Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Jul 7;73(Pt 8):1140–1142. doi: 10.1107/S2056989017009884

Crystal structure of triphenylphosphonium­meth­yl­enetrifluoroborate

Christopher M Bateman a, Lev N Zakharov b, Eric R Abbey a,*
PMCID: PMC5598835  PMID: 28932423

The synthesis, characterization and structural analysis of triphenylphosphoniummethylenetrifluoroborate are presented.

Keywords: crystal structure, tri­fluoro­borates, zwitterions, phospho­nium

Abstract

The title compound, C19H17BF3P {alternative name: triphen­yl[(tri­fluoro­boran­yl)meth­yl]phosphanium}, was formed by the reaction of tri­phenyl­phosphine with potassium iodo­methyl­tri­fluoro­borate. The mol­ecule features a nearly staggered conformation along the P—C bond and a less than staggered conformation along the C—B bond. In the crystal, weak C—H⋯F hydrogen bonds between the meta-phenyl C—H groups and the tri­fluoro­borate B—F groups form chains of R 2 2(16) rings along [100]. These chains are are further stabilized by weak C—H⋯π inter­actions. A weak intra­molecular C—H⋯F hydrogen bond is also observed.

Chemical context  

Alkyl­tri­phenyl­phospho­nium (Ph3PRX) salts are widely used as precursors in the preparation of phospho­rus ylides for Wittig-type olefination (Julia, 1985). Such olefination reactions continue to be one of the most important means of alkene generation. Potassium organotri­fluoro­borates (KRBF3) are common substrates used in Suzuki–Miyaura coupling as stable boronic acid precursors. Additionally, they may be used to produce organodihaloboranes (RBX 2) (Darses & Genet, 2008). Seyferth & Grim (1961) showed that reaction of tri­phenyl­phosphine­methyl­ene ylide (Ph3PCH2 ) with boron trifluoride di­ethyl­etherate (BF3-OEt2) yields triphen­yl[(tri­fluoro­boran­yl)meth­yl]phosphonium (Ph3PCH2BF3). We have synthesized Ph3PCH2BF3 via an alternate route, by reacting tri­phenyl­phosphine (PPh3) with potassium iodo­methyl­tri­fluoro­borate (ICH2BF3K) in 45% yield.graphic file with name e-73-01140-scheme2.jpg

There are many examples of zwitterionic organotri­fluoro­borates containing ammonium moieties, but very few containing phospho­nium groups have been reported (see Database survey). Phospho­nium tri­fluoro­borates have been shown to enhance the hydrolytic stability of the RBF3 moiety (Wade et al., 2010.) In this context we synthesized Ph3PCH2BF3 and report herein its crystal structure.graphic file with name e-73-01140-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound is shown in Fig. 1. A weak intra­molecular C—H⋯F hydrogen bond forms an S(7) ring (Table 1). The mol­ecule features a nearly anti conformation along the P1—C1 bond [B1—C1—P1—C8 torsion angle = 172.4 (2)°] and a less staggered conformation along the C1—B1 bond [F2—B1—C1—P1 torsion angle = 158.3 (2)°].

Figure 1.

Figure 1

The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯F1i 0.95 (3) 2.44 (2) 3.293 (4) 149.7 (17)
C12—H12⋯F1ii 0.96 (3) 2.37 (3) 3.084 (3) 131 (2)
C19—H19⋯F1 0.97 (2) 2.43 (2) 3.263 (3) 143.9 (18)
C11—H11⋯Cg ii 0.89 (3) 2.77 (3) 3.639 (3) 165 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

The B-F bond lengths fall within normal ranges for organotri­fluoro­borate compounds. The methyl­ene C—P bond length [1.787 (4) Å] and the C—B bond length [1.636 (4) Å] also fall within the normal range for similar compounds (Allen et al., 1987). In terms of the surrounding angles, the B and P atoms appear to be sp3 hybridized. The methyl­ene carbon is predominantly sp3 hybridized, but has a distorted tetra­hedral geometry with a P1—C1—B1 angle of 119.7 (2)°.

Supra­molecular features  

In the crystal, two weak C—H⋯F hydrogen bonds between the meta hydrogen atoms on the tri­phenyl­phospho­nium rings and the tri­fluoro­borate moiety (Table 1) fall within the range of distances observed in other tri­phenyl­phospho­nium tri­fluoro­borates (Wade et al., 2010) and form chains of Inline graphic(16) rings along the [100] axis (Fig. 2). These chains are further stabilized by herringbone edge-to-face weak C—H⋯π inter­actions (Fig. 3).

Figure 2.

Figure 2

Part of the crystal structure, showing weak C—H⋯F hydrogen bonds as dashed lines.

Figure 3.

Figure 3

Part of the crystal structure, showing weak C—H⋯π inter­actions along [100] as dashed lines. Only the H atoms involved in these inter­actions are shown.

Database survey  

A search of the Cambridge Structural Database (Version 5.37, update February 2017; Groom et al., 2016) for phospho­nium-containing tri­fluoro­borates yielded only five structures: FUYDIN (Wade et al., 2010), OZOJOD (Gott et al., 2011), PUXWEL (Piskunov et al., 2010), ZEKLEI (Li et al., 2012) and ZEKLOS (Zibo et al., 2012).

Synthesis and crystallization  

Potassium iodo­methyl­tri­fluoro­borate (1.00 g, 4.04 mmol) and tri­phenyl­phosphine (1.11 g, 4.23 mmol) were combined in a pressure flask containing a stir bar under nitro­gen, and anhydrous THF (25.0 mL) was added. The flask was sealed and heated to 343 K for 18 h. The reaction was cooled to room temperature and the solvent was removed in vacuo. The residue was washed with Et2O (3 x 10 mL) and the resulting solid was dissolved in a minimal amount of acetone and the product was precipitated with water and collected by filtration, to afford a white solid (0.63 g, 1.82 mmol, 45%.) X-ray quality crystals were grown by slow diffusion of pentane into a solution of the title compound dissolved in di­chloro­methane.

1H NMR (500 MHz, CDCl3) δ (ppm): 7.66 (m, 9H), 7.56 (m, 6H), 2.07 (br d, 2H, J = 15 Hz). 13C NMR (126 MHz, CDCl3) δ (ppm): 133.7 (d, J = 3 Hz), 133.5 (d, J = 10 Hz), 129.6 (d, J = 12 Hz) 123.2 (d, J = 87 Hz) (C—B not observed). 11B NMR (160 MHz, CDCl3) δ (ppm): 2.49 (q, J = 47 Hz). 19F NMR (470 MHz, CDCl3) δ (ppm): −138.9 (q, J = 37 Hz). FTIR (ATR, cm−1): 3070, 2960, 1587, 1484, 1438, 1146, 1104, 1025, 994, 969, 824, 754, 725, 691, 511, 497.

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were refined independently with isotropic displacement parameters.

Table 2. Experimental details.

Crystal data
Chemical formula C19H17BF3P
M r 344.10
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 173
a, b, c (Å) 9.514 (2), 9.870 (3), 9.883 (3)
α, β, γ (°) 64.609 (6), 87.539 (7), 86.660 (7)
V3) 836.8 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.19
Crystal size (mm) 0.13 × 0.07 × 0.01
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012)
T min, T max 0.925, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11811, 2953, 2090
R int 0.061
(sin θ/λ)max−1) 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.041, 0.094, 1.02
No. of reflections 2953
No. of parameters 285
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.26, −0.29

Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXS97 and SHELXTL (Sheldrick 2008) and SHELXL2013 (Sheldrick 2015).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017009884/lh5846sup1.cif

e-73-01140-sup1.cif (451.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017009884/lh5846Isup2.hkl

e-73-01140-Isup2.hkl (236KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017009884/lh5846Isup3.cml

CCDC reference: 1560028

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C19H17BF3P Z = 2
Mr = 344.10 F(000) = 356
Triclinic, P1 Dx = 1.366 Mg m3
a = 9.514 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.870 (3) Å Cell parameters from 2126 reflections
c = 9.883 (3) Å θ = 2.3–23.9°
α = 64.609 (6)° µ = 0.19 mm1
β = 87.539 (7)° T = 173 K
γ = 86.660 (7)° Plate, colorless
V = 836.8 (4) Å3 0.13 × 0.07 × 0.01 mm

Data collection

Bruker APEXII CCD diffractometer 2090 reflections with I > 2σ(I)
Radiation source: sealed tube Rint = 0.061
φ and ω scans θmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2012) h = −11→11
Tmin = 0.925, Tmax = 1.000 k = −10→11
11811 measured reflections l = −11→11
2953 independent reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 All H-atom parameters refined
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0458P)2] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
2953 reflections Δρmax = 0.26 e Å3
285 parameters Δρmin = −0.29 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
P1 0.88100 (6) 0.18041 (7) 0.68950 (7) 0.01697 (18)
B1 0.6884 (3) 0.2752 (3) 0.8793 (3) 0.0230 (7)
F1 0.58103 (14) 0.26765 (16) 0.79007 (15) 0.0321 (4)
F2 0.66153 (16) 0.40289 (16) 0.90564 (16) 0.0385 (4)
F3 0.68558 (16) 0.14803 (16) 1.01567 (15) 0.0381 (4)
C1 0.8421 (3) 0.2870 (3) 0.7950 (3) 0.0208 (6)
C2 0.7769 (2) 0.2468 (2) 0.5241 (2) 0.0159 (5)
C3 0.7246 (3) 0.3952 (3) 0.4576 (3) 0.0244 (6)
C4 0.6496 (3) 0.4457 (3) 0.3269 (3) 0.0290 (6)
C5 0.6268 (3) 0.3508 (3) 0.2611 (3) 0.0260 (6)
C6 0.6785 (3) 0.2042 (3) 0.3260 (3) 0.0270 (6)
C7 0.7526 (3) 0.1511 (3) 0.4578 (3) 0.0227 (6)
C8 1.0645 (2) 0.1992 (2) 0.6332 (2) 0.0177 (5)
C9 1.1081 (3) 0.2542 (3) 0.4834 (3) 0.0208 (6)
C10 1.2509 (3) 0.2685 (3) 0.4467 (3) 0.0271 (6)
C11 1.3487 (3) 0.2274 (3) 0.5571 (3) 0.0282 (6)
C12 1.3064 (3) 0.1730 (3) 0.7066 (3) 0.0249 (6)
C13 1.1648 (2) 0.1596 (3) 0.7452 (3) 0.0224 (6)
C14 0.8521 (2) −0.0170 (3) 0.7952 (2) 0.0175 (5)
C15 0.9617 (3) −0.1247 (3) 0.8201 (3) 0.0221 (6)
C16 0.9361 (3) −0.2760 (3) 0.8966 (3) 0.0276 (6)
C17 0.8011 (3) −0.3208 (3) 0.9478 (3) 0.0296 (6)
C18 0.6919 (3) −0.2144 (3) 0.9237 (3) 0.0293 (6)
C19 0.7161 (3) −0.0636 (3) 0.8475 (3) 0.0234 (6)
H1A 0.860 (3) 0.389 (3) 0.727 (3) 0.034 (8)*
H1B 0.913 (3) 0.256 (3) 0.864 (3) 0.036 (8)*
H3 0.736 (3) 0.457 (3) 0.510 (3) 0.048 (8)*
H4 0.616 (2) 0.547 (3) 0.282 (2) 0.024 (7)*
H5 0.578 (2) 0.385 (3) 0.171 (3) 0.029 (7)*
H6 0.662 (3) 0.139 (3) 0.281 (3) 0.032 (7)*
H7 0.785 (2) 0.043 (3) 0.508 (2) 0.022 (6)*
H9 1.043 (2) 0.282 (2) 0.404 (2) 0.019 (6)*
H10 1.279 (2) 0.310 (3) 0.342 (3) 0.030 (7)*
H11 1.441 (3) 0.233 (3) 0.535 (3) 0.028 (7)*
H12 1.374 (3) 0.148 (3) 0.784 (3) 0.039 (8)*
H13 1.135 (2) 0.119 (2) 0.851 (3) 0.024 (6)*
H15 1.055 (2) −0.099 (2) 0.789 (2) 0.020 (6)*
H16 1.014 (3) −0.352 (3) 0.915 (3) 0.036 (7)*
H17 0.785 (3) −0.429 (3) 1.000 (3) 0.042 (8)*
H18 0.603 (3) −0.246 (3) 0.958 (3) 0.032 (7)*
H19 0.639 (2) 0.011 (3) 0.829 (2) 0.023 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P1 0.0150 (3) 0.0181 (4) 0.0176 (3) −0.0004 (2) −0.0011 (2) −0.0073 (3)
B1 0.0240 (16) 0.0278 (18) 0.0209 (15) 0.0002 (13) −0.0003 (12) −0.0141 (13)
F1 0.0175 (7) 0.0438 (10) 0.0395 (9) 0.0008 (6) −0.0033 (6) −0.0220 (8)
F2 0.0425 (9) 0.0369 (10) 0.0466 (10) −0.0011 (7) 0.0079 (7) −0.0287 (8)
F3 0.0475 (10) 0.0350 (9) 0.0237 (8) 0.0007 (7) 0.0056 (7) −0.0058 (7)
C1 0.0199 (13) 0.0252 (16) 0.0203 (13) −0.0003 (11) −0.0050 (11) −0.0123 (12)
C2 0.0132 (12) 0.0185 (14) 0.0163 (12) −0.0006 (10) 0.0006 (9) −0.0078 (10)
C3 0.0286 (14) 0.0200 (15) 0.0252 (13) −0.0005 (11) −0.0048 (11) −0.0100 (12)
C4 0.0344 (16) 0.0198 (16) 0.0270 (14) 0.0022 (12) −0.0058 (12) −0.0044 (12)
C5 0.0255 (14) 0.0309 (17) 0.0167 (13) −0.0010 (12) −0.0047 (11) −0.0051 (12)
C6 0.0273 (14) 0.0368 (17) 0.0250 (14) −0.0013 (12) −0.0035 (11) −0.0205 (13)
C7 0.0283 (14) 0.0198 (15) 0.0220 (13) 0.0021 (11) −0.0040 (11) −0.0108 (12)
C8 0.0173 (12) 0.0140 (13) 0.0212 (12) −0.0012 (10) −0.0003 (10) −0.0069 (10)
C9 0.0215 (13) 0.0191 (14) 0.0224 (13) −0.0003 (10) −0.0006 (11) −0.0093 (11)
C10 0.0301 (15) 0.0254 (16) 0.0269 (15) −0.0053 (12) 0.0085 (12) −0.0124 (12)
C11 0.0174 (14) 0.0246 (16) 0.0433 (17) −0.0053 (11) 0.0070 (13) −0.0153 (13)
C12 0.0182 (14) 0.0222 (15) 0.0332 (15) −0.0034 (11) −0.0032 (12) −0.0102 (12)
C13 0.0190 (13) 0.0228 (14) 0.0221 (13) −0.0027 (10) 0.0001 (11) −0.0063 (11)
C14 0.0188 (12) 0.0195 (14) 0.0152 (12) −0.0023 (10) −0.0021 (9) −0.0081 (10)
C15 0.0210 (14) 0.0238 (15) 0.0205 (13) −0.0042 (11) −0.0007 (11) −0.0082 (11)
C16 0.0343 (16) 0.0196 (15) 0.0277 (14) 0.0022 (12) −0.0050 (12) −0.0091 (12)
C17 0.0448 (18) 0.0187 (16) 0.0238 (14) −0.0086 (13) 0.0007 (12) −0.0070 (12)
C18 0.0292 (16) 0.0316 (17) 0.0293 (15) −0.0142 (13) 0.0073 (12) −0.0145 (13)
C19 0.0192 (13) 0.0257 (15) 0.0264 (14) −0.0030 (12) 0.0012 (11) −0.0120 (12)

Geometric parameters (Å, º)

P1—C1 1.787 (2) C8—C13 1.401 (3)
P1—C2 1.796 (2) C9—C10 1.390 (3)
P1—C8 1.805 (2) C9—H9 0.96 (2)
P1—C14 1.804 (2) C10—C11 1.373 (4)
B1—F3 1.394 (3) C10—H10 0.96 (2)
B1—F2 1.400 (3) C11—C12 1.388 (4)
B1—F1 1.404 (3) C11—H11 0.89 (2)
B1—C1 1.636 (4) C12—C13 1.383 (3)
C1—H1A 0.96 (3) C12—H12 0.95 (3)
C1—H1B 0.92 (3) C13—H13 0.99 (2)
C2—C3 1.394 (3) C14—C15 1.395 (3)
C2—C7 1.395 (3) C14—C19 1.401 (3)
C3—C4 1.383 (3) C15—C16 1.385 (3)
C3—H3 0.97 (3) C15—H15 0.94 (2)
C4—C5 1.380 (4) C16—C17 1.385 (4)
C4—H4 0.95 (2) C16—H16 0.99 (3)
C5—C6 1.377 (4) C17—C18 1.385 (4)
C5—H5 0.94 (2) C17—H17 0.99 (3)
C6—C7 1.385 (3) C18—C19 1.378 (3)
C6—H6 0.95 (2) C18—H18 0.92 (3)
C7—H7 1.00 (2) C19—H19 0.97 (2)
C8—C9 1.394 (3)
C1—P1—C2 111.67 (12) C9—C8—C13 119.8 (2)
C1—P1—C8 108.25 (11) C9—C8—P1 122.17 (18)
C2—P1—C8 108.48 (10) C13—C8—P1 118.04 (17)
C1—P1—C14 113.04 (12) C10—C9—C8 119.6 (2)
C2—P1—C14 107.54 (10) C10—C9—H9 117.9 (13)
C8—P1—C14 107.70 (11) C8—C9—H9 122.5 (13)
F3—B1—F2 109.0 (2) C11—C10—C9 120.4 (2)
F3—B1—F1 108.4 (2) C11—C10—H10 121.1 (14)
F2—B1—F1 108.5 (2) C9—C10—H10 118.5 (14)
F3—B1—C1 110.9 (2) C10—C11—C12 120.6 (2)
F2—B1—C1 109.1 (2) C10—C11—H11 121.3 (15)
F1—B1—C1 110.84 (19) C12—C11—H11 118.1 (15)
B1—C1—P1 119.66 (17) C13—C12—C11 119.9 (2)
B1—C1—H1A 111.2 (15) C13—C12—H12 119.0 (15)
P1—C1—H1A 105.1 (15) C11—C12—H12 121.1 (15)
B1—C1—H1B 110.3 (16) C12—C13—C8 119.8 (2)
P1—C1—H1B 103.3 (16) C12—C13—H13 120.1 (13)
H1A—C1—H1B 106 (2) C8—C13—H13 120.1 (13)
C3—C2—C7 119.4 (2) C15—C14—C19 119.2 (2)
C3—C2—P1 120.63 (17) C15—C14—P1 121.19 (17)
C7—C2—P1 119.90 (17) C19—C14—P1 119.50 (18)
C4—C3—C2 119.7 (2) C16—C15—C14 120.3 (2)
C4—C3—H3 122.1 (16) C16—C15—H15 117.2 (14)
C2—C3—H3 118.0 (16) C14—C15—H15 122.5 (14)
C5—C4—C3 120.6 (3) C17—C16—C15 120.0 (3)
C5—C4—H4 120.7 (14) C17—C16—H16 120.0 (15)
C3—C4—H4 118.7 (14) C15—C16—H16 120.0 (15)
C6—C5—C4 120.0 (2) C16—C17—C18 120.1 (3)
C6—C5—H5 118.9 (15) C16—C17—H17 118.8 (15)
C4—C5—H5 121.1 (15) C18—C17—H17 121.2 (15)
C5—C6—C7 120.3 (2) C19—C18—C17 120.4 (3)
C5—C6—H6 119.8 (15) C19—C18—H18 120.3 (16)
C7—C6—H6 119.9 (15) C17—C18—H18 119.2 (16)
C6—C7—C2 120.0 (2) C18—C19—C14 120.0 (2)
C6—C7—H7 120.3 (13) C18—C19—H19 120.6 (13)
C2—C7—H7 119.6 (13) C14—C19—H19 119.4 (13)
F3—B1—C1—P1 81.6 (2) C2—P1—C8—C13 177.28 (18)
F2—B1—C1—P1 −158.33 (17) C14—P1—C8—C13 −66.6 (2)
F1—B1—C1—P1 −38.9 (3) C13—C8—C9—C10 0.4 (3)
C2—P1—C1—B1 68.2 (2) P1—C8—C9—C10 178.94 (18)
C8—P1—C1—B1 −172.42 (19) C8—C9—C10—C11 0.6 (4)
C14—P1—C1—B1 −53.2 (2) C9—C10—C11—C12 −0.8 (4)
C1—P1—C2—C3 25.8 (2) C10—C11—C12—C13 0.1 (4)
C8—P1—C2—C3 −93.4 (2) C11—C12—C13—C8 0.8 (4)
C14—P1—C2—C3 150.38 (18) C9—C8—C13—C12 −1.1 (3)
C1—P1—C2—C7 −156.73 (19) P1—C8—C13—C12 −179.71 (19)
C8—P1—C2—C7 84.1 (2) C1—P1—C14—C15 −119.9 (2)
C14—P1—C2—C7 −32.2 (2) C2—P1—C14—C15 116.40 (19)
C7—C2—C3—C4 −0.1 (4) C8—P1—C14—C15 −0.3 (2)
P1—C2—C3—C4 177.32 (19) C1—P1—C14—C19 63.0 (2)
C2—C3—C4—C5 −0.3 (4) C2—P1—C14—C19 −60.7 (2)
C3—C4—C5—C6 0.2 (4) C8—P1—C14—C19 −177.42 (18)
C4—C5—C6—C7 0.5 (4) C19—C14—C15—C16 −0.4 (3)
C5—C6—C7—C2 −1.0 (4) P1—C14—C15—C16 −177.49 (18)
C3—C2—C7—C6 0.8 (4) C14—C15—C16—C17 0.4 (4)
P1—C2—C7—C6 −176.70 (18) C15—C16—C17—C18 −0.5 (4)
C1—P1—C8—C9 −122.6 (2) C16—C17—C18—C19 0.6 (4)
C2—P1—C8—C9 −1.3 (2) C17—C18—C19—C14 −0.6 (4)
C14—P1—C8—C9 114.8 (2) C15—C14—C19—C18 0.5 (3)
C1—P1—C8—C13 55.9 (2)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C2–C7 ring.

D—H···A D—H H···A D···A D—H···A
C4—H4···F1i 0.95 (3) 2.44 (2) 3.293 (4) 149.7 (17)
C12—H12···F1ii 0.96 (3) 2.37 (3) 3.084 (3) 131 (2)
C19—H19···F1 0.97 (2) 2.43 (2) 3.263 (3) 143.9 (18)
C11—H11···Cgii 0.89 (3) 2.77 (3) 3.639 (3) 165 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z.

Funding Statement

This work was funded by Eastern Washington University Faculty Grants for Research and Creative Works grant .

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. & Orpen, A. G. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1–S19.
  2. Bruker (2012). APEX2, SAINT, SADABS and SHELXS97. Bruker AXS inc., Madison, Wisconsin, USA.
  3. Darses, S. & Genet, J.-P. (2008). Chem. Rev. 108, 288–325. [DOI] [PubMed]
  4. Gott, A. L., Piers, W. E., Dutton, J. L., McDonald, R. & Parvez, M. (2011). Organometallics, 30, 4236–4249.
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Julia, M. (1985). Pure Appl. Chem. 57, 763–768.
  7. Li, Z., Chansaenpak, K., Liu, S., Wade, C. R., Conti, P. S. & Gabbaï, F. P. (2012). Med. Chem. Commun. 3, 1305–1308.
  8. Piskunov, A. V., Mescheryakova, I. N., Fukin, G. K., Cherkasov, V. K. & Abakumov, G. A. (2010). New J. Chem. 34, 1746–1750.
  9. Seyferth, D. & Grim, S. O. (1961). J. Am. Chem. Soc. 83, 1613–1616.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  12. Wade, C. R., Zhao, H. & Gabbai, F. (2010). Chem. Commun. 46, 6830–6831. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017009884/lh5846sup1.cif

e-73-01140-sup1.cif (451.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017009884/lh5846Isup2.hkl

e-73-01140-Isup2.hkl (236KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017009884/lh5846Isup3.cml

CCDC reference: 1560028

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES