482. doi: 10.3892/ijo.2012.1363. [DOI] [PubMed] [Google Scholar]
  • 50.Nishida N, Mimori K, Fabbri M, Yokobori T, Sudo T, Tanaka F, Shibata K, Ishii H, Doki Y, Mori M. MicroRNA-125a-5p is an independent prognostic factor in gastric cancer and inhibits the proliferation of human gastric cancer cells in combination with trastuzumab. Clin Cancer Res. 2011;17:2725–2733. doi: 10.1158/1078-0432.CCR-10-2132. [DOI] [PubMed] [Google Scholar]
  • 51.Dai J, Wang J, Yang L, Xiao Y, Ruan Q. MIR-125a regulates angiogenesis of gastric cancer by targeting vascular endothelial growth factor A. Int J Oncol. 2015;47:1801–1810. doi: 10.3892/ijo.2015.3171. [DOI] [PubMed] [Google Scholar]
  • 52.Wu JG, Wang JJ, Jiang X, Lan JP, He XJ, Wang HJ, Ma YY, Xia YJ, Ru GQ, Ma J, Zhao ZS, Zhou R. MiR-125b promotes cell migration and invasion by targeting PPP1CA-Rb signal pathways in gastric cancer, resulting in a poor prognosis. Gastric Cancer. 2015;18:729–739. doi: 10.1007/s10120-014-0421-8. [DOI] [PubMed] [Google Scholar]
  • 53.Wu S, Liu F, Xie L, Peng Y, Lv X, Zhu Y, Zhang Z, He X. miR-125b suppresses proliferation and invasion by targeting MCL1 in gastric cancer. Biomed Res Int. 2015;2015:365273. doi: 10.1155/2015/365273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Yang Z, Wang R, Zhang T, Dong X. MicroRNA-126 regulates migration and invasion of gastric cancer by targeting CADM1. Int J Clin Exp Pathol. 2015;8:8869–8880. [PMC free article] [PubMed] [Google Scholar]
  • 55.Yue S, Shi H, Han J, Zhang T, Zhu W, Zhang D. Prognostic value of microRNA-126 and CRK expression in gastric cancer. Onco Targets Ther. 2016;9:6127–6135. doi: 10.2147/OTT.S87778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Li CY, Liang GY, Yao WZ, Sui J, Shen X, Zhang YQ, Peng H, Hong WW, Ye YC, Zhang ZY, Zhang WH, Yin LH, Pu YP. Identification and functional characterization of microRNAs reveal a potential role in gastric cancer progression. Clin Transl Oncol. 2017;19:162–172. doi: 10.1007/s12094-016-1516-y. [DOI] [PubMed] [Google Scholar]
  • 57.Jiang H, Yu WW, Wang LL, Peng Y. miR-130a acts as a potential diagnostic biomarker and promotes gastric cancer migration, invasion and proliferation by targeting RUNX3. Oncol Rep. 2015;34:1153–1161. doi: 10.3892/or.2015.4099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Liu X, Yu H, Cai H, Wang Y. The expression and clinical significance of miR-132 in gastric cancer patients. Diagn Pathol. 2014;9:57. doi: 10.1186/1746-1596-9-57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Cheng Z, Liu F, Wang G, Li Y, Zhang H, Li F. miR-133 is a key negative regulator of CDC42-PAK pathway in gastric cancer. Cell Signal. 2014;26:2667–2673. doi: 10.1016/j.cellsig.2014.08.012. [DOI] [PubMed] [Google Scholar]
  • 60.Zhang XT, Zhang Z, Xin YN, Ma XZ, Xuan SY. Impairment of growth of gastric carcinoma by miR-133-mediated Her-2 inhibition. Tumour Biol. 2015;36:8925–8930. doi: 10.1007/s13277-015-3637-2. [DOI] [PubMed] [Google Scholar]
  • 61.Yan LH, Chen ZN, Li-Li Chen J, Wei WE, Mo XW, Qin YZ, Lin Y, Chen JS. miR-135a promotes gastric cancer progression and resistance to oxaliplatin. Oncotarget. 2016;7:70699–70714. doi: 10.18632/oncotarget.12208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Gu Q, Zhang J, Hu H, Tan YE, Shi S, Nian Y. Clinical significance of MiR-137 expression in patients with gastric cancer after radical gastrectomy. PLoS One. 2015;10:e0142377. doi: 10.1371/journal.pone.0142377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Zheng X, Dong J, Gong T, Zhang Z, Wang Y, Li Y, Shang Y, Li K, Ren G, Feng B, Li J, Tian Q, Tang S, et al. MicroRNA library-based functional screening identified miR-137 as a suppresser of gastric cancer cell proliferation. J Cancer Res Clin Oncol. 2015;141:785–795. doi: 10.1007/s00432-014-1847-4. [DOI] [PubMed] [Google Scholar]
  • 64.Du Y, Chen Y, Wang F, Gu L. miR-137 plays tumor suppressor roles in gastric cancer cell lines by targeting KLF12 and MYO1C. Tumour Biol. 2016;37:13557–13569. doi: 10.1007/s13277-016-5199-3. [DOI] [PubMed] [Google Scholar]
  • 65.Lu YB, Hu JJ, Sun WJ, Duan XH, Chen X. Prognostic value of miR-141 downregulation in gastric cancer. Genet Mol Res. 2015;14:17305–17311. doi: 10.4238/2015.December.16.31. [DOI] [PubMed] [Google Scholar]
  • 66.Zhou X, Wang Y, Shan B, Han J, Zhu H, Lv Y, Fan X, Sang M, Liu XD, Liu W. The downregulation of miR-200c/141 promotes ZEB1/2 expression and gastric cancer progression. Med Oncol. 2015;32:428. doi: 10.1007/s12032-014-0428-3. [DOI] [PubMed] [Google Scholar]
  • 67.Huang M, Wu L, Qin Y, Li Z, Luo S, Qin H, Yang Y, Chen J. Anti-proliferative role and prognostic implication of miR-141 in gastric cancer. Am J Transl Res. 2016;8:3549–3557. [PMC free article] [PubMed] [Google Scholar]
  • 68.Zhang X, Yan Z, Zhang J, Gong L, Li W, Cui J, Liu Y, Gao Z, Li J, Shen L, Lu Y. Combination of hsa-miR-375 and hsa-miR-142-5p as a predictor for recurrence risk in gastric cancer patients following surgical resection. Ann Oncol. 2011;22:2257–2266. doi: 10.1093/annonc/mdq758. [DOI] [PubMed] [Google Scholar]
  • 69.Naito Y, Sakamoto N, Oue N, Yashiro M, Sentani K, Yanagihara K, Hirakawa K, Yasui W. MicroRNA-143 regulates collagen type III expression in stromal fibroblasts of scirrhous type gastric cancer. Cancer Sci. 2014;105:228–235. doi: 10.1111/cas.12329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Li JH, Chen X, Yan XJ, Li H, Chen SL. microRNA-143 acts as a prognostic marker in gastric cancer and its role in cell proliferation and invasion. Int J Clin Exp Pathol. 2016;9:9810–9820. [Google Scholar]
  • 71.Akiyoshi S, Fukagawa T, Ueo H, Ishibashi M, Takahashi Y, Fabbri M, Sasako M, Maehara Y, Mimori K, Mori M. Clinical significance of miR-144-ZFX axis in disseminated tumour cells in bone marrow in gastric cancer cases. Br J Cancer. 2012;107:1345–1353. doi: 10.1038/bjc.2012.326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Zhang Y, Wen X, Hu XL, Cheng LZ, Yu JY, Wei ZB. Downregulation of miR-145-5p correlates with poor prognosis in gastric cancer. Eur Rev Med Pharmacol Sci. 2016;20:3026–3030. [PubMed] [Google Scholar]
  • 73.Naito Y, Yasuno K, Tagawa H, Sakamoto N, Oue N, Yashiro M, Sentani K, Goto K, Shinmei S, Oo HZ, Yanagihara K, Hirakawa K, Yasui W. MicroRNA-145 is a potential prognostic factor of scirrhous type gastric cancer. Oncol Rep. 2014;32:1720–1726. doi: 10.3892/or.2014.3333. [DOI] [PubMed] [Google Scholar]
  • 74.Kogo R, Mimori K, Tanaka F, Komune S, Mori M. Clinical significance of miR-146a in gastric cancer cases. Clin Cancer Res. 2011;17:4277–4284. doi: 10.1158/1078-0432.CCR-10-2866. [DOI] [PubMed] [Google Scholar]
  • 75.Hou Z, Xie L, Yu L, Qian X, Liu B. MicroRNA-146a is down-regulated in gastric cancer and regulates cell proliferation and apoptosis. Med Oncol. 2012;29:886–892. doi: 10.1007/s12032-011-9862-7. [DOI] [PubMed] [Google Scholar]
  • 76.Luo Z, Li X, Zhao Z, Yang X, Xiao S, Zhou Y. MicroRNA-146a affects the chemotherapeutic sensitivity and prognosis of advanced gastric cancer through the regulation of LIN52. Oncol Lett. 2017;13:1386–1392. doi: 10.3892/ol.2016.5536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Yoon SO, Kim EK, Lee M, Jung WY, Lee H, Kang Y, Jang YJ, Hong SW, Choi SH, Yang WI. NOVA1 inhibition by miR-146b-5p in the remnant tissue microenvironment defines occult residual disease after gastric cancer removal. Oncotarget. 2016;7:2475–2495. doi: 10.18632/oncotarget.6542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Sakamoto N, Naito Y, Oue N, Sentani K, Uraoka N, Zarni Oo H, Yanagihara K, Aoyagi K, Sasaki H, Yasui W. MicroRNA-148a is downregulated in gastric cancer, targets MMP7, and indicates tumor invasiveness and poor prognosis. Cancer Sci. 2014;105:236–243. doi: 10.1111/cas.12330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.Smid D, Kulda V, Srbecka K, Kubackova D, Dolezal J, Daum O, Kucera R, Topolcan O, Treska V, Skalicky T, Pesta M. Tissue microRNAs as predictive markers for gastric cancer patients undergoing palliative chemotherapy. Int J Oncol. 2016;48:2693–2703. doi: 10.3892/ijo.2016.3484. [DOI] [PubMed] [Google Scholar]
  • 80.Zhang Z, Sun J, Bai Z, Li H, He S, Chen R, Che X. MicroRNA-153 acts as a prognostic marker in gastric cancer and its role in cell migration and invasion. Onco Targets Ther. 2015;8:357–364. doi: 10.2147/OTT.S78236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Mi Y, Zhang D, Jiang W, Weng J, Zhou C, Huang K, Tang H, Yu Y, Liu X, Cui W, Zhang M, Sun X, Zhou Z, et al. miR-181a-5p promotes the progression of gastric cancer via RASSF6-mediated MAPK signalling activation. Cancer Lett. 2017;389:11–22. doi: 10.1016/j.canlet.2016.12.033. [DOI] [PubMed] [Google Scholar]
  • 82.Cui M, Yue L, Fu Y, Yu W, Hou X, Zhang X. Association of microRNA-181c expression with the progression and prognosis of human gastric carcinoma. Hepatogastroenterology. 2013;60:961–964. doi: 10.5754/hge121333. [DOI] [PubMed] [Google Scholar]
  • 83.Cao LL, Xie JW, Lin Y, Zheng CH, Li P, Wang JB, Lin JX, Lu J, Chen QY, Huang CM. miR-183 inhibits invasion of gastric cancer by targeting Ezrin. Int J Clin Exp Pathol. 2014;7:5582–5594. [PMC free article] [PubMed] [Google Scholar]
  • 84.Xu L, Li Y, Yan D, He J, Liu D. MicroRNA-183 inhibits gastric cancer proliferation and invasion via directly targeting Bmi-1. Oncol Lett. 2014;8:2345–2351. doi: 10.3892/ol.2014.2504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Tan Z, Jiang H, Wu Y, Xie L, Dai W, Tang H, Tang S. miR-185 is an independent prognosis factor and suppresses tumor metastasis in gastric cancer. Mol Cell Biochem. 2014;386:223–231. doi: 10.1007/s11010-013-1860-y. [DOI] [PubMed] [Google Scholar]
  • 86.Li C, Lu S, Shi Y. MicroRNA-187 promotes growth and metastasis of gastric cancer by inhibiting FOXA2. Oncol Rep. 2017;37:1747–1755. doi: 10.3892/or.2017.5370. [DOI] [PubMed] [Google Scholar]
  • 87.Xu YJ, Fan Y. MiR-215/192 participates in gastric cancer progression. Clin Transl Oncol. 2015;17:34–40. doi: 10.1007/s12094-014-1194-6. [DOI] [PubMed] [Google Scholar]
  • 88.Mu YP, Tang S, Sun WJ, Gao WM, Wang M, Su XL. Association of miR-193b down-regulation and miR-196a up-regulation with clinicopathological features and prognosis in gastric cancer. Asian Pac J Cancer Prev. 2014;15:8893–8900. doi: 10.7314/apjcp.2014.15.20.8893. [DOI] [PubMed] [Google Scholar]
  • 89.Chen X, Wang Y, Zang W, Du Y, Li M, Zhao G. miR-194 targets RBX1 gene to modulate proliferation and migration of gastric cancer cells. Tumour Biol. 2015;36:2393–2401. doi: 10.1007/s13277-014-2849-1. [DOI] [PubMed] [Google Scholar]
  • 90.Sun M, Liu XH, Li JH, Yang JS, Zhang EB, Yin DD, Liu ZL, Zhou J, Ding Y, Li SQ, Wang ZX, Cao XF, De W. MiR-196a is upregulated in gastric cancer and promotes cell proliferation by downregulating p27(kip1) Mol Cancer Ther. 2012;11:842–852. doi: 10.1158/1535-7163.MCT-11-1015. [DOI] [PubMed] [Google Scholar]
  • 91.Tsai MM, Wang CS, Tsai CY, Chen CY, Chi HC, Tseng YH, Chung PJ, Lin YH, Chung IH, Chen CY, Lin KH. MicroRNA-196a/-196b promote cell metastasis via negative regulation of radixin in human gastric cancer. Cancer Lett. 2014;351:222–231. doi: 10.1016/j.canlet.2014.06.004. [DOI] [PubMed] [Google Scholar]
  • 92.Tsai MM, Wang CS, Tsai CY, Huang CG, Lee KF, Huang HW, Lin YH, Chi HC, Kuo LM, Lu PH, Lin KH. Circulating microRNA-196a/b are novel biomarkers associated with metastatic gastric cancer. Eur J Cancer. 2016;64:137–148. doi: 10.1016/j.ejca.2016.05.007. [DOI] [PubMed] [Google Scholar]
  • 93.Lim JY, Yoon SO, Seol SY, Hong SW, Kim JW, Choi SH, Lee JS, Cho JY. Overexpression of miR-196b and HOXA10 characterize a poor-prognosis gastric cancer subtype. World J Gastroenterol. 2013;19:7078–7088. doi: 10.3748/wjg.v19.i41.7078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Cui Z, Zheng X, Kong D. Decreased miR-198 expression and its prognostic significance in human gastric cancer. World J Surg Oncol. 2016;14:33. doi: 10.1186/s12957-016-0784-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Song G, Zeng H, Li J, Xiao L, He Y, Tang Y, Li Y. miR-199a regulates the tumor suppressor mitogen-activated protein kinase kinase kinase 11 in gastric cancer. Biol Pharm Bull. 2010;33:1822–1827. doi: 10.1248/bpb.33.1822. [DOI] [PubMed] [Google Scholar]
  • 96.Tang H, Deng M, Tang Y, Xie X, Guo J, Kong Y, Ye F, Su Q, Xie X. miR-200b and miR-200c as prognostic factors and mediators of gastric cancer cell progression. Clin Cancer Res. 2013;19:5602–5612. doi: 10.1158/1078-0432.CCR-13-1326. [DOI] [PubMed] [Google Scholar]
  • 97.Kurashige J, Mima K, Sawada G, Takahashi Y, Eguchi H, Sugimachi K, Mori M, Yanagihara K, Yashiro M, Hirakawa K, Baba H, Mimori K. Epigenetic modulation and repression of miR-200b by cancer-associated fibroblasts contribute to cancer invasion and peritoneal dissemination in gastric cancer. Carcinogenesis. 2015;36:133–141. doi: 10.1093/carcin/bgu232. [DOI] [PubMed] [Google Scholar]
  • 98.Valladares-Ayerbes M, Reboredo M, Medina-Villaamil V, Iglesias-Díaz P, Lorenzo-Patiño MJ, Haz M, Santamarina I, Blanco M, Fernández-Tajes J, Quindós M, Carral A, Figueroa A, Antón-Aparicio LM, Calvo L. Circulating miR-200c as a diagnostic and prognostic biomarker for gastric cancer. J Transl Med. 2012;10:186. doi: 10.1186/1479-5876-10-186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99.Zhang HP, Sun FB, Li SJ. Serum miR-200c expression level as a prognostic biomarker for gastric cancer. Genet Mol Res. 2015;14:15913–15920. doi: 10.4238/2015.December.7.2. [DOI] [PubMed] [Google Scholar]
  • 100.Liang M, Shi B, Liu J, He L, Yi G, Zhou L, Yu G, Zhou X. Downregulation of miR203 induces overexpression of PIK3CA and predicts poor prognosis of gastric cancer patients. Drug Des Devel Ther. 2015;9:3607–3616. doi: 10.2147/DDDT.S85525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Imaoka H, Toiyama Y, Okigami M, Yasuda H, Saigusa S, Ohi M, Tanaka K, Inoue Y, Mohri Y, Kusunoki M. Circulating microRNA-203 predicts metastases, early recurrence, and poor prognosis in human gastric cancer. Gastric Cancer. 2016;19:744–753. doi: 10.1007/s10120-015-0521-0. [DOI] [PubMed] [Google Scholar]
  • 102.Chen X, Liu XS, Liu HY, Lu YY, Li Y. Reduced expression of serum miR-204 predicts poor prognosis of gastric cancer. Genet Mol Res. 2016. p. 15. [DOI] [PubMed]
  • 103.Sacconi A, Biagioni F, Canu V, Mori F, Di Benedetto A, Lorenzon L, Ercolani C, Di Agostino S, Cambria AM, Germoni S, Grasso G, Blandino R, Panebianco V, et al. MiR-204 targets Bcl-2 expression and enhances responsiveness of gastric cancer. Cell Death Dis. 2012;3:e423. doi: 10.1038/cddis.2012.160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104.Yang Q, Zhang C, Huang B, Li H, Zhang R, Huang Y, Wang J. Downregulation of microRNA-206 is a potent prognostic marker for patients with gastric cancer. Eur J Gastroenterol Hepatol. 2013;25:953–957. doi: 10.1097/MEG.0b013e32835ed691. [DOI] [PubMed] [Google Scholar]
  • 105.Shi H, Han J, Yue S, Zhang T, Zhu W, Zhang D. Prognostic significance of combined microRNA-206 and CyclinD2 in gastric cancer patients after curative surgery: a retrospective cohort study. Biomed Pharmacother. 2015;71:210–215. doi: 10.1016/j.biopha.2014.12.037. [DOI] [PubMed] [Google Scholar]
  • 106.Hou CG, Luo XY, Li G. Diagnostic and prognostic value of serum microRNA-206 in patients with gastric cancer. Cell Physiol Biochem. 2016;39:1512–1520. doi: 10.1159/000447854. [DOI] [PubMed] [Google Scholar]
  • 107.Zhang C, Tian W, Meng L, Qu L, Shou C. PRL-3 promotes gastric cancer migration and invasion through a NF-κB-HIF-1α-miR-210 axis. J Mol Med (Berl) 2016;94:401–415. doi: 10.1007/s00109-015-1350-7. [DOI] [PubMed] [Google Scholar]
  • 108.Ma G, Dai W, Sang A, Yang X, Li Q. Expression of microRNA-211 is a novel prognostic indicator of poor survival in human gastric cancer. Int J Clin Exp Med. 2016;9:7223–7228. [Google Scholar]
  • 109.Li D, Li Z, Xiong J, Gong B, Zhang G, Cao C, Jie Z, Liu Y, Cao Y, Yan Y, Xiong H, Qiu L, Yang M, et al. MicroRNA-212 functions as an epigenetic-silenced tumor suppressor involving in tumor metastasis and invasion of gastric cancer through down-regulating PXN expression. Am J Cancer Res. 2015;5:2980–2997. [PMC free article] [PubMed] [Google Scholar]
  • 110.Yang TS, Yang XH, Wang XD, Wang YL, Zhou B, Song ZS. MiR-214 regulate gastric cancer cell proliferation, migration and invasion by targeting PTEN. Cancer Cell Int. 2013;13:68. doi: 10.1186/1475-2867-13-68. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111.Wang YW, Shi DB, Chen X, Gao C, Gao P. Clinicopathological significance of microRNA-214 in gastric cancer and its effect on cell biological behaviour. PLoS One. 2014;9:e91307. doi: 10.1371/journal.pone.0091307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112.Chen DL, Zhang DS, Lu YX, Chen LZ, Zeng ZL, He MM, Wang FH, Li YH, Zhang HZ, Pelicano H, Zhang W, Xu RH. microRNA-217 inhibits tumor progression and metastasis by downregulating EZH2 and predicts favorable prognosis in gastric cancer. Oncotarget. 2015;6:10868–10879. doi: 10.18632/oncotarget.3451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 113.Liu H, Yang Z, Zhang J, Zhu X. MicroRNA-217 in plasma: a potential biomarker in gastric cancer. Int J Clin Exp Med. 2017;10:3313–3320. [Google Scholar]
  • 114.Tie J, Pan Y, Zhao L, Wu K, Liu J, Sun S, Guo X, Wang B, Gang Y, Zhang Y, Li Q, Qiao T, Zhao Q, et al. MiR-218 inhibits invasion and metastasis of gastric cancer by targeting the Robo1 receptor. PLoS Genet. 2010;6:e1000879. doi: 10.1371/journal.pgen.1000879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115.Xin SY, Feng XS, Zhou LQ, Sun JJ, Gao XL, Yao GL. Reduced expression of circulating microRNA-218 in gastric cancer and correlation with tumor invasion and prognosis. World J Gastroenterol. 2014;20:6906–6911. doi: 10.3748/wjg.v20.i22.6906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116.Wang XX, Ge SJ, Wang XL, Jiang LX, Sheng MF, Ma JJ. miR-218 tissue expression level is associated with aggressive progression of gastric cancer. Genet Mol Res. 2016. p. 15. [DOI] [PubMed]
  • 117.Liu K, Li G, Fan C, Diao Y, Wu B, Li J. Increased Expression of MicroRNA-221 in gastric cancer and its clinical significance. J Int Med Res. 2012;40:467–474. doi: 10.1177/147323001204000208. [DOI] [PubMed] [Google Scholar]
  • 118.Kim BH, Hong SW, Kim A, Choi SH, Yoon SO. Prognostic implications for high expression of oncogenic microRNAs in advanced gastric carcinoma. J Surg Oncol. 2013;107:505–510. doi: 10.1002/jso.23271. [DOI] [PubMed] [Google Scholar]
  • 119.Fu Z, Qian F, Yang X, Jiang H, Chen Y, Liu S. Circulating miR-222 in plasma and its potential diagnostic and prognostic value in gastric cancer. Med Oncol. 2014;31:164. doi: 10.1007/s12032-014-0164-8. [DOI] [PubMed] [Google Scholar]
  • 120.Li X, Zhang Y, Zhang H, Liu X, Gong T, Li M, Sun L, Ji G, Shi Y, Han Z, Han S, Nie Y, Chen X, et al. miRNA-223 promotes gastric cancer invasion and metastasis by targeting tumor suppressor EPB41L3. Mol Cancer Res. 2011;9:824–833. doi: 10.1158/1541-7786.MCR-10-0529. [DOI] [PubMed] [Google Scholar]
  • 121.Ma L, Chen Y, Zhang B, Liu G. Increased microRNA-223 in Helicobacter pylori-associated gastric cancer contributed to cancer cell proliferation and migration. Biosci Biotechnol Biochem. 2014;78:602–608. doi: 10.1080/09168451.2014.895661. [DOI] [PubMed] [Google Scholar]
  • 122.Zhang Y, Li CF, Ma LJ, Ding M, Zhang B. MicroRNA-224 aggrevates tumor growth and progression by targeting mTOR in gastric cancer. Int J Oncol. 2016;49:1068–1080. doi: 10.3892/ijo.2016.3581. [DOI] [PubMed] [Google Scholar]
  • 123.Shen Z, Li C, Zhang K, Yu W, Xiao H, Li B, Liu T. The up-regulation of miR-300 in gastric cancer and its effects on cells malignancy. Int J Clin Exp Med. 2015;8:6773–6783. [PMC free article] [PubMed] [Google Scholar]
  • 124.Xu XD, He XJ, Tao HQ, Zhang W, Wang YY, Ye ZY, Zhao ZS. Abnormal expression of miR-301a in gastric cancer associated with progression and poor prognosis. J Surg Oncol. 2013;108:197–202. doi: 10.1002/jso.23374. [DOI] [PubMed] [Google Scholar]
  • 125.Li Y, Gao Y, Xu Y, Ma H, Yang M. Down-regulation of miR-326 is associated with poor prognosis and promotes growth and metastasis by targeting FSCN1 in gastric cancer. Growth Factors. 2015;33:267–274. doi: 10.3109/08977194.2015.1076406. [DOI] [PubMed] [Google Scholar]
  • 126.Xue HG, Yang AH, Sun XG, Lu YY, Tian ZB. Expression of microRNA-328 functions as a biomarker for recurrence of early gastric cancer (EGC) after endoscopic submucosal dissection (ESD) by modulating CD44. Med Sci Monit. 2016;22:4779–4785. doi: 10.12659/MSM.896225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 127.Yan Z, Xiong Y, Xu W, Gao J, Cheng Y, Wang Z, Chen F, Zheng G. Identification of hsa-miR-335 as a prognostic signature in gastric cancer. PLoS One. 2012;7:e40037. doi: 10.1371/journal.pone.0040037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 128.Zhang JK, Li YS, Zhang CD, Dai DQ. Up-regulation of CRKL by microRNA-335 methylation is associated with poor prognosis in gastric cancer. Cancer Cell Int. 2017;17:28. doi: 10.1186/s12935-017-0387-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 129.Zheng L, Jiao W, Mei H, Song H, Li D, Xiang X, Chen Y, Yang F, Li H, Huang K, Tong Q. miRNA-337-3p inhibits gastric cancer progression through repressing myeloid zinc finger 1-facilitated expression of matrix metalloproteinase 14. Oncotarget. 2016;7:40314–40328. doi: 10.18632/oncotarget.9739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 130.Yin G, Zhou H, Xue Y, Yao B, Zhao W. MicroRNA-340 promotes the tumor growth of human gastric cancer by inhibiting cyclin G2. Oncol Rep. 2016;36:1111–1118. doi: 10.3892/or.2016.4876. [DOI] [PubMed] [Google Scholar]
  • 131.Ma F, Song H, Guo B, Zhang Y, Zheng Y, Lin C, Wu Y, Guan G, Sha R, Zhou Q, Wang D, Zhou X, Li J, Qiu X. MiR-361-5p inhibits colorectal and gastric cancer growth and metastasis by targeting staphylococcal nuclease domain containing-1. Oncotarget. 2015;6:17404–17416. doi: 10.18632/oncotarget.3744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 132.Zhang PF, Sheng LL, Wang G, Tian M, Zhu LY, Zhang R, Zhang J, Zhu JS. miR-363 promotes proliferation and chemo-resistance of human gastric cancer via targeting of FBW7 ubiquitin ligase expression. Oncotarget. 2016;7:35284–35292. doi: 10.18632/oncotarget.9169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 133.Wen X, Wu JQ, Peng W, Feng JF, Tang JH. MicroRNA-377 predicts poor clinical outcome of gastric cancer and induces tumorigenesis by targeting multiple tumor-suppressor genes. Oncol Rep. 2015;34:203–210. doi: 10.3892/or.2015.3981. [DOI] [PubMed] [Google Scholar]
  • 134.Zheng BQ, Long ZW, Chen J, Wang CM, Chen Y, Zhang RM, Wang YN, Shi YQ. Decreased expression of miR-378 is associated with local invasion, lymph node metastasis and poor prognosis in gastric cancer. Int J Clin Exp Pathol. 2016;9:3774–3780. [Google Scholar]
  • 135.Cao Q, Liu F, Ji K, Liu N, He Y, Zhang W, Wang L. MicroRNA-381 inhibits the metastasis of gastric cancer by targeting TMEM16A expression. J Exp Clin Cancer Res. 2017;36:29. doi: 10.1186/s13046-017-0499-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 136.Liu H, Gao Y, Song D, Liu T, Feng Y. Correlation between microRNA-421 expression level and prognosis of gastric cancer. Int J Clin Exp Pathol. 2015;8:15128–15132. [PMC free article] [PubMed] [Google Scholar]
  • 137.Ge X, Liu X, Lin F, Li P, Liu K, Geng R, Dai C, Lin Y, Tang W, Wu Z, Chang J, Lu J, Li J. MicroRNA-421 regulated by HIF-1α promotes metastasis, inhibits apoptosis, and induces cisplatin resistance by targeting E-cadherin and caspase-3 in gastric cancer. Oncotarget. 2016;7:24466–24482. doi: 10.18632/oncotarget.8228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 138.Zhu P, Zhang J, Zhu J, Shi J, Zhu Q, Gao Y. MiR-429 induces gastric carcinoma cell apoptosis through Bcl-2. Cell Physiol Biochem. 2015;37:1572–1580. doi: 10.1159/000438524. [DOI] [PubMed] [Google Scholar]
  • 139.Hong X, Xu Y, Qiu X, Zhu Y, Feng X, Ding Z, Zhang S, Zhong L, Zhuang Y, Su C, Hong X, Cai J. MiR-448 promotes glycolytic metabolism of gastric cancer by downregulating KDM2B. Oncotarget. 2016;7:22092–22102. doi: 10.18632/oncotarget.8020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 140.Wu Z, Wang H, Fang S, Xu C. MiR-449c inhibits gastric carcinoma growth. Life Sci. 2015;137:14–19. doi: 10.1016/j.lfs.2015.06.020. [DOI] [PubMed] [Google Scholar]
  • 141.Bandres E, Bitarte N, Arias F, Agorreta J, Fortes P, Agirre X, Zarate R, Diaz-Gonzalez JA, Ramirez N, Sola JJ, Jimenez P, Rodriguez J, Garcia-Foncillas J. microRNA-451 regulates macrophage migration inhibitory factor production and proliferation of gastrointestinal cancer cells. Clin Cancer Res. 2009;15:2281–2290. doi: 10.1158/1078-0432.CCR-08-1818. [DOI] [PubMed] [Google Scholar]
  • 142.Brenner B, Hoshen MB, Purim O, David MB, Ashkenazi K, Marshak G, Kundel Y, Brenner R, Morgenstern S, Halpern M, Rosenfeld N, Chajut A, Niv Y, Kushnir M. MicroRNAs as a potential prognostic factor in gastric cancer. World J Gastroenterol. 2011;17:3976–3985. doi: 10.3748/wjg.v17.i35.3976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 143.Su Z, Zhao J, Rong Z, Geng W, Wang Z. MiR-451, a potential prognostic biomarker and tumor suppressor for gastric cancer. Int J Clin Exp Pathol. 2015;8:9154–9160. [PMC free article] [PubMed] [Google Scholar]
  • 144.Gao H, Liu P, Yang Y, Gao F. Decreased miR-452 expression and its tumor suppressive function in human gastric cancer. Int J Clin Exp Med. 2016;9:16078–16085. [Google Scholar]
  • 145.Liu J, Zhang J, Li Y, Wang L, Sui B, Dai D. MiR-455-5p acts as a novel tumor suppressor in gastric cancer by down-regulating RAS18. Gene. 2016;592:308–315. doi: 10.1016/j.gene.2016.07.034. [DOI] [PubMed] [Google Scholar]
  • 146.Jing LL, Mo XM. Reduced miR-485-5p expression predicts poor prognosis in patients with gastric cancer. Eur Rev Med Pharmacol Sci. 2016;20:1516–1520. [PubMed] [Google Scholar]
  • 147.Chen H, Ren C, Han C, Wang D, Chen Y, Fu D. Expression and prognostic value of miR-486-5p in patients with gastric adenocarcinoma. PLoS One. 2015;10:e0119384. doi: 10.1371/journal.pone.0119384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 148.Ren C, Chen H, Han C, Fu D, Zhou L, Jin G, Wang F, Wang D, Chen Y, Ma L, Zheng X, Han D. miR-486-5p expression pattern in esophageal squamous cell carcinoma, gastric cancer and its prognostic value. Oncotarget. 2016;7:15840–15853. doi: 10.18632/oncotarget.7417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 149.Zhou W, Zhang C, Jiang H, Zhang Z, Xie L, He X. MiR-493 suppresses the proliferation and invasion of gastric cancer cells by targeting RhoC. Iran J Basic Med Sci. 2015;18:1027–1033. [PMC free article] [PubMed] [Google Scholar]
  • 150.He W, Li Y, Chen X, Lu L, Tang B, Wang Z, Pan Y, Cai S, He Y, Ke Z. miR-494 acts as an anti-oncogene in gastric carcinoma by targeting c-myc. J Gastroenterol Hepatol. 2014;29:1427–1434. doi: 10.1111/jgh.12558. [DOI] [PubMed] [Google Scholar]
  • 151.Zhang L, Ding Y, Yuan Z, Liu J, Sun J, Lei F, Wu S, Li S, Zhang D. MicroRNA-500 sustains nuclear factor-κB activation and induces gastric cancer cell proliferation and resistance to apoptosis. Oncotarget. 2015;6:2483–2495. doi: 10.18632/oncotarget.2800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 152.Fan D, Ren B, Yang X, Liu J, Zhang Z. Upregulation of miR-501-5p activates the wnt/β-catenin signaling pathway and enhances stem cell-like phenotype in gastric cancer. J Exp Clin Cancer Res. 2016;35:177. doi: 10.1186/s13046-016-0432-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 153.Wu D, Cao G, Huang Z, Jin K, Hu H, Yu J, Zeng Y. Decreased miR-503 expression in gastric cancer is inversely correlated with serum carcinoembryonic antigen and acts as a potential prognostic and diagnostic biomarker. Onco Targets Ther. 2016;10:129–135. doi: 10.2147/OTT.S114303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 154.Deng J, Lei W, Xiang X, Zhang L, Yu F, Chen J, Feng M, Xiong J. MicroRNA-506 inhibits gastric cancer proliferation and invasion by directly targeting Yap1. Tumour Biol. 2015;36:6823–6831. doi: 10.1007/s13277-015-3364-8. [DOI] [PubMed] [Google Scholar]
  • 155.Li Z, Liu Z, Dong S, Zhang J, Tan J, Wang Y, Ge C, Li R, Xue Y, Li M, Wang W, Xiang X, Yang J, et al. miR-506 inhibits epithelial-to-mesenchymal transition and angiogenesis in gastric cancer. Am J Pathol. 2015;185:2412–2420. doi: 10.1016/j.ajpath.2015.05.017. [DOI] [PubMed] [Google Scholar]
  • 156.Sakimura S, Sugimachi K, Kurashige J, Ueda M, Hirata H, Nambara S, Komatsu H, Saito T, Takano Y, Uchi R, Sakimura E, Shinden Y, Iguchi T, et al. The miR-506-induced epithelial–mesenchymal transition is involved in poor prognosis for patients with gastric cancer. Ann Surg Oncol. 2015;22:S1436–1443. doi: 10.1245/s10434-015-4418-2. [DOI] [PubMed] [Google Scholar]
  • 157.Shang Y, Zhang Z, Liu Z, Feng B, Ren G, Li K, Zhou L, Sun Y, Li M, Zhou J, An Y, Wu K, Nie Y, Fan D. miR-508-5p regulates multidrug resistance of gastric cancer by targeting ABCB1 and ZNRD1. Oncogene. 2014;33:3267–3276. doi: 10.1038/onc.2013.297. [DOI] [PubMed] [Google Scholar]
  • 158.Li YR, Wen LQ, Wang Y, Zhou TC, Ma N, Hou ZH, Jiang ZP. MicroRNA-520c enhances cell proliferation, migration, and invasion by suppressing IRF2 in gastric cancer. FEBS Open Bio. 2016;6:1257–1266. doi: 10.1002/2211-5463.12142. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • 159.Li R, Yuan W, Mei W, Yang K, Chen Z. MicroRNA 520d-3p inhibits gastric cancer cell proliferation, migration, and invasion by downregulating EphA2 expression. Mol Cell Biochem. 2014;396:295–305. doi: 10.1007/s11010-014-2164-6. [DOI] [PubMed] [Google Scholar]
  • 160.Zheng L, Jiao W, Song H, Qu H, Li D, Mei H, Chen Y, Yang F, Li H, Huang K, Tong Q. miRNA-558 promotes gastric cancer progression through attenuating Smad4-mediated repression of heparanase expression. Cell Death Dis. 2016;7:e2382. doi: 10.1038/cddis.2016.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 161.Shen B, Yu S, Zhang Y, Yuan Y, Li X, Zhong J, Feng J. miR-590-5p regulates gastric cancer cell growth and chemosensitivity through RECK and the AKT/ERK pathway. Onco Targets Ther. 2016;9:6009–6019. doi: 10.2147/OTT.S110923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 162.Chu D, Zhao Z, Li Y, Li J, Zheng J, Wang W, Zhao Q, Ji G. Increased microRNA-630 expression in gastric cancer is associated with poor overall survival. PLoS One. 2014;9:e90526. doi: 10.1371/journal.pone.0090526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 163.Chen X, Chen R, Wu W, Huang Z. MicroRNA-873 inhibits proliferation and induces apoptosis by targeting CXCL1 in gastric cancer. Int J Clin Exp Pathol. 2016;9:10011–10019. [Google Scholar]
  • 164.Zhang JX, Xu Y, Gao Y, Chen C, Zheng ZS, Yun M, Weng HW, Xie D, Ye S. Decreased expression of miR-939 contributes to chemoresistance and metastasis of gastric cancer via dysregulation of SLC34A2 and Raf/MEK/ERK pathway. Mol Cancer. 2017;16:18. doi: 10.1186/s12943-017-0586-y. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • 165.Liu X, Ge X, Zhang Z, Zhang X, Chang J, Wu Z, Tang W, Gan L, Sun M, Li J. MicroRNA-940 promotes tumor cell invasion and metastasis by downregulating ZNF24 in gastric cancer. Oncotarget. 2015;6:25418–25428. doi: 10.18632/oncotarget.4456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 166.Chen L, Lü MH, Zhang D, Hao NB, Fan YH, Wu YY, Wang SM, Xie R, Fang DC, Zhang H, Hu CJ, Yang SM. miR-1207-5p and miR-1266 suppress gastric cancer growth and invasion by targeting telomerase reverse transcriptase. Cell Death Dis. 2014;5:e1034. doi: 10.1038/cddis.2013.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 167.Zheng H, Zhang F, Lin X, Huang C, Zhang Y, Li Y, Lin J, Chen W, Lin X. MicroRNA-1225-5p inhibits proliferation and metastasis of gastric carcinoma through repressing insulin receptor substrate-1 and activation of β-catenin signaling. Oncotarget. 2016;7:4647–4663. doi: 10.18632/oncotarget.6615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 168.Shen L, Shan YS, Hu HM, Price TJ, Sirohi B, Yeh KH, Yang YH, Sano T, Yang HK, Zhang X, Park SR, Fujii M, Kang YK, Chen LT. Management of gastric cancer in Asia: resource-stratified guidelines. Lancet Oncol. 2013;14:e535–547. doi: 10.1016/S1470-2045(13)70436-4. [DOI] [PubMed] [Google Scholar]
  • 169.Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127:2893–2917. doi: 10.1002/ijc.25516. [DOI] [PubMed] [Google Scholar]
  • 170.Varadhachary G, Ajani JA. Gastric cancer. Clin Adv Hematol Oncol. 2005;3:118–124. [PubMed] [Google Scholar]
  • 171.Wu WK, Lee CW, Cho CH, Fan D, Wu K, Yu J, Sung JJ. MicroRNA dysregulation in gastric cancer: a new player enters the game. Oncogene. 2010;29:5761–5771. doi: 10.1038/onc.2010.352. [DOI] [PubMed] [Google Scholar]
  • 172.Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–297. doi: 10.1016/s0092-8674(04)00045-5. [DOI] [PubMed] [Google Scholar]
  • 173.Krol J, Loedige I, Filipowicz W. The widespread regulation ofmicroRNA biogenesis, function and decay. Nat Rev Genet. 2010;11:597–610. doi: 10.1038/nrg2843. [DOI] [PubMed] [Google Scholar]
  • 174.Farooqi AA, Rehman ZU, Muntane J. Antisense therapeutics in oncology: current status. Onco Targets Ther. 2014;7:2035–2042. doi: 10.2147/OTT.S49652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 175.Song H, Sun W, Ye G, Ding X, Liu Z, Zhang S, Xia T, Xiao B, Xi Y, Guo J. Long non-coding RNA expression profile in human gastric cancer and its clinical significances. J Transl Med. 2013;11:225. doi: 10.1186/1479-5876-11-225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 176.Li H, Yu B, Li J, Su L, Yan M, Zhu Z, Liu B. Overexpression of lncRNA H19 enhances carcinogenesis and metastasis of gastric cancer. Oncotarget. 2014;5:2318–2329. doi: 10.18632/oncotarget.1913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 177.Zhang EB, Kong R, Yin DD, You LH, Sun M, Han L, Xu TP, Xia R, Yang JS, De W, Chen JF. Long noncoding RNA ANRIL indicates a poor prognosis of gastric cancer and promotes tumor growth by epigenetically silencing of miR-99a/miR-449a. Oncotarget. 2014;5:2276–2292. doi: 10.18632/oncotarget.1902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 178.Yang F, Xue X, Zheng L, Bi J, Zhou Y, Zhi K, Gu Y, Fang G. Long non-coding RNA GHET1 promotes gastric carcinoma cell proliferation by increasing c-Myc mRNA stability. FEBS J. 2014;281:802–813. doi: 10.1111/febs.12625. [DOI] [PubMed] [Google Scholar]
  • 179.Endo H, Shiroki T, Nakagawa T, Yokoyama M, Tamai K, Yamanami H, Fujiya T, Sato I, Yamaguchi K, Tanaka N, Iijima K, Shimosegawa T, Sugamura K, Satoh K. Enhanced expression of long non-coding RNA HOTAIR is associated with the development of gastric cancer. PLoS One. 2013;8:e77070. doi: 10.1371/journal.pone.0077070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 180.Sun M, Jin FY, Xia R, Kong R, Li JH, Xu TP, Liu YW, Zhang EB, Liu XH, De W. Decreased expression of long noncoding RNA GAS5 indicates a poor prognosis and promotes cell proliferation in gastric cancer. BMC Cancer. 2014;14:319. doi: 10.1186/1471-2407-14-319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 181.Zhou B, Jing XY, Wu JQ, Xi HF, Lu GJ. Down-regulation of long non-coding RNA LET is associated with poor prognosis in gastric cancer. Int J Clin Exp Pathol. 2014;7:8893–8898. [PMC free article] [PubMed] [Google Scholar]
  • 182.Hu Y, Wang J, Qian J, Kong X, Tang J, Wang Y, Chen H, Hong J, Zou W, Chen Y, Xu J, Fang JY. Long noncoding RNA GAPLINC regulates CD44-dependent cell invasiveness and associates with poor prognosis of gastric cancer. Cancer Res. 2014;74:6890–6902. doi: 10.1158/0008-5472.CAN-14-0686. [DOI] [PubMed] [Google Scholar]
  • 183.Xu TP, Huang MD, Xia R, Liu XX, Sun M, Yin L, Chen WM, Han L, Zhang EB, Kong R, De W, Shu YQ. Decreased expression of the long non-coding RNA FENDRR is associated with poor prognosis in gastric cancer and FENDRR regulates gastric cancer cell metastasis by affecting fibronectin1 expression. J Hematol Oncol. 2014;7:63. doi: 10.1186/s13045-014-0063-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 184.Tierney JF, Stewart LA, Ghersi D, Burdett S, Sydes MR. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials. 2007;8:16. doi: 10.1186/1745-6215-8-16. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Oncotarget are provided here courtesy of Impact Journals, LLC

RESOURCES