Skip to main content
Neurophotonics logoLink to Neurophotonics
. 2017 Sep 18;5(1):011009. doi: 10.1117/1.NPh.5.1.011009

Investigation of the sensitivity of functional near-infrared spectroscopy brain imaging to anatomical variations in 5- to 11-year-old children

Ashley C Whiteman a, Hendrik Santosa a, Daniel F Chen a, Susan Perlman b, Theodore Huppert a,c,*
PMCID: PMC5601503  PMID: 28948192

Abstract.

Functional near-infrared spectroscopy (fNIRS) is a noninvasive brain imaging technique that uses scalp-placed light sensors to measure evoked changes in cerebral blood oxygenation. The portability, low overhead cost, and ability to use this technology under a wide range of experimental environments make fNIRS well-suited for studies involving infants and children. However, since fNIRS does not directly provide anatomical or structural information, these measurements may be sensitive to individual or group level differences associated with variations in head size, depth of the brain from the scalp, or other anatomical factors affecting the penetration of light into the head. This information is generally not available in pediatric populations, which are often the target of study for fNIRS. Anatomical magnetic resonance imaging information from 90 school-age children (5 to 11 years old) was used to quantify the expected effect on fNIRS measures of variations in cerebral and extracerebral structure. Monte Carlo simulations of light transport in tissue were used to estimate differential and partial optical pathlengths at 690, 780, 808, 830, and 850 nm and their variations with age, sex, and head size. This work provides look-up tables of these values and general guidance for future investigations using fNIRS sans anatomical information in this child population.

Keywords: near-infrared spectroscopy, anatomical variability, structural anatomy, Monte Carlo simulation, radiative transport equation

1. Introduction

Functional near-infrared spectroscopy (fNIRS) is a noninvasive neuroimaging technique that uses low levels of red to near-infrared light (650 to 950 nm) to measure changes in the optical absorption of tissue due to hemoglobin. In this region of wavelengths, often referred to as the “optical window,” light can propagate up to several centimeters through tissue, which is deep enough to reach parts of the cerebral cortex from optical emitters and detectors typically placed on the surface of the scalp. Using a grid of these sensors placed within a head cap and worn by the participant, the underlying changes in evoked cerebral hemodynamic responses can be spatially and temporally recorded. The precise penetration of light into the brain, however, depends on a number of individual factors such as optical scattering and the anatomical structure of the brain and extracerebral layers. Variations between individuals in the cortical folding of the brain, head-size, skull thickness, or layers of cerebral spinal fluid (CSF) can influence the recorded fNIRS signals and the sensitivity to underlying brain activity. This is a limiting situation since one of the advantages of fNIRS technology is often cited as its portability, low cost, and ability to record brain activity from pediatric or other special subject populations for whom magnetic resonance imaging (MRI) may be difficult or contraindicated. The objective of this current work is to investigate how these factors affect fNIRS measurements in school-age children and to systematically examine the quantitative effect of age, head-size, and sex on fNIRS measurements. Specifically, we examine the effects on the optical differential pathlength factor (DPF) and partial pathlength factor (PPF) using Monte Carlo modeling of the optical transport model. A dataset of structural MRI volumes from 90 children (58 to 131 months) is examined in this work.

1.1. Functional Near-Infrared Spectroscopy Imaging

Over the last 40 years, since it was first demonstrated by Jobsis,1 fNIRS has been applied to a growing number of applications in psychology, psychiatry, and brain development.26 In particular, the application of fNIRS in child and infant populations has been successfully demonstrated by numerous researchers.712 Compared to functional magnetic resonance imaging (fMRI), fNIRS recordings can be made in a nonrestrictive environment and do not require a specialized scanning room nor the participant to lie in a motionless supine position. During fNIRS imaging, the participant can sit or even stand while wearing the fNIRS head cap, allowing reasonable movement of the participant and interactions with other people or the environment.

While a number of researchers have used fNIRS to examine group-level changes in brain activity with respect to subject age or sex in the context of child development, a persistent underlying confound of such work is the potential for systematic differences in the underlying structure of the head, brain, and other factors that affect the magnitude of the fNIRS signal. While light in the near-infrared window can penetrate up to several centimeters of tissue due to low intrinsic absorption in this range, light passing through the tissue is highly scattered resulting in the diffusion of the light through the tissue. Thus, the path of this scattering depends on the structure of the head, particularly the boundaries of the brain, skull, and CSF. In these layers, systematic differences with age or sex would result in a bias in the reported magnitude of the fNIRS recordings. For instance, in older adults, atrophy of the frontal and temporal cortices13 could result in a decrease in the sensitivity and reported magnitude of measured brain activation as the distance increases between the brain and the surface of the scalp where the fNIRS sensors are positioned.14 Similarly, in children, the growth of the head and/or brain could cause similar biases. Previous work by Beauchamp et al.15 examined changes in the structure of the brain over a range of pediatric structural MRI volumes in 71 children ages 0 to 12 year old. While this work documented the changes in the scalp-brain distance with age, the direct quantitative impact on fNIRS was not examined. In particular, these changes would have an effect on the optical path of light in tissue and the fraction of the signal coming from the actual brain compared to the superficial layers.

1.2. Modified Beer–Lambert Law

Cope et al.16 introduced the concept of the modified Beer–Lambert law (MBLL) as a way to approximate the effect of scattering on the propagation of light in tissue and the resulting increase in the effective distance (optical pathlength) that light travels as it moves through the tissue. The modified Beer–Lambert relationship is given by

ΔODλ(iϵiλ·ci)·L·DPFλ·PVFλ, (1)

where ΔOD is the change in optical density (absorption) measured between an fNIRS source-to-detector pair, ϵ is the extinction coefficient at a particular wavelength (λ) and for a particular i’th chromophore, and ci is the concentration of that chromophore. In the case of fNIRS, the two chromophores of interest are typically oxy- and deoxy-hemoglobin (HbO2 and Hb, respectively). In the original Beer–Lambert law, optical density is proportional to the optical pathlength through the sample. However, in the MBLL, this is replaced by an effective pathlength to account for scattering of the light and the diffuse path that photons will travel in the tissue. The effective pathlength through the tissue is approximated by the product of the distance along the surface between a source–detector pair (L) and a wavelength correction term called the DPF, which is a unitless scalar that adjusts for scattering. As an example, for a scalp distance (L) of 3 cm between an fNIRS source–detector pair, the photon will typically travel an effective distance of 18  cm as it scatters back and forth though the tissue. In this case, the DPF would be 6 (18  cm=3  cm×6). However, of this 18 cm, most of this is through the extracerebral skin, skull, and CSF layers that are of little interest to fNIRS. Thus, the partial volume factor (PVF) in Eq. (1) is applied to adjust for the fraction of this path that is actually in the brain. The resulting correction to the MBLL (L·DPFλ·PVFλ) represents the effective pathlength through the brain volume of interest specifically. The PPF is defined as

PPFλ=DPFλ·PVFλ, (2)

giving the brain-specific MBLL as

ΔODλ(iϵiλ·ci)·L·PPFλ. (3)

Thus, PPF is a wavelength specific, unitless scalar that adjusts for the effective pathlength in the brain. In contrast, DPF adjusts for the pathlength through all tissues. Since the optical measurements between a source-to-detector pair (ΔOD) are proportional to PPF and the magnitude of the signal change in the brain, the PPF term is directly relevant in examining systemic differences with age, sex, or head size.

2. Methods

2.1. Subject Population

All MRI data were collected at 3 Tesla on a Siemens TIM TRIO scanner using T1-wieghted MPRAGE imaging. All subjects had participated in one of the several imaging studies between 2012 and 2015 as part of the healthy/control cohort at the University of Pittsburgh and provided written IRB consent via parent/guardian proxy.17 Structural MR images from a total of 95 subjects were used in this work. Five of the subjects were removed from analysis due to low MRI quality and/or errors in the anatomical registration or segmentation algorithms. Of the 90 remaining subjects, 46 were female. The age range was 58 to 131 months (mean 95 months; SD 17 months). The demographics of these subjects are provided in Table 1.

Table 1.

Subject demographics.

  Males (n=46) Females (n=44)
Mean StdDev Min Max Mean StdDev Min Max
Age (months) 96.1 15.9 60.9 124.2 92.3 17.7 58.1 131.4
Weight (Kg) 28.9 7.3 15.9 46.3 30.6 10.7 15.9 68.0
Height (m) 1.29 0.10 1.02 1.50 1.26 0.14 0.91 1.52
Head circumference (cm) 38.9 2.4 33.7 44.5 38.7 2.0 34.0 42.6
Arc length AP (cm) 37.1 1.1 34.5 39.0 37.3 1.3 34.5 40.2
Arc length RL (cm) 34.5 0.9 32.2 36.1 34.7 1.2 32.2 37.4

Note: 3-T MRI data from a total of 90 subjects was used in this study. Age (months), height, and weight were taken at the time of scan. Head circumference and the arc length in the anterior–posterior (AP; nasion to inion) and right–left (between preauricular points) directions were computed post hoc from the structural MRI data as described in the text.

2.2. Magnetic Resonance Imaging Processing and Segmentation

The structural T1-weighted MR images were processed through the FreeSurfer-based18 HCP structural pipelines.19 This automated processing pipeline is designed to produce minimally distorted structural volumes for each subject both in “native” space and standardized Montreal Neurological Institute (MNI) space.

T1-weighted images were internally cropped to a smaller field of view to remove the neck using FSL’s “robustfov” tool, then aligned to the MNI template space using a 12 degree-of-freedom affine FMRIB's linear image registration tool. A brain mask was applied and then a 6-degree-of-freedom transform was used to align the anterior commissure (AC), posterior commissure (PC), and AC-PC line. The AC-PC aligned brain extracted images were then registered linearly and nonlinearly to the MNI template. These warps were inverted and the template brain masks were brought back into the AC-PC aligned space.

The aligned T1-weighted images were then intensity normalized and FreeSurfer’s “recon-all” function was run to generate white matter and pial surfaces. Pial surfaces were generated using Gaussian parameters (3 standard deviations above and below gray matter mean intensity). Morphometric measurements of volumes, surface areas, and thicknesses were then computed from these surfaces.

A secondary segmentation was performed on the skin, skull, and CSF layers using the FreeSurfer watershed algorithm “mri_watershed.”20 The watershed segmentation algorithm was used to determine the intensity values for white matter, gray matter, and CSF. An elliptical surface was fitted to the brain and the shape of the surface fit was evaluated against a previously derived template. The brain surface file was then grown outward to generate an inner skull surface. A fifth-order icosahedral surface was fit around the outer edge of the volume and smoothed to make the skin surface. Finally, this skin surface was shrunk to make the outer skull surface. Following automated segmentation using the FreeSurfer and “mri_watershed” algorithms, the brain head-layer surfaces were visually examined. A total of five subjects were discarded due to either poor segmentation, registration, or general data quality leaving 90 final datasets that were used in analysis.

2.3. Functional Near-Infrared Spectroscopy Modeling

Each of the 90 subjects’ segmented anatomical volumes was used to model the sensitivity and characteristics of theoretical fNIRS measurements using Monte Carlo simulations.21,22 A four-layer (skin, skull, CSF, and brain) anatomical mesh-based model was created from the segmented boundaries of the skin, outer skull, inner skull, and pial surface of the brain using the iso2mesh program from Fang and Boas.23 Monte Carlo simulations were run at five wavelengths (690, 780, 808, 830, and 850 nm). The optical properties for these tissues and wavelengths are given in Table 2. In this work, gray and white matter brain tissues were assigned the same optical properties similar to the earlier work in Strangman et. al.24

Table 2.

Tissue optical properties for Monte Carlo simulations.

  Wavelength (nm)
690 780 808 830 850
Skin μA (mm1) 0.021 0.014 0.012 0.012 0.012
μS (mm1) 2.91 2.45 2.33 2.24 2.16
N 1.45 1.45 1.45 1.45 1.45
g 0.89 0.89 0.89 0.89 0.89
Skull μA (mm1) 0.026 0.025 0.025 0.025 0.027
μS (mm1) 1.82 1.67 1.62 1.59 1.57
N 1.45 1.45 1.45 1.45 1.45
g 0.89 0.89 0.89 0.89 0.89
CSF μA (mm1) 0.001 0.002 0.002 0.003 0.004
μS (mm1) 0.01 0.01 0.01 0.01 0.01
N 1.33 1.33 1.33 1.33 1.33
g 0.89 0.89 0.89 0.89 0.89
Brain (gray + white) μA (mm1) 0.010 0.011 0.011 0.012 0.014
μS (mm1) 1.44 1.18 1.12 1.07 1.03
N 1.45 1.45 1.45 1.45 1.45
g 0.89 0.89 0.89 0.89 0.89

Note: This table provides the optical properties for the skin, skull (bone), CSF, and brain layers used in the Monte Carlo simulations. Optical properties were adopted from Jacques.19 μA is the optical absorption coefficient, μs is the reduced scattering coefficient, N is the index of refraction, and g is the anisotropy coefficient.

The optical properties were computed from the general tissue models given by Jacques25 and optical scattering (μs) and absorption (μA) was computed by

μs=a·[λ500(nm)]b, (4)
μA=B·S·μA,HbO2+B·(1S)·μA,Hb+W·μA,water+F·μA,fat, (5)

where the parameters for these two equations were compiled from various empirical sources in the literature as given in Jacques.25 For scattering, the parameters for the skin (a=4.6  mm1, b=1.421), bone (a=2.29  mm1, b=0.716), and brain (a=2.42  mm1, b=1.611) were used. For the brain, we assumed oxygen saturation (S)=70%, blood volume fraction (B)=2.2% [=50  μM×(66,458  gm/mol)/(150  gmHb/Lblood)], water fraction (W)=70%, and fat fraction (F)=0%. For the other tissues, we used values given by Jacques.25

For each subject, we modeled the optical sensitivity (forward model) using a mesh-based Monte Carlo method.22 Functional NIRS sources were modeled from 346 positions on the head for each subject at the international 10-5 coordinate positions (see Fig. 1). For each source and wavelength, 5×107 photons were simulated. Thus, over the whole cohort, 157,000 simulations were run for a total of 72,000 CPU-hours of computing on a 240 CPU high-performance computing cluster. For each simulation, the exiting photons were monitored at all other positions on the surface of the head yielding a 346×2564 matrix of virtual fNIRS source–detector combinations from around each source position.

Fig. 1.

Fig. 1

Example of segmentation and Monte Carlo simulations. (a) and (b) The locations of the 10-5 coordinate points on the surface of one of the subjects and the equivalent polar projection of this map. (c) An example mesh used for the Monte Carlo simulations in the same subject.

For each simulated source–detector pair, the optical pathlength through the entire tissue (DPF) and partial pathlength through the brain (PPF) was recorded. The DPF and PPF were computed for each 10-5 position by fitting the 120 measurements between 10 and 40 mm around each source to a linear regression model using an iterative robust regression algorithm (MATLAB function “robustfit”).

2.4. Topographic Projections

Each subject was registered to a 10-5 head coordinate space by aligning the left/right preauricular ear points and nasion point in the MRI data to an elliptical template of 10-5 points included in the SPM software (“ext1020.sfp”)26 followed by an iterative closest point registration and refinement using the head surface. Based on this head coordinate registration, the head circumference (at 10% up along the arc length between preauricular ear points) and the arc lengths from nasion to inion and between preauricular ear points was computed retrospectively.

To compare estimated parameters (cortical depth, optical pathlength, etc.) across subjects, values of interest were first projected along the surface normal to the nearest position on the scalp. The scalp positions were then projected using a Clarke’s twilight azimuthal projection using a normalized head radius into a two-dimensional topographic map and interpolated onto an equidistant polar grid. This projection allowed data from subjects to be compared in a standardized space independent of the subject head circumference and size. Except where noted, the median value of the parameters was computed across subjects in this polar (10-5 coordinate) space.

3. Results

3.1. Characterization of Anatomical Variations

Using the anatomical MRI volumes from the 90 children, we computed the median skull thickness and CSF layer thickness according the 10-5 space projected values. The median value for the male and female groups is shown in Fig. 2. The skull thickness ranged between 1.1 and 9.6 mm {2.51±0.92 [median±0.67499×(median absolute deviation)]} in the females and 1.1 to 8.3 mm (2.66±0.92) in the males. In both sexes, the skull thickness at the crown and posterior of the head (posterior of 10-5 position FpZ and lateral out to positions Cp3/Cp4) was about 2 to 3 times thicker (3.2 to 5 mm) than the other frontal or temporal regions as shown in Fig. 2.

Fig. 2.

Fig. 2

Gender differences in skull CSF layer thickness. (a) and (b) The median skull and (c) and (d) CSF thickness for the male and female subjects is shown in the normalized polar (10-5 coordinate) space. The color scales show the thickness of these layers in millimeters.

The CSF thickness (defined as the distance between the inner surface of the skull and the pial surface of the brain) was between 3 and 9 mm in both sexes (male 5.12±0.95; female 5.05±0.89) and greatest (7 to 9 mm) at the slightly anterior to the crown of the head around 10-5 position Fz and extending posterior along the sagittal sulcus. The area of this thicker CSF region was larger in the males than the females. In our segmentations, we did not consider the venous dural sinuses, and some of this CSF thickness at the sagittal sulcus is likely due to the sagittal sinus, which is labeled as CSF in the segmentations.

The depth of the surface of the cortex relative to the scalp is shown in Figs. 3(a) and 3(b) for both sexes. The cortical depth ranged from 6.2 to 14.7 mm in females (median 10.2±1.8) and 6.6 to 14.5 mm in males (median 10.13±1.73). This was lowest (7 to 9 mm) along the frontal cortex and bilateral lateral regions. This depth was about 50% deeper along the top of the head down the midline where it ranged from about 11 to 15 mm. This pattern reflected the same regions that had been observed to have thicker skull or CSF layers shown in Fig. 2 for the two sexes. Figure 3(c) shows the difference map of the cortical depth of the females verses the males. Regions in red color show parts of the cortex that were deeper in the females compared to the males. On average, the cortex was 0.1 mm (range [5.6 to 4.89]; p<1×1015; F30420,1. two-way ANOVA with position and group) deeper in the female participants. Notably, the medial and right frontal/medial cortex was between 2 and 3.5 mm deeper in the females compared to the males. The deeper depth of the cortex in the females means that fNIRS measures will be less sensitive to changes in brain activity in the females compared to the males. This could result in underestimation of brain activity in the female group from these regions and a sex-related bias in the activity in group-level analysis models.

Fig. 3.

Fig. 3

Gender differences in the scalp-to-brain depth. (a) and (b) The median distance normal to the surface from the scalp to the nearest position on the pial cortical surface in the subject normalized polar (10-5 coordinate) space. (c) The difference between the depth of the females compared to the males. In most regions, the brain of the female subjects up to 3-mm deeper.

We also examined variability in the location of the cortical folding pattern (mapped according to MNI space) relative to the 10-5 head coordinate system. Using FreeSurfer, the cortical surfaces are extracted and registered as surfaces into the “fsaverage” space where parcellation labels are assigned. In this space, the equivalent anatomical regions can be morphed from one subject’s anatomy onto another. Figure 4 shows the median displacement in the equivalent fsaverage cortical positions relative to the surface of the head in both the males and females. The most conserved anatomical regions between subjects [shown in blue-green colors in Figs. 4(a) and 4(b)] were in the lateral frontal, temporal, and posterior/occipital regions and varied from about 5 to 30 mm median displacements. The most anatomically variable regions were along the midline and superior frontal regions of the head which varied up to 20 to 30 mm. Specifically, these regions of high variability in the underlying structure of the cortical folding are the regions where the alignment of fNIRS measurements according to the 10-5 positioning on the scalp would be more sensitive to unknown variability in the underlying brain region.

Fig. 4.

Fig. 4

Underlying variability in brain (MNI) space measured from scalp-based fNIRS sensors. This figure shows the root-median-squared displacement in underlying registered MNI coordinates of the surface of the brain as measured from each position on the scalp. Red color indicates higher variability in the underlying structure and folding of the brain beneath each position and indicates areas where fNIRS measurements would have lower precision due to individual differences in the folding of the cortex. The results for the (a) female and (b) male subjects are shown with the same color scale.

Finally, in Fig. 5, we looked at the effect of head size and age on the cortical depth. The registered polar (10-5 coordinate) space data for all 90 subjects across both sexes was pooled and regressed using the head circumference or subject age in a robust regression model. In Fig. 5, we show the t-statistic map for these two models. As shown in Fig. 5(a), we found that head circumference was more correlated to the depth of the brain than age. This is because over our group of subjects in this school-age range, we found that there was a considerable spread in head size, height, and weight, which was not well predicted by age alone and reflected different growth rates for the children. Specifically, head circumference was only marginally related to age (R2=0.176). We found that the depth of the brain at the top of the head was positively related to head circumference [Fig. 5(a)], which indicates that this depth was greater for children with larger head sizes. This also indicates that the head is probably growing faster than the brain over this age range resulting in an increasing depth.

Fig. 5.

Fig. 5

Correlation of scalp-to-brain depth with head circumference and age. This figure shows t-statistic maps (89 degrees of freedom) from the pooled data across both genders for a regression model against (a) head circumference and (b) age at time of MRI scan in months. Red indicates a positive correlation and increasing depth with circumference or age.

3.2. Variation in Optical Properties

As previously described in the methods, a Monte Carlo-based model was used to simulate fNIRS measurements for each of the 90 subjects at all 346 of the 10-5 positions on the head for wavelengths 690, 780, 808, 830, and 850 nm. These wavelengths were selected as the five most widely used wavelengths in currently commercially available fNIRS systems. At each 10-5 head position, virtual “photons” from an fNIRS emitter were simulated and mapped to all surface points symmetrically around the emitter. For each emitter position, the DPF was computed by a weighted least-squares fit of the detectors from 10 to 40 mm around a source. The differential pathlength (e.g., how far did the light travel within the tissue) is equal to the product of the DPF and the emitter–detector distance along the arc of the scalp [Eq. (1)]. Similarly, the PPF as defined in Eq. (2) was computed as the pathlength through only the cortex layer of the model. Both DPF and PPF are unitless scaling factors, which adjust the fNIRS emitter–detector distance in the MBLL.

Figure 6 shows the topographic maps of the estimated DPF for both sexes at all five simulated wavelengths. The DPF was highest for the 690 nm wavelength in both sexes; DPF ranged from 5.53 to 6.82 in the females (median=6.00) and from 5.38 to 6.84 in the males (median=6.04). Although lower in comparison, in all other wavelengths (780, 808, 830, and 850 nm), the median DPF between sexes was similar; 5.76, 5.71, 5.67, and 5.64 in females and 5.84, 5.79, 5.76, and 5.74 in the males, respectively). The DPF was slightly higher in the males by 1.3% to 1.6% compared to the females. Spatially, the DPF was symmetric across hemispheres and was highest along the top of the head along precentral sulcus and superior frontal cortex. The average DPF for several head regions is given in Table 3. Tables 515 for the DPF for both sexes and at each of the 346 10-5 coordinate positions are given in the Appendix.

Fig. 6.

Fig. 6

Gender and wavelength differences in the DPF. The DPF at the 5 simulated wavelengths is shown for the (a)–(e) female and (f)–(j) male subjects based on the Monte Carlo simulations. The median DPF for each position in the registered polar (10-5 coordinate) space is shown for each of the wavelengths.

Table 3.

Sensitivity, DPF, PPF of anatomical regions (both sexes).

Region Sensitivity (dB) DPF (wavelength, nm) PPF (wavelength, nm)
690 780 808 830 850 690 780 808 830 850
Left hemisphere
Caudal middle frontal 36.9 6.15 5.99 5.94 5.93 5.94 2.53 2.63 2.66 2.65 2.69
Frontal pole 39.1 6.00 5.74 5.74 5.67 5.63 1.74 1.78 1.78 1.80 1.83
Inferior parietal 29.7 5.98 5.75 5.73 5.70 5.66 2.47 2.43 2.45 2.50 2.54
Inferior temporal 35.2 6.03 5.86 5.79 5.77 5.74 2.38 2.43 2.42 2.43 2.48
Lateral occipital 27.2 6.03 5.75 5.70 5.66 5.63 2.28 2.26 2.27 2.29 2.35
Middle temporal 28.7 6.05 5.87 5.82 5.82 5.77 2.49 2.54 2.54 2.54 2.54
Pars orbitalis 41.1 6.10 5.93 5.92 5.92 5.88 2.39 2.44 2.47 2.48 2.49
Pars triangularis 37.9 6.14 5.98 5.93 5.90 5.88 2.57 2.59 2.64 2.58 2.65
Postcentral 30.7 6.13 5.94 5.91 5.88 5.87 2.63 2.70 2.71 2.72 2.76
Precentral 33.5 6.13 6.00 5.95 5.93 5.92 2.66 2.72 2.76 2.75 2.78
Rostral middle frontal 31.4 6.11 5.94 5.90 5.87 5.84 2.35 2.39 2.39 2.39 2.42
Superior frontal 30.9 6.17 6.00 5.95 5.91 5.89 2.32 2.35 2.38 2.39 2.42
Superior parietal 36.7 6.01 5.79 5.77 5.74 5.71 2.42 2.49 2.52 2.49 2.56
Superior temporal 41.1 6.10 5.92 5.87 5.85 5.83 2.66 2.64 2.64 2.57 2.60
Supramarginal 33.7 6.02 5.81 5.76 5.77 5.73 2.56 2.60 2.60 2.67 2.67
Right hemisphere
Caudal middle frontal 38.2 6.22 6.04 5.97 5.94 5.91 1.96 1.98 2.00 2.04 2.03
Frontal pole 40.3 6.20 5.93 5.82 5.81 5.75 1.38 1.37 1.38 1.38 1.39
Inferior parietal 31.5 5.96 5.73 5.66 5.66 5.59 1.93 1.97 1.95 2.03 2.06
Inferior temporal 35.2 6.02 5.73 5.67 5.67 5.61 1.74 1.72 1.77 1.70 1.83
Lateral occipital 28.7 5.95 5.68 5.62 5.56 5.54 1.73 1.75 1.74 1.77 1.79
Middle temporal 32.4 6.02 5.78 5.71 5.69 5.66 1.70 1.71 1.72 1.73 1.75
Pars orbitalis 39.5 6.33 6.00 5.97 5.93 5.89 1.33 1.35 1.34 1.39 1.40
Pars triangularis 35.8 6.28 6.07 6.05 6.02 5.95 1.83 1.81 1.82 1.86 1.94
Postcentral 29.6 6.08 5.89 5.85 5.80 5.78 1.78 1.87 1.87 1.89 1.98
Precentral 32.0 6.12 5.92 5.87 5.83 5.79 1.82 1.90 1.89 1.92 1.96
Rostra middle frontal 32.8 6.30 6.05 5.97 5.94 5.87 1.60 1.60 1.64 1.65 1.64
Superior frontal 34.2 6.17 6.01 5.95 5.92 5.89 1.86 1.92 1.92 1.93 1.99
Superior parietal 34.9 6.04 5.78 5.72 5.68 5.67 1.94 1.96 1.96 1.95 2.02
Superior temporal 38.3 6.06 5.85 5.81 5.77 5.74 1.66 1.65 1.67 1.68 1.71
Supramarginal 32.2 6.03 5.84 5.77 5.74 5.68 1.74 1.78 1.82 1.87 1.93

Note: This table shows the DPF and PPF for several fNIRS-accessible regions on the head. Data has been combined for both male and female subjects. The sensitivity of the region to fNIRS is provided in decibels (dB; 10×log10) and indicates the fraction of photons normalized to the incidence power reaching this region from the scalp at a source–detector distance of 30 mm.

Figure 7 shows the spatial distribution of the PPF for the two sexes and five simulated wavelengths. The PPF has less variation between wavelengths compared to DPF, but has a larger difference between the two sexes. The PPF was higher in the males by 15.4% to 18.8% across the whole head when compared to the females. The whole head median value of the PPF was 1.77, 1.77, 1.77, 1.80, and 1.90 for the females and 2.45, 2.44, 2.48, 2.45, and 2.45 for the males at 690, 780, 808, 830, and 850 nm, respectively. Although this difference was observed across the whole head, PPF sex differences were the greatest in the area around the medial frontal region (Fp1, FpZ, and Fp2); here females had a lower PPF value (1.15 compared to 1.45 [average of all 5 wavelengths; p=1.5×104]). This corresponds to the same region around the frontal sinuses where the cortex was deeper among females, as shown in Fig. 3(c). The observed 2 to 3 mm increased depth in the females and corresponding decrease in the PPF directly translates to an expected 26% underestimation in fNIRS measurements of brain activity in these regions relative to males. The PPF across the head is summarized in Table 3. Due to space constraints, both males and females have been combined in Table 3. However, for both sexes, Tables 515 describing the 346 10-5 coordinate positions are given in the Appendix.

Fig. 7.

Fig. 7

Gender and wavelength differences in the PPF. The PPF at the 5 simulated wavelengths is shown for the (a)–(e) female and (f)–(j) male subjects based on the Monte Carlo simulations. The median PPF for each position in the registered polar (10-5 coordinate) space is shown for each of the wavelengths.

Similar to the analysis of the scalp-to-brain depth with age and head circumference, we also examined DPF and PPF with these two regression models. Figure 8 shows the statistical result (t-statistic) from the regression model pooling data from all 90 subjects. Both head circumference and age had the biggest effect on the DPF in the frontal and occipital regions of the head with positive correction (e.g., increasing DPF with increased age or head circumference). For PPF, age was positively correlated with PPF in the frontal regions. Head circumference seemed to matter only along the equator of the head, but decreased with head circumference in most other regions. In Figure 8, variability in DPF and PPF, seen as a noticeable ring near the equator of the Clarke projection, is due to the inferior surface of the brain cutting in where it rests on the cranium floor. This is also evident in the positional variability maps shown in Fig. 4.

Fig. 8.

Fig. 8

Correlation of DPF and PPF with head circumference and age. This figure shows t-statistic maps (89 degrees of freedom) from the pooled data across both genders for a regression model against (a) and (c) head circumference and (b) and (d) age at time of MRI scan in months. Red indicates a positive correlation and increasing pathlength with circumference or age.

3.3. Regions-of-Interest

The segmented MRI volumes for each of the 90 subjects were parcellated into 70 anatomical regions of the cortical surface using FreeSurfer.27 These parcellation labels were created for each subject and then projected into the registered polar (10-5 coordinate) space. Figure 9(a) shows the most frequent (mode) label across the head from all the subjects. Male and female subjects had only minor differences (see the Appendix). Similarly, we used the automatic anatomical labeling dataset28 to find Brodmann area labels on the cortical surface in MNI space [Fig. 9(b)]. As a note, the Brodmann areas from the automatic anatomical labeling dataset are defined in three-dimensional space and cover parts of the sulci as well as the gyri folds. Therefore, these regions extend to slightly deeper areas compared to the FreeSurfer gyri labels. In Table 4, we provide a list of the cortical depth and closest 10-5 head coordinate points for a subset of the most accessible of these regions. Tables 515 are provided in the Appendix.

Fig. 9.

Fig. 9

Underlying anatomical and Brodmann area maps. (a) The mode label across the 90 subjects is given for the anatomical labels of the gyri from FreeSurfer.20 (b) The Broadmann area labels based on the aal template21 are given. Both panels show the most frequent label (mode) across both genders.

Table 4.

Nearest 10-5 location for recording Brodmann areas (both sexes).

BA Region Depth Position 1 Position 2 Position 3
Med (min to max) Name Depth Name Depth Name Depth
Left hemisphere
BA-1 Prim. somatosensory ctx 16.85 (6.31 to 26.80) C3h 18.13 C3 18.72 C1 21.37
BA-2 Prim. somatosensory ctx 19.50 (10.24 to 26.80) C3 18.99 C3h 20.78 C1 22.74
BA-3 Prim. somatosensory ctx 20.71 (9.70 to 27.58) C1h 20.56 C1 22.47 C3h 23.33
BA-4 Prim. motor ctx 17.81 (9.90 to 26.61) FCC5h 18.68 C1h 19.14 FCC3 20.32
BA-6 Motor and suppl. motor ctx 20.65 (10.38 to 25.98) FCC1h 21.65 FCC1 22.58 FCCz 26.47
BA-7 Somatosensory assoc. ctx 23.45 (19.07 to 29.61) CP1 21.79 CP1h 23.56 CCP1h 24.44
BA-8 Includes frontal eye fields 17.94 (7.31 to 24.82) F1h 18.07 FFC1h 18.92 FFC1 19.12
BA-9 Dorsolateral prefrontal ctx 20.26 (12.06 to 27.22) F1 19.51 FC3 23.68 FCC3 23.76
BA-10 Frontopolar area 19.02 (14.97 to 25.12) F3 17.54 AFF1h 24.22 AFF1 24.30
BA-17 Prim. visual ctx (V1) 16.66 (11.62 to 26.78) POO1 16.52 PO1 18.31 PO1h 18.93
BA-18 Visual assoc. ctx (V2) 18.50 (15.18 to 24.39) PPO5h 17.29 PPO1h 19.21 PO1h 21.61
BA-19 Associative visual ctx (V3) 20.02 (15.59 to 24.85) P3h 19.07 CPP3 20.58 CPP5h 21.42
BA-21 Middle temporal gyrus 21.62 (16.54 to 28.05) CCP5 22.42 C5 24.26 FCC5 25.33
BA-22 Superior temporal gyrus 24.51 (20.95 to 28.74) CCP5h 23.06 FCC5 25.16 FCC5h 31.26
BA-37 Fusiform gyrus 17.33 (11.79 to 24.04) CPP5 18.30 CPP5h 18.73 CP5 19.94
BA-39 Angular gyrus 18.76 (14.61 to 26.24) CPP3 19.12 CP3 19.78 CP3h 21.71
BA-40 Supramarginal gyrus 19.80 (13.52 to 25.98) CCP3 19.76 CCP3h 21.97 C3h 22.80
BA-43 Subcentral area 14.70 (4.84 to 24.00) C5h 15.29 FCC5h 16.58 FCC3 22.35
BA-45 Pars triangularis 16.35 (12.02 to 24.41) FC5h 16.93 FFC5h 20.04 FC3 20.80
BA-46 Dorsolateral prefrontal ctx 17.49 (10.73 to 24.16) FFC3 18.11 FFC5h 18.47 FC3 18.53
Right hemisphere
BA-1 Prim. somatosensory ctx 16.74 (10.31 to 22.10) C4 16.72 C4h 18.95 C2 20.88
BA-2 Prim. somatosensory ctx 18.49 (12.28 to 25.25) C4 16.28 C4h 20.79 C2 21.86
BA-3 Prim. somatosensory ctx 17.69 (9.79 to 24.37) C4h 17.40 C2 21.80 C2h 22.37
BA-4 Prim. motor ctx 18.65 (9.95 to 25.18) C2h 19.95 FCC4h 23.55 C4h 24.47
BA-6 Motor and suppl. motor ctx 19.04 (10.36 to 24.12) FCC4 17.96 FCC2h 21.64 FCC2 22.34
BA-7 Somatosensory assoc. ctx 22.87 (16.07 to 30.78) CP2h 22.41 CP2 22.53 CCP2h 24.76
BA-8 Includes frontal eye fields 18.83 (11.15 to 24.62) FC4h 19.64 FFC2h 20.76 FFC2 21.20
BA-9 Dorsolateral prefrontal ctx 19.45 (13.05 to 25.82) FC4h 22.08 FC4 22.28 FCC4 22.83
BA-10 Frontopolar area 18.08 (15.34 to 23.34) F4 17.39 AFF2 20.89 AFF2h 22.54
BA-17 Prim. visual ctx (V1) 18.20 (12.11 to 27.42) PO4h 17.04 PO2 17.93 PO2h 18.18
BA-18 Visual assoc. ctx (V2) 18.47 (14.47 to 25.04) PPO4 16.28 PPO2h 19.96 PO2h 20.60
BA-19 Associative visual ctx (V3) 19.05 (15.81 to 24.77) P4h 19.07 P2 20.33 P2h 22.70
BA-21 Middle temporal gyrus 19.23 (13.02 to 25.89) CCP6 19.31 C6 20.73 FCC6 23.57
BA-22 Superior temporal gyrus 23.32 (16.57 to 29.15) CP6h 21.26 CCP6h 22.62 FCC6h 26.80
BA-37 Fusiform gyrus 17.75 (11.57 to 23.92) CP6 17.18 CPP6 19.31 CPP6h 20.76
BA-39 Angular gyrus 18.70 (12.57 to 25.00) CPP4 19.64 CP4 19.99 CP4h 20.00
BA-40 Supramarginal gyrus 20.83 (14.98 to 26.12) CCP4 18.95 CCP4h 22.86 C4h 23.32
BA-43 Subcentral area 13.79 (5.01 to 26.59) C6h 16.05 C4 17.64 FCC4 20.58
BA-45 Pars triangularis 14.48 (6.86 to 22.95) FC6h 15.80 FC4 17.26 FFC6h 17.68
BA-46 Dorsolateral prefrontal ctx 16.83 (10.10 to 23.75) FFC6h 17.63 FFC4 18.80 FC4 19.17

Note: This table provides the depth (median and range) of selected Brodmann areas based on the aal template in MNI space. For each region, the nearest three 10-5 coordinate positions and the depth of the region to this position are provided as guidance for the placement of fNIRS sensors. The individual results for the two genders are presented in the Appendix to this work.

4. Discussion

In this paper, we used 90 segmented MRI volumes from children ages 5 to 11 years to model the intersubject variations in head and brain anatomy and their effects on the sensitivity of fNIRS measurements. The overall objective of this paper was to quantitatively examine how variations in anatomy with age, sex, and head-size affected the optical properties of the DPF and PPF. These two factors are used in the MBLL [Eqs. (1)–(3)] to correct for the effective pathlength of light in the total tissue and brain, respectively, which in turn determines the quantitative accuracy of fNIRS. In most cases using continuous wave (CW) fNIRS recordings, the absolute quantification of the signals is not a concern. However, the potential that DPF and/or PPF could vary across spatial regions or subject demographics creates a confound that could bias group-level statistical comparisons. Namely, when DPF or PPF is ignored as a scaling factor in CW-fNIRS recordings, this assumes that these terms are constant over space/channels and subjects. This term appears in both the numerator and denominator of a t-test used in accessing brain activity from a linear model.29 This term would cancel only in the case of a first level model (a statistical test within a single subject and per optical channel), but not for comparing the magnitudes across channels in region-of-interest or group-level models. As an example from our results, although the exact value of PPF may be less of a concern, the finding that the PPF in the frontal cortex varied by about 20% in the frontal cortex between males and females means that there would be an expected bias toward underestimation of the magnitude of the brain signals specifically in the female group. Thus, if the magnitude of the hemodynamic response was exactly the same in the brain/cortex space of the two groups, the resulting optical measurements in the female group would be 20% smaller in these regions. While we caution against interpreting the results of statistical tests performed in fNIRS channel space as related to true differences in brain activity compared to systematic variations in anatomy, we believe that this work can provide valuable guidance toward how these biases may be addressed at the group level. Specifically, we suggest careful examination of sex difference in fNIRS datasets in future research projects.

4.1. Anatomical Variations in Subjects

In the first part of this paper, we examined differences in the structural anatomy of the brain with sex, head-size, and subject age based on segmentation and registration of the anatomical MRI data. In both the male and female populations, we found quite a bit of spatial variation in the depth of the brain relative to the scalp surface. While skull and CSF thicknesses were comparable across the two groups, we found that on average the cortical depth was slightly deeper in the female subjects. This difference was greatest in the frontal regions where we believe a larger sinus cavity in the female subjects is responsible for the 2 to 3 mm increase depth of the brain in these regions. As the distance between the brain and the scalp increases, the fraction of light reaching these brain regions decreases, therefore, we observed a lower PPF value in these regions for the female subjects. This is particularly relevant for fNIRS measurements that target these frontal regions due to accessibility of the forehead, absence of hair, and scientific interest in the underlying cognitive functional domains (e.g., Brodmann areas 10, 46, and 44). We also found an asymmetry in the cortical depth, with the right side being slightly deeper than the left side of the frontal lobe. This is consistent with the structural asymmetries noted previously in a similar analysis by Beuachamp et al.15 When we looked at head size and age, we found that head size was the better predictor of underlying anatomy rather than age in this range of 5- to 11-year-old children. Thus, a recommendation to future fNIRS studies might be to report head sizes as well as age when listing subject demographics.

In Fig. 4, we also examined variations in the cortical folding of the brain with respect to the scalp-based 10-5 mapping. We found that certain regions, including the crown of the head in both sexes and the left frontal in specifically males, tended to show more variability in the underlying cortical regions that would be measured from fNIRS sensors. For example, based on the results shown in Fig. 4, fNIRS sensors positioned on 10-5 location Fp1 (left superior frontal) in two subjects would, on average, be measuring from two different cortical regions displaced by 3 cm in registered cortical space. Conversely, regions along the lateral frontal area (e.g., around AF8/7-F8/7) are more conserved across subjects; fNIRS measurements from these regions would be expected to come from more similar cortical regions. This implies that studies focused on group-level analyses from these more variable regions should expect a lower effect size in brain activation and consequently should plan on larger sample sizes to counteract the variability in the cortical regions relative to the fNIRS sensors. Fortunately, we found that this effect was not sex specific and both males and females had similar areas of variability (Fig. 4). This means that sex is not expected to affect precision of fNIRS measurements, although we found evidence of a clear bias in the magnitude (accuracy) of the measurements due to cortical depth.

4.2. Effects of Variations on Optical Properties

Based on the segmented structural MRI data, we also ran Monte Carlo simulations to look at how PPF and DPF varied spatially and across age and sex. The regions that showed the greatest variations in cortical depth between sexes were also the most variable in the partial pathlength (PPF). Since optical PPF is defined as the multiplication factor to estimate the pathlength through specifically the brain [e.g., Lbrain=PPF×Lsource-detector; Eq. (2)] within the MBLL, these spatial variations have a direct impact on the quantitative report of the magnitude of estimated brain signals. In particular, we found about a 13% to 26% spatial difference going from the frontal or lateral regions of the head to superior regions (Fig. 7). This means that for the same change in hemoglobin within these brain regions, the measured optical signals in the lateral regions would predict a lower magnitude change compared to those from near the top of the head. We also noted significant sex differences in the optical PPF, particularly in the frontal cortex (Fig. 7). Specifically, the females had 13% to 18% smaller PPF values compared to the males. This seems to be the effect of the cortical depth of about 2 to 3 mm in the females in this region and we believe reflects a slightly larger sinus cavity at the front of the head. Unfortunately, this PPF difference implies that for the same underlying magnitude of hemoglobin changes in the brain, the optical measurements in the females are expected to be smaller. This introduces a systematic bias in group-level statistical analysis, which looks at sex as a covariate. Since the dominant source of noise in fNIRS measurements is probably physiological signals in the skin layers, which would be expected to be similar in both sexes, the lower PPF likely directly relates to a lower contrast-to-noise ratio and lower statistical effect sizes in this group. Even if a sex-adjusted DPF is applied in analysis, this difference in the expected statistical effect would have an effect on group-size and power estimates for analysis. Optical DPF did not have nearly as much spatial variation and showed only very little variation across the same regions. DPF is the multiplication factor between the source–detector distance and the total pathlength through the tissue. Although DPF can be measured directly by time-domain or frequency-domain fNIRS technologies, PPF cannot and must be modeled.

Although DPF and PPF varied over space, within a given region, they do not vary much across the five optical wavelengths examined in this work. This means that the potential for crosstalk in the separation of HbO2 and Hb does not seem to vary across space, although we did not explicitly model this factor. The work by Strangman et al.24 examined the effect of cross talk in the separation of HbO2 and Hb in the choice of wavelengths and how this cross-talk is affected by differences in the DPF/PPF values at different wavelengths. Our current work seems consistent with their findings in that we did not see much evidence that the level of cross-talk would be expected to vary much across space or by subject age/sex.

4.3. Guidance for Designing Future Studies

Tables 3 and 4 as well as Tables 515 in the appendix can be used to design future fNIRS studies. Table 3 provides estimates of the relative sensitivities of various brain regions to fNIRS measurements taken from the normalized count of photons able to reach these brain regions. This depended on both the spatial extent and depth of these regions. As a general guidance, based on our own experience, we believe that regions down to about 40dB are fNIRS-accessible based on current instrument sensitivities. For example, the TechEN Inc. (Milford MA) system has an instrument noise floor of about 68 dB.30 Table 3 provides these values for the FreeSurfer anatomical parcellations of the cortex for a source–detector spacing of 30 mm. Tables 515 for Brodmann areas and by sex are also presented in the Appendix. Likewise, Table 4 provides a list of the nearest 10-5 head coordinate point to specific accessible Brodmann areas, which could be used to guide head cap designs for future studies.

4.4. Limitations of this Study

In this study, we used Monte Carlo modeling of the fNIRS forward solution to attempt to quantify the effects of head anatomy in this population of 5- to 11-year-old children. One limitation of this work is that our results depend on the parameters and optical properties that we used in these simulations. In particular, we used bulk optical properties for the skin, skull, CSF, and brain [gray/white] layers, but did not consider any subject or spatial variability in these values. Although both gray and white matters were segmented, the optical properties used for these two layers (Table 2) were the same. In addition, there is considerable variability in these values in the literature.25 Several previous papers have attempted to experimentally quantify these values using time-resolved or frequency-domain fNIRS methods. Duncan et al.31 used frequency-domain fNIRS on 283 subjects (ages 0 to 50 year old) in the frontal–temporal regions and examined the relationship of DPF with subject age. In that work, an equation was derived to predict DPF as a function of subject age. Additional work by Cooper32 examined DPF in neonates and several papers have also examined this in adults.13,14,3336 The work by Scholkmann and Wolf37 provides a review and summary of these methods and offers a generalized model for the DPF in the frontal cortex. In comparison to this previous literature, our results are generally consistent with DPF being between about 4 to 6.5. Of note however, the work by Bonnery et al.14 did suggest some discrepancies between time-resolved experimental fNIRS measurements of DPF and Monte Carlo simulations. Therefore, we caution anyone trying to use the values provided in this work to provide quantitative accuracy. This work is intended as guidance for the design and interpretation of fNIRS studies in school-aged children. For example, we used the same optical absorption and scattering for all simulations, but it is possible that these values might change over age or the values used may offer some bias in the results. This study is not intended to substitute for direct measurements of DPF and optical properties that could be obtained by time-domain or frequency-domain fNIRS techniques. Further experimental work is still needed to verify these results.

A second limitation of this work is that our analysis of DPF and PPF in this study was based on the collection of data from simulated measurements of emitter–detectors spacing from 10 to 40 mm. The MBLL [Eq. (2)] assumes that the pathlength correction is linear with this spacing, however, this is probably not entirely true in regions with thick CSF layers such as the frontal pole. In particular, for short spacings or areas where the brain is deeper, the PPF term would be particularly sensitive to nonlinearities.

Acknowledgments

The authors acknowledge the funding from the National Institutes of Health (No. R01MH107540; Perlman and RO1EB013210; Huppert).

Biography

Biographies for the authors are not available.

Appendix:

Provided below are the tables describing the results of the Monte-Carlo simulations. Tables 514 provide information by either Brodmann area or anatomical region.

Where Table 3 in the text describes the sensitivity, DPF, and PPF of each wavelength by select anatomical regions, Table 5 describes these values for select Brodmann areas. Similarly, where Table 4 in the text describes the nearest 10-5 locations for select Brodmann areas, Table 6 describes these locations for select anatomical regions.

Tables 36 contain our findings for select areas/regions for both sexes and Tables 710 are separated by sex.

Tables 710 are the complete results of our sensitivity, DPF, and PPF findings specifically divided by sex and explained by either Brodmann areas or anatomical regions. Tables 1114 are the complete results of the nearest 10-5 locations divided by sex and explained by either Brodmann areas or anatomical regions.

Finally, Table 15 contains the results of our generalized equation for DPF for each 10-5 location.

Table 5.

Sensitivity, DPF, and PPF of select Brodmann areas (both sexes).

BA Region Sens. DPF (nm)
PPF (nm)
690 780 808 830 850 690 780 808 830 850
BA-1 L prim. somatosensory ctx 42.9 6.11 5.95 5.90 5.89 5.88 2.67 2.75 2.79 2.77 2.84
BA-1 R prim. somatosensory ctx 36.4 6.13 5.91 5.88 5.78 5.78 1.78 1.85 1.86 1.86 1.91
BA-2 L prim. somatosensory ctx 37.1 6.13 5.94 5.90 5.89 5.86 2.62 2.66 2.71 2.66 2.73
BA-2 R prim. somatosensory ctx 35.5 6.11 5.88 5.79 5.76 5.74 1.87 1.90 1.96 1.96 2.08
BA-3 L prim. somatosensory ctx 40.0 6.12 5.95 5.92 5.87 5.85 2.62 2.69 2.70 2.72 2.75
BA-3 R prim. somatosensory ctx 35.0 6.13 5.87 5.83 5.79 5.77 1.96 1.99 2.04 2.01 2.07
BA-4 L prim. motor ctx 40.6 6.14 6.00 5.95 5.88 5.92 2.60 2.66 2.72 2.71 2.74
BA-4 R prim. motor ctx 41.2 6.08 5.83 5.78 5.76 5.73 1.81 1.85 1.87 1.89 1.94
BA-6 L motor and suppl. motor ctx 34.2 6.18 5.99 5.97 5.93 5.91 2.62 2.55 2.59 2.59 2.67
BA-6 R motor and suppl. motor ctx 27.9 6.16 5.93 5.92 5.85 5.85 1.90 1.94 1.94 1.96 2.02
BA-7 L somatosensory assoc. ctx 36.5 6.03 5.80 5.75 5.72 5.68 2.33 2.29 2.35 2.32 2.37
BA-7 R somatosensory assoc. ctx 37.2 6.03 5.78 5.73 5.71 5.69 2.05 2.07 2.07 2.13 2.14
BA-8 L includes frontal eye fields 33.4 6.20 6.04 5.95 5.94 5.93 2.24 2.32 2.33 2.32 2.39
BA-8 R includes frontal eye fields 35.8 6.29 6.07 6.05 6.01 5.96 1.92 2.01 2.02 2.01 2.05
BA-9 L dorsolateral prefrontal ctx 34.5 6.15 5.95 5.93 5.95 5.91 2.43 2.48 2.52 2.49 2.51
BA-9 R dorsolateral prefrontal ctx 39.6 6.31 6.04 5.98 5.93 5.91 1.72 1.74 1.77 1.78 1.78
BA-10 L frontopolar area 30.7 6.04 5.86 5.82 5.76 5.74 1.98 1.91 1.92 1.95 2.04
BA-10 R frontopolar area 30.8 6.22 5.99 5.91 5.85 5.81 1.55 1.56 1.57 1.61 1.59
BA-17 L prim. visual ctx (V1) 39.6 5.99 5.73 5.70 5.64 5.61 1.99 1.93 1.97 1.97 2.05
BA-17 R prim. visual ctx (V1) 41.7 5.97 5.71 5.63 5.58 5.56 1.62 1.66 1.64 1.66 1.70
BA-18 L visual assoc. ctx (V2) 28.7 6.03 5.75 5.70 5.64 5.59 2.15 2.14 2.18 2.19 2.22
BA-18 R visual assoc. ctx (V2) 27.9 5.94 5.66 5.61 5.54 5.51 1.56 1.57 1.59 1.64 1.73
BA-19 L associative visual ctx (V3) 30.3 5.98 5.77 5.72 5.68 5.65 2.43 2.39 2.41 2.42 2.53
BA-19 R associative visual ctx (V3) 31.8 5.93 5.68 5.62 5.59 5.56 2.00 1.96 1.98 2.00 2.10
BA-21 L middle temporal gyrus 37.2 6.08 5.90 5.84 5.81 5.80 2.58 2.64 2.63 2.59 2.58
BA-21 R middle temporal gyrus 34.0 6.01 5.80 5.77 5.73 5.69 1.68 1.61 1.64 1.67 1.76
BA-22 L superior temporal gyrus 38.9 6.09 5.94 5.91 5.89 5.86 2.69 2.72 2.76 2.70 2.74
BA-22 R superior temporal gyrus 36.0 6.07 5.86 5.82 5.79 5.74 1.71 1.73 1.76 1.78 1.78
BA-37 L fusiform gyrus 37.9 5.97 5.76 5.70 5.67 5.63 2.38 2.35 2.40 2.45 2.52
BA-37 R fusiform gyrus 34.3 5.96 5.70 5.64 5.61 5.58 1.74 1.73 1.77 1.83 1.83
BA-39 L angular gyrus 35.7 5.97 5.77 5.73 5.70 5.68 2.25 2.29 2.31 2.36 2.44
BA-39 R angular gyrus 36.5 5.96 5.72 5.65 5.65 5.61 1.86 1.92 1.92 1.98 2.02
BA-40 L supramarginal gyrus 32.9 6.05 5.83 5.81 5.77 5.76 2.51 2.54 2.57 2.58 2.63
BA-40 R supramarginal gyrus 31.0 6.03 5.83 5.79 5.75 5.72 1.72 1.75 1.77 1.82 1.84
BA-43 L subcentral area 37.7 6.15 6.02 5.99 5.97 5.99 2.71 2.75 2.76 2.76 2.83
BA-43 R subcentral area 40.0 6.08 5.86 5.84 5.79 5.76 1.75 1.78 1.82 1.84 1.83
BA-45 L pars triangularis 39.6 6.15 5.98 5.95 5.90 5.91 2.61 2.63 2.65 2.62 2.68
BA-45 R pars triangularis 39.4 6.30 6.07 6.01 5.96 5.93 1.77 1.83 1.81 1.86 1.86
BA-46 L dorsolateral prefrontal ctx 36.4 6.17 5.97 5.94 5.89 5.89 2.48 2.52 2.52 2.48 2.50
BA-46 R dorsolateral prefrontal ctx 36.6 6.29 6.02 5.96 5.94 5.88 1.63 1.64 1.67 1.71 1.77

Note: This table shows the differential (DPF) and PPF for several fNIRS-accessible Brodmann areas in the head. Data have been combined for both male and female subjects. The sensitivity of the region to fNIRS is provided in decibels (dB; 27 10×log10) and indicates the fraction of photons normalized to the incidence power reaching this region from the scalp at a source–detector distance of 30 mm.

Table 6.

Nearest 10-5 location for recording select anatomical regions (both sexes).

Region Depth Position 1 Position 2 Position 3
Med (min to max) Name Depth Name Depth Name Depth
L caudal middle frontal 20.33 (11.99 to 26.63) FC3h 19.50 FCC3h 21.01 FC3 25.10
R caudal middle frontal 20.46 (11.36 to 25.70) FC2 20.20 FCC2 20.43 FC4h 22.09
L frontal pole 14.70 (10.80 to 21.25) AFp1 14.68 AFp3h 14.73 Fp1h 16.59
R frontal pole 15.34 (12.08 to 22.68) AFp4h 15.30 AFp2h 15.80 Fp2h 16.95
L inferior parietal 18.20 (13.25 to 22.86) CPP3h 17.98 CPP3 20.18 CPP5h 23.19
R inferior parietal 17.93 (13.18 to 23.42) CP4h 19.01 CPP4 19.76 CP4 20.03
L inferior temporal 20.05 (15.60 to 28.07) CP5 18.81 CPP5 19.88 TP7h 21.93
R inferior temporal 19.70 (13.89 to 27.26) CPP6 18.68 CP6 18.78 T8h 26.15
L lateral occipital 14.15 (11.12 to 21.28) PPO5h 15.33 PPO3 16.59 P5h 18.59
R lateral occipital 14.09 (11.54 to 21.02) PPO4h 16.03 PPO4 16.07 P6h 17.84
L middle temporal 16.19 (12.21 to 21.67) CP5 15.68 C5 20.58 CCP5 20.67
R middle temporal 16.27 (9.52 to 21.80) CCP6 18.15 C6 19.15 FTT8h 22.78
L pars orbitalis 18.15 (13.52 to 29.05) F5 18.28 FFC5 19.73 FC5 20.81
R pars orbitalis 17.86 (13.32 to 28.56) F6h 17.99 F6 18.67 FFC6 19.17
L pars triangularis 17.64 (13.52 to 24.87) FFC5 18.56 FC5h 18.59 FFC5h 21.27
R pars triangularis 17.11 (10.76 to 26.09) FC6h 17.82 FFC4 19.32 FFC6h 20.21
L postcentral 18.22 (10.85 to 26.28) C3 18.75 C3h 19.41 C5h 20.42
R postcentral 18.11 (11.33 to 24.70) C4 17.97 C4h 19.76 C2 21.15
L precentral 20.46 (11.63 to 26.01) FCC5h 20.29 FCC3 20.41 C1 22.97
R precentral 20.27 (12.58 to 26.21) FCC4 19.37 FCC4h 20.50 C2 23.69
L rostral middle frontal 16.29 (11.35 to 21.98) FFC3 18.19 FFC3h 18.84 F3h 19.07
R rostral middle frontal 17.21 (11.97 to 22.37) FFC4 19.11 FC4 19.37 FFC4h 19.56
L superior frontal 20.57 (10.86 to 27.77) FFC1h 19.70 FC1h 21.96 FCC1h 23.38
R superior frontal 21.69 (12.48 to 27.22) FFC2h 21.41 FC2h 22.46 FCC2h 22.80
L superior parietal 20.97 (16.07 to 28.94) CP1 22.01 CCP1 22.59 CPP1 22.68
R superior parietal 20.93 (16.19 to 27.98) CP2h 20.94 CP2 23.51 CCP2 24.15
L superior temporal 22.43 (18.26 to 27.88) FCC5 23.85 C5 23.96 CCP5h 24.42
R superior temporal 22.26 (13.63 to 28.74) CCP6h 22.24 FCC6 23.81 C6 25.09

Note: This table provides the depth (median and range) of selected FreeSurfer anatomical regions. Data have been combined for both male and female subjects. For each region, the nearest three 10-5 coordinate positions and the depth of the region to this position is provided as guidance for the placement of fNIRS sensors.

Table 7.

Sensitivity, DPF, PPF of Brodmann areas (females).

BA Region Sens. DPF (nm) PPF (nm)
690 780 808 830 850 690 780 808 830 850
BA-1 L prim. somatosensory ctx 44.1 6.06 5.91 5.88 5.87 5.82 2.49 2.52 2.54 2.55 2.66
BA-1 R prim. somatosensory ctx 36.2 6.08 5.90 5.79 5.78 5.78 1.63 1.73 1.71 1.76 1.81
BA-2 L prim. somatosensory ctx 36.4 6.10 5.93 5.88 5.87 5.85 2.42 2.49 2.48 2.52 2.60
BA-2 R prim. somatosensory ctx 34.7 6.05 5.84 5.80 5.77 5.81 1.82 1.88 1.95 1.95 2.03
BA-3 L prim. somatosensory ctx 43.1 6.11 5.91 5.89 5.82 5.82 2.40 2.45 2.41 2.47 2.59
BA-3 R prim. somatosensory ctx 36.3 6.13 5.85 5.84 5.79 5.80 1.90 1.92 1.99 1.97 2.03
BA-4 L prim. motor ctx 41.4 6.10 5.90 5.87 5.84 5.81 2.40 2.49 2.44 2.52 2.61
BA-4 R prim. motor ctx 41.3 5.98 5.79 5.76 5.75 5.75 1.72 1.77 1.81 1.85 1.86
BA-5 L somatosensory assoc. ctx 44.7 6.08 5.84 5.78 5.76 5.73 2.00 2.03 2.12 2.13 2.20
BA-5 R somatosensory assoc. ctx 44.9 6.06 5.80 5.76 5.73 5.74 1.86 1.94 1.90 2.02 2.11
BA-6 L motor and suppl. motor ctx 35.3 6.18 5.97 5.96 5.93 5.88 2.21 2.43 2.44 2.46 2.52
BA-6 R motor and suppl. motor ctx 27.2 6.21 5.97 5.91 5.87 5.88 1.75 1.84 1.86 1.88 1.94
BA-7 L somatosensory assoc. ctx 37.5 5.96 5.73 5.70 5.64 5.60 2.13 2.13 2.15 2.19 2.23
BA-7 R somatosensory assoc. ctx 37.3 6.02 5.73 5.67 5.63 5.60 1.86 2.00 1.96 2.07 2.12
BA-8 L includes frontal eye fields 34.0 6.18 5.98 5.94 5.90 5.91 1.93 2.03 2.04 2.09 2.16
BA-8 R includes frontal eye fields 35.7 6.35 6.09 6.06 6.02 5.96 1.64 1.68 1.70 1.74 1.73
BA-9 L dorsolateral prefrontal ctx 34.1 6.08 5.88 5.88 5.82 5.86 2.40 2.36 2.43 2.38 2.47
BA-9 R dorsolateral prefrontal ctx 39.5 6.35 6.03 5.98 5.93 5.91 1.46 1.57 1.57 1.60 1.65
BA–10 L frontopolar area 31.4 6.00 5.85 5.74 5.73 5.70 1.65 1.70 1.71 1.75 1.78
BA–10 R frontopolar area 31.1 6.21 6.00 5.92 5.85 5.82 1.34 1.41 1.41 1.40 1.39
BA–11 L orbitofrontal area 58.3 6.02 5.79 5.75 5.70 5.65 1.64 1.63 1.66 1.69 1.70
BA–11 R orbitofrontal area 46.0 6.26 5.93 5.87 5.87 5.81 1.19 1.18 1.18 1.21 1.24
BA–17 L prim. visual ctx (V1) 38.0 6.01 5.71 5.63 5.59 5.51 1.50 1.57 1.58 1.62 1.70
BA–17 R prim. visual ctx (V1) 41.4 6.00 5.67 5.60 5.52 5.49 1.22 1.25 1.27 1.33 1.37
BA–18 L visual assoc. ctx (V2) 28.0 6.03 5.70 5.65 5.60 5.55 1.61 1.66 1.67 1.73 1.90
BA–18 R visual assoc. ctx (V2) 28.6 5.96 5.68 5.62 5.52 5.48 1.18 1.23 1.25 1.28 1.36
BA–19 L associative visual ctx (V3) 32.6 6.02 5.76 5.68 5.63 5.60 1.89 1.94 2.00 2.04 2.15
BA–19 R associative visual ctx (V3) 31.4 5.94 5.65 5.59 5.58 5.54 1.68 1.71 1.72 1.75 1.79
BA–20 L inferior temporal gyrus 49.6 6.02 5.90 5.86 5.82 5.84 2.39 2.51 2.53 2.53 2.56
BA–20 R inferior temporal gyrus 43.0 6.00 5.75 5.72 5.66 5.64 1.80 1.76 1.77 1.71 1.81
BA–21 L middle temporal gyrus 36.2 6.06 5.89 5.84 5.78 5.78 2.54 2.61 2.58 2.55 2.56
BA–21 R middle temporal gyrus 31.0 6.02 5.82 5.82 5.77 5.72 1.82 1.82 1.80 1.67 1.86
BA-22 L superior temporal gyrus 39.1 6.09 5.90 5.85 5.85 5.82 2.32 2.39 2.40 2.39 2.47
BA-22 R superior temporal gyrus 36.7 6.12 5.88 5.83 5.78 5.74 1.73 1.74 1.77 1.77 1.85
BA-23 L ventral post. cingulate ctx 85.5 6.06 5.90 5.83 5.83 5.78 2.10 2.20 2.27 2.36 2.36
BA-23 R ventral post. cingulate ctx 80.0 6.10 5.90 5.84 5.80 5.82 1.66 1.79 1.88 2.03 2.21
BA-24 L ventral ant. cingulate ctx 74.1 6.21 6.01 5.93 5.92 5.87 2.44 2.52 2.61 2.58 2.65
BA-24 R ventral ant. cingulate ctx 68.6 6.15 5.95 5.86 5.84 5.80 1.82 1.88 1.88 1.91 2.00
BA-25 L subgenual ctx 78.8 6.07 5.89 5.80 5.82 5.79 1.62 1.73 1.71 1.77 1.92
BA–25 R subgenual ctx 67.3 6.20 6.00 5.91 5.90 5.83 1.45 1.41 1.41 1.49 1.56
BA-28 L post. entorhinal ctx 88.0 6.17 5.98 5.89 5.86 5.86 2.35 2.43 2.43 2.40 2.53
BA-28 R post. entorhinal ctx 84.3 6.08 5.83 5.82 5.73 5.71 1.54 1.55 1.56 1.52 1.52
BA-29 L retrosplenial cingular ctx 78.9 5.96 5.74 5.66 5.64 5.59 1.87 1.92 1.96 1.96 2.12
BA-29 R retrosplenial cingular ctx 81.3 5.96 5.72 5.68 5.62 5.60 1.83 1.93 1.90 1.98 2.03
BA-30 L part of cingular ctx 69.7 6.01 5.73 5.70 5.63 5.59 1.80 1.86 1.86 1.90 1.97
BA-30 R part of cingular ctx 71.4 5.91 5.61 5.59 5.54 5.52 1.58 1.66 1.62 1.66 1.67
BA-33 L part of ant. cingulate gyrus 70.9 6.18 6.00 5.97 5.92 5.90 2.12 2.20 2.20 2.23 2.33
BA-33 R part of ant. cingulate gyrus 64.8 6.28 6.07 5.99 5.95 5.97 1.64 1.71 1.73 1.75 1.79
BA-34 L ant. entorhinal ctx 89.6 6.17 5.98 5.90 5.82 5.83 2.36 2.42 2.40 2.41 2.42
BA-34 R ant. entorhinal ctx 87.0 6.09 5.79 5.74 5.68 5.69 1.52 1.51 1.56 1.49 1.42
BA-35 L perirhinal ctx 90.0 6.04 5.83 5.79 5.78 5.74 2.22 2.31 2.32 2.27 2.32
BA-35 R perirhinal ctx 83.8 5.99 5.76 5.72 5.69 5.68 1.55 1.52 1.53 1.52 1.60
BA-36 L parahippocampal ctx 73.5 6.03 5.86 5.82 5.78 5.75 2.32 2.36 2.38 2.37 2.40
BA-36 R parahippocampal ctx 62.5 6.04 5.80 5.73 5.72 5.71 1.65 1.66 1.68 1.61 1.69
BA-37 L fusiform gyrus 37.4 5.99 5.79 5.76 5.75 5.69 2.22 2.27 2.23 2.27 2.39
BA-37 R fusiform gyrus 33.4 5.91 5.66 5.61 5.60 5.50 1.55 1.58 1.59 1.62 1.64
BA-38 L temporopolar area 58.3 6.19 6.02 5.93 5.89 5.90 2.29 2.39 2.40 2.37 2.44
BA-38 R temporopolar area 53.0 6.13 5.86 5.86 5.77 5.74 1.52 1.50 1.50 1.47 1.54
BA-39 L angular gyrus 36.4 5.97 5.73 5.66 5.67 5.60 2.09 2.06 2.07 2.14 2.20
BA-39 R angular gyrus 35.3 5.95 5.72 5.65 5.66 5.61 1.69 1.81 1.81 1.86 1.96
BA-40 L supramarginal gyrus 32.5 6.03 5.82 5.78 5.75 5.74 2.25 2.31 2.35 2.30 2.40
BA-40 R supramarginal gyrus 30.6 6.04 5.84 5.79 5.76 5.73 1.62 1.71 1.72 1.75 1.83
BA-42 L prim. and auditory assoc. ctx 47.9 6.04 5.87 5.83 5.82 5.82 2.60 2.71 2.71 2.70 2.67
BA-42 R prim. and auditory assoc. ctx 41.0 6.08 5.82 5.77 5.69 5.67 1.52 1.61 1.55 1.61 1.64
BA-43 L subcentral area 37.7 6.15 5.90 5.94 5.87 5.89 2.49 2.54 2.61 2.55 2.58
BA-43 R subcentral area 38.6 6.11 5.86 5.85 5.77 5.76 1.71 1.78 1.82 1.83 1.83
BA-44 L pars opercularis 42.4 6.19 6.05 6.01 6.00 5.96 2.38 2.51 2.55 2.41 2.58
BA-44 R pars opercularis 43.5 6.23 6.04 5.97 5.96 5.85 1.61 1.53 1.57 1.74 1.71
BA-45 L pars triangularis 39.2 6.14 5.97 5.97 5.90 5.89 2.41 2.54 2.59 2.49 2.57
BA-45 R pars triangularis 39.4 6.33 6.13 6.04 5.99 5.91 1.89 1.91 1.86 1.93 1.96
BA-46 L dorsolateral prefrontal ctx 36.2 6.12 5.87 5.83 5.79 5.79 2.29 2.34 2.37 2.40 2.42
BA-46 R dorsolateral prefrontal ctx 35.8 6.35 6.11 5.99 5.96 5.87 1.41 1.45 1.47 1.52 1.57
BA-47 L inferior prefrontal gyrus 44.9 6.11 5.89 5.84 5.80 5.81 2.30 2.35 2.38 2.38 2.44
BA-47 R inferior prefrontal gyrus 49.1 6.26 6.01 5.94 5.87 5.91 1.51 1.51 1.52 1.53 1.59

Note: This table shows the DPF and PPF for several fNIRS-accessible Brodmann areas in the head in female subjects. The sensitivity of the region to fNIRS is provided in decibels (dB; 10×log10) and indicates the fraction of photons normalized to the incidence power reaching this region from the scalp at a source–detector distance of 30 mm.

Table 8.

Sensitivity, DPF, PPF of Brodmann areas (males).

BA Region Sens. DPF (nm) PPF (nm)
690 780 808 830 850 690 780 808 830 850
BA-1 L prim. somatosensory ctx 41.6 6.18 6.03 5.95 5.93 5.91 2.73 2.81 2.82 2.79 2.85
BA-1 R prim. somatosensory ctx 36.6 6.15 5.93 5.89 5.79 5.80 2.15 2.14 2.08 2.19 2.23
BA-2 L prim. somatosensory ctx 38.0 6.16 5.97 5.91 5.92 5.86 2.70 2.76 2.78 2.80 2.80
BA-2 R prim. somatosensory ctx 36.5 6.14 5.88 5.79 5.75 5.74 2.13 2.15 2.10 2.18 2.20
BA-3 L prim. somatosensory ctx 39.1 6.13 6.01 5.99 5.98 5.93 2.74 2.80 2.84 2.80 2.82
BA-3 R prim. somatosensory ctx 34.5 6.13 5.89 5.83 5.78 5.76 2.14 2.19 2.21 2.19 2.23
BA4 L prim. motor ctx 39.8 6.15 6.05 6.04 6.03 6.00 2.71 2.78 2.83 2.75 2.85
BA-4 R prim. motor ctx 40.9 6.09 5.85 5.81 5.76 5.73 2.21 2.24 2.23 2.18 2.24
BA-5 L somatosensory assoc. ctx 39.8 6.07 5.88 5.89 5.85 5.85 2.63 2.66 2.70 2.68 2.71
BA-5 R somatosensory assoc. ctx 44.8 6.10 5.87 5.84 5.79 5.78 2.08 2.16 2.15 2.17 2.19
BA-6 L motor and suppl. motor ctx 32.1 6.18 6.03 6.01 5.99 5.96 2.71 2.79 2.79 2.82 2.80
BA-6 R motor and suppl.motor ctx 28.9 6.15 5.92 5.92 5.84 5.81 2.11 2.14 2.17 2.18 2.18
BA-7 L somatosensory assoc. ctx 35.4 6.06 5.91 5.85 5.82 5.80 2.66 2.71 2.72 2.73 2.77
BA-7 R somatosensory assoc. ctx 36.9 6.08 5.86 5.80 5.75 5.74 2.16 2.21 2.23 2.18 2.20
BA-8 L includes frontal eye fields 34.4 6.22 6.09 6.00 5.99 5.95 2.56 2.65 2.61 2.53 2.56
BA-8 R includes frontal eye fields 35.9 6.26 6.07 6.05 5.97 5.97 2.10 2.08 2.06 2.09 2.14
BA-9 L dorsolateral prefrontal ctx 34.8 6.21 6.06 6.01 6.00 5.98 2.64 2.58 2.58 2.53 2.58
BA-9 R dorsolateral prefrontal ctx 36.3 6.29 6.04 5.97 5.94 5.90 1.97 1.96 2.01 1.95 2.02
BA-10 L frontopolar area 30.0 6.06 5.88 5.87 5.84 5.84 2.18 2.19 2.23 2.19 2.23
BA-10 R frontopolar area 30.5 6.23 5.95 5.89 5.84 5.79 1.61 1.61 1.62 1.63 1.63
BA-11 L orbitofrontal area 49.2 6.10 5.88 5.86 5.80 5.75 1.91 1.94 1.90 1.84 1.85
BA-11 R orbitofrontal area 48.5 6.24 5.98 5.93 5.91 5.84 1.32 1.31 1.32 1.38 1.39
BA-17 L prim. visual ctx (V1) 38.9 5.98 5.75 5.78 5.77 5.72 2.42 2.41 2.40 2.38 2.42
BA-17 R prim. visual ctx (V1) 40.2 5.96 5.72 5.68 5.63 5.60 2.15 2.11 2.08 2.01 2.03
BA-18 L visual assoc. ctx (V2) 28.7 6.02 5.81 5.79 5.73 5.71 2.57 2.54 2.57 2.50 2.53
BA-18 R visual assoc. ctx (V2) 28.0 5.93 5.63 5.61 5.54 5.51 2.09 2.14 2.16 2.15 2.18
BA-19 L associative visual ctx (V3) 30.1 5.97 5.79 5.75 5.72 5.70 2.67 2.66 2.70 2.74 2.74
BA-19 R associative visual ctx (V3) 31.2 5.92 5.68 5.64 5.63 5.59 2.25 2.30 2.28 2.33 2.36
BA-20 L inferior temporal gyrus 45.0 6.09 5.92 5.90 5.84 5.88 2.76 2.78 2.81 2.79 2.80
BA-20 R inferior temporal gyrus 50.4 5.99 5.78 5.71 5.66 5.65 1.82 1.86 1.86 1.88 1.88
BA-21 L middle temporal gyrus 36.7 6.08 5.90 5.88 5.84 5.81 2.62 2.68 2.75 2.63 2.63
BA-21 R middle temporal gyrus 36.5 6.00 5.76 5.73 5.68 5.63 1.58 1.61 1.60 1.67 1.64
BA-22 L superior temporal gyrus 38.6 6.09 5.99 5.94 5.90 5.90 2.73 2.78 2.80 2.84 2.87
BA-22 R superior temporal gyrus 36.1 6.06 5.86 5.79 5.80 5.75 1.70 1.73 1.76 1.78 1.75
BA-23 L ventral post. cingulate ctx 86.4 6.12 5.96 5.97 5.91 5.89 2.46 2.38 2.52 2.38 2.38
BA-23 R ventral post. cingulate ctx 81.6 5.97 5.85 5.78 5.79 5.75 1.97 1.97 1.97 2.01 2.01
BA-24 L ventral ant. cingulate ctx 74.9 6.18 5.98 5.89 5.94 5.87 2.52 2.51 2.57 2.51 2.56
BA-24 R ventral ant. cingulate ctx 75.4 6.05 5.85 5.81 5.79 5.82 2.05 2.03 2.09 2.14 2.14
BA-25 L subgenual ctx 77.0 6.20 5.98 5.94 5.91 5.87 2.03 2.09 2.07 2.07 2.10
BA-25 R subgenual ctx 64.1 6.25 6.01 5.95 5.93 5.90 2.06 2.08 2.11 2.15 2.15
BA-28 L post. entorhinal CTx 85.4 6.22 6.07 6.02 6.00 5.98 2.81 2.93 3.04 2.94 2.94
BA-28 R post. entorhinal ctx 86.1 6.02 5.76 5.76 5.70 5.71 1.90 1.89 1.87 2.01 1.98
BA-29 L retrosplenial cingular ctx 79.4 6.02 5.82 5.79 5.75 5.71 2.67 2.66 2.66 2.63 2.63
BA-29 R retrosplenial cingular ctx 81.2 6.00 5.83 5.78 5.74 5.77 2.46 2.42 2.42 2.40 2.42
BA-30 L part of cingular ctx 70.0 6.00 5.84 5.77 5.73 5.70 2.79 2.78 2.81 2.86 2.83
BA-30 R part of cingular ctx 70.5 5.93 5.64 5.60 5.55 5.52 2.16 2.11 2.14 2.24 2.25
BA-33 L part of ant. cingulate gyrus 72.5 6.25 6.06 6.06 6.00 5.97 2.54 2.55 2.64 2.59 2.57
BA-33 R part of ant. cingulate gyrus 62.3 6.22 6.06 6.05 6.02 5.99 2.08 2.12 2.12 2.09 2.10
BA-34 L ant. entorhinal ctx 90.4 6.12 6.06 5.98 5.95 5.91 2.66 2.73 2.78 2.80 2.76
BA-34 R ant. entorhinal ctx 87.6 6.10 5.81 5.77 5.74 5.72 2.04 2.03 2.00 2.06 2.08
BA-35 L perirhinal ctx 90.6 6.02 5.84 5.80 5.76 5.76 2.58 2.64 2.67 2.62 2.67
BA-35 R perirhinal ctx 86.6 6.00 5.78 5.72 5.69 5.67 1.64 1.58 1.59 1.66 1.67
BA-36 L parahippocampal ctx 76.5 6.06 5.86 5.82 5.81 5.79 2.65 2.74 2.75 2.68 2.70
BA-36 R parahippocampal ctx 67.6 5.96 5.74 5.71 5.67 5.64 1.70 1.73 1.71 1.71 1.73
BA-37 L fusiform gyrus 37.3 5.93 5.76 5.69 5.61 5.61 2.41 2.43 2.45 2.51 2.52
BA-37 R fusiform gyrus 35.2 5.99 5.73 5.71 5.66 5.61 1.83 1.91 1.93 1.95 2.00
BA-38 L temporopolar area 55.9 6.22 6.00 5.99 5.99 5.91 2.69 2.80 2.85 2.86 2.86
BA-38 R temporopolar area 52.8 6.08 5.91 5.88 5.81 5.77 1.84 1.88 1.86 1.93 1.92
BA-39 L angular gyrus 35.2 5.96 5.80 5.79 5.75 5.72 2.58 2.63 2.68 2.65 2.70
BA-39 R angular gyrus 34.7 5.98 5.72 5.64 5.63 5.59 2.01 2.06 2.04 2.09 2.06
BA-40 L supramarginal gyrus 33.4 6.05 5.88 5.84 5.84 5.85 2.69 2.68 2.72 2.80 2.77
BA-40 R supramarginal gyrus 31.5 6.02 5.82 5.75 5.73 5.71 1.79 1.78 1.79 1.87 1.90
BA-42 L prim. and auditory assoc. ctx 45.2 6.03 5.92 5.89 5.89 5.82 2.75 2.80 2.78 2.86 2.83
BA-42 R prim. and auditory assoc. ctx 38.5 6.05 5.82 5.79 5.83 5.77 1.75 1.81 1.80 1.91 1.79
BA-43 L subcentral area 37.6 6.13 6.07 6.00 6.07 6.00 2.95 2.99 2.98 3.09 3.06
BA-43 R subcentral area 41.2 6.04 5.80 5.82 5.84 5.74 1.78 1.80 1.86 1.86 1.86
BA-44 L pars opercularis 43.7 6.14 6.07 5.98 6.00 5.99 2.81 2.83 2.85 2.90 2.93
BA-44 R pars opercularis 44.0 6.20 5.95 5.92 5.85 5.83 1.65 1.65 1.68 1.69 1.73
BA-45 L pars triangularis 40.3 6.15 6.00 5.94 5.91 5.93 2.67 2.75 2.75 2.74 2.76
BA-45 R pars triangularis 39.5 6.27 6.01 5.97 5.92 5.94 1.72 1.66 1.80 1.77 1.76
BA-46 L dorsolateral prefrontal ctx 36.4 6.20 6.04 5.99 5.92 5.93 2.62 2.68 2.68 2.66 2.69
BA-46 R dorsolateral prefrontal ctx 37.4 6.27 6.00 5.95 5.94 5.89 1.72 1.76 1.75 1.78 1.83
BA-47 L inferior prefrontal gyrus 48.6 6.12 5.97 5.89 5.88 5.86 2.47 2.50 2.58 2.57 2.57
BA-47 R inferior prefrontal gyrus 47.4 6.30 6.00 5.96 5.92 5.88 1.91 1.95 1.99 2.01 2.02

Note: This table shows the DPF and PPF for several fNIRS-accessible Brodmann areas in the head in male subjects. The sensitivity of the region to fNIRS is provided in decibels (dB; 10×log10) and indicates the fraction of photons normalized to the incidence power reaching this region from the scalp at a source–detector distance of 30 mm.

Table 9.

Sensitivity, DPF, PPF of anatomical regions (females).

Region Sens. DPF (nm) PPF (nm)
690 780 808 830 850 690 780 808 830 850
L banks of the superior temporal sulcus 46.4 5.97 5.76 5.66 5.66 5.65 2.26 2.28 2.30 2.26 2.37
R banks of the superior temporal sulcus 45.8 6.03 5.69 5.75 5.69 5.65 1.62 1.61 1.55 1.65 1.76
L caudal anterior cingulate 79.0 6.18 6.00 5.94 5.92 5.88 2.12 2.18 2.21 2.21 2.43
R caudal anterior cingulate 78.8 6.17 6.05 5.99 5.95 5.92 1.83 1.94 1.97 2.03 2.22
L caudal middle frontal 37.3 6.14 5.94 5.91 5.92 5.90 2.40 2.44 2.49 2.48 2.54
R caudal middle frontal 38.0 6.21 6.03 5.97 5.93 5.93 1.89 1.93 1.93 1.97 1.99
L cuneus 52.7 5.98 5.71 5.60 5.55 5.52 1.59 1.80 1.81 2.00 2.00
R cuneus 48.7 5.95 5.67 5.62 5.55 5.58 1.43 1.48 1.45 1.51 1.50
L entorhinal 90.5 6.05 5.95 5.88 5.85 5.83 2.23 2.38 2.31 2.39 2.40
R entorhinal 89.9 6.02 5.79 5.78 5.65 5.61 1.54 1.53 1.54 1.54 1.57
L frontal pole 38.5 5.97 5.70 5.68 5.61 5.56 1.38 1.38 1.36 1.42 1.65
R frontal pole 40.1 6.23 5.89 5.81 5.79 5.72 1.18 1.13 1.12 1.19 1.21
L fusiform 55.6 6.04 5.84 5.76 5.73 5.69 2.27 2.34 2.32 2.35 2.37
R fusiform 59.8 6.01 5.77 5.72 5.70 5.65 1.58 1.60 1.59 1.60 1.63
L inferior parietal 29.8 5.98 5.73 5.69 5.67 5.60 2.01 2.01 2.02 2.08 2.20
R inferior parietal 30.7 5.96 5.75 5.66 5.65 5.59 1.62 1.77 1.76 1.81 1.96
L inferior temporal 35.1 6.03 5.85 5.80 5.79 5.74 2.30 2.43 2.42 2.39 2.46
R inferior temporal 34.6 6.03 5.73 5.68 5.65 5.57 1.56 1.56 1.55 1.53 1.61
L insula 62.0 6.15 5.98 5.94 5.91 5.91 2.47 2.55 2.59 2.57 2.61
R insula 61.1 6.19 5.91 5.91 5.80 5.76 1.63 1.62 1.61 1.66 1.72
L isthmus cingulate 88.0 5.96 5.77 5.73 5.65 5.60 2.04 2.07 2.06 2.09 2.16
R isthmus cingulate 90.1 5.96 5.69 5.65 5.63 5.56 1.89 1.91 1.93 1.94 1.94
L lateral occipital 27.7 6.02 5.74 5.69 5.64 5.61 1.79 1.84 1.85 1.84 1.92
R lateral occipital 27.9 5.97 5.67 5.59 5.54 5.51 1.25 1.31 1.33 1.37 1.40
L lateral orbitofrontal 64.1 6.01 5.83 5.82 5.76 5.70 2.03 2.07 2.15 2.11 2.15
R lateral orbitofrontal 62.8 6.27 5.93 5.90 5.85 5.84 1.30 1.24 1.25 1.30 1.35
L lingual 57.6 6.06 5.76 5.70 5.64 5.61 1.67 1.70 1.70 1.75 1.90
R lingual 71.8 5.97 5.62 5.59 5.52 5.47 1.24 1.31 1.29 1.38 1.51
L medial orbitofrontal 64.2 5.96 5.73 5.67 5.63 5.60 1.49 1.43 1.44 1.53 1.55
R medial orbitofrontal 61.5 6.21 5.93 5.88 5.78 5.74 1.13 1.11 1.10 1.10 1.23
L middle temporal 28.9 6.04 5.86 5.83 5.81 5.77 2.38 2.38 2.38 2.39 2.46
R middle temporal 26.9 6.04 5.77 5.71 5.68 5.66 1.68 1.71 1.70 1.65 1.73
L paracentral 53.3 6.06 5.88 5.89 5.83 5.80 2.35 2.35 2.39 2.47 2.51
R paracentral 50.7 6.08 5.86 5.82 5.77 5.78 1.91 1.99 2.03 2.15 2.24
L parahippocampal 85.4 6.02 5.83 5.77 5.73 5.74 2.22 2.32 2.26 2.38 2.47
R parahippocampal 84.3 6.01 5.76 5.70 5.68 5.70 1.56 1.55 1.57 1.53 1.57
L pars opercularis 42.8 6.12 5.97 5.94 5.90 5.89 2.42 2.56 2.59 2.53 2.61
R pars opercularis 44.4 6.34 6.12 6.02 6.00 5.91 1.67 1.74 1.70 1.75 1.79
L pars orbitalis 42.4 6.06 5.86 5.91 5.79 5.82 2.45 2.49 2.54 2.51 2.59
R pars orbitalis 40.1 6.31 5.97 5.94 5.91 5.86 1.37 1.36 1.34 1.39 1.40
L pars triangularis 36.9 6.17 5.97 5.93 5.85 5.89 2.36 2.43 2.47 2.46 2.50
R pars triangularis 36.1 6.32 6.13 6.07 6.00 5.97 1.68 1.67 1.65 1.70 1.81
L pericalcarine 45.5 6.00 5.71 5.66 5.62 5.57 1.83 1.89 1.86 1.94 1.96
R pericalcarine 47.0 5.97 5.69 5.65 5.57 5.57 1.46 1.49 1.52 1.56 1.58
L postcentral 30.8 6.10 5.90 5.89 5.84 5.83 2.29 2.37 2.37 2.34 2.42
R postcentral 29.7 6.04 5.85 5.84 5.78 5.76 1.69 1.83 1.83 1.84 1.86
L posterior cingulate 80.6 6.15 5.94 5.96 5.92 5.88 2.39 2.40 2.39 2.53 2.69
R posterior cingulate 80.1 6.14 5.92 5.86 5.85 5.84 2.07 2.21 2.21 2.19 2.27
L precentral 33.9 6.11 5.96 5.93 5.88 5.86 2.33 2.46 2.46 2.38 2.50
R precentral 31.9 6.12 5.91 5.85 5.81 5.78 1.68 1.85 1.84 1.87 1.95
L precuneus 58.6 5.96 5.72 5.68 5.61 5.57 1.91 1.93 1.96 1.97 1.97
R precuneus 55.9 5.94 5.67 5.61 5.58 5.56 1.79 1.85 1.86 1.89 1.93
L rostral anterior cingulate 71.1 5.99 5.81 5.74 5.67 5.62 1.54 1.57 1.60 1.60 1.81
R rostral anterior cingulate 75.1 6.18 5.87 5.79 5.75 5.68 1.44 1.37 1.38 1.48 1.55
L rostral middle frontal 31.6 6.08 5.88 5.80 5.77 5.78 2.00 2.00 2.06 2.02 2.13
R rostral middle frontal 32.4 6.33 6.06 5.97 5.93 5.89 1.42 1.50 1.54 1.55 1.55
L superior frontal 33.0 6.16 5.96 5.89 5.87 5.85 2.02 2.10 2.09 2.11 2.17
R superior frontal 34.2 6.20 6.00 5.95 5.94 5.86 1.79 1.84 1.87 1.90 1.99
L superior parietal 37.8 5.97 5.76 5.70 5.65 5.63 2.04 2.13 2.09 2.11 2.17
R superior parietal 34.6 6.01 5.73 5.69 5.66 5.61 1.81 1.85 1.87 1.88 1.96
L superior temporal 41.5 6.09 5.91 5.87 5.84 5.83 2.42 2.51 2.51 2.52 2.56
R superior temporal 32.8 6.08 5.86 5.84 5.76 5.75 1.64 1.67 1.66 1.67 1.73
L supramarginal 33.8 5.98 5.81 5.74 5.71 5.69 2.18 2.22 2.21 2.25 2.28
R supramarginal 32.0 6.07 5.87 5.83 5.79 5.74 1.59 1.66 1.66 1.73 1.86
L temporal pole 73.1 6.13 5.93 5.89 5.81 5.86 2.27 2.40 2.37 2.34 2.33
R temporal pole 74.0 6.12 5.79 5.83 5.68 5.64 1.72 1.74 1.73 1.78 1.78
L transverse temporal 64.9 6.08 5.91 5.86 5.83 5.84 2.76 2.71 2.71 2.84 2.80
R transverse temporal 55.0 6.08 5.83 5.81 5.71 5.70 1.72 1.71 1.72 1.78 1.85

Note: This table shows the DPF and PPF for several fNIRS-accessible anatomical regions in the head in female subjects. The sensitivity of the region to fNIRS is provided in decibels (dB; 10×log10) and indicates the fraction of photons normalized to the incidence power reaching this region from the scalp at a source–detector distance of 30 mm.

Table 10.

Sensitivity, DPF, PPF of anatomical regions (males).

Region Sens. DPF (nm) PPF (nm)
690 780 808 830 850 690 780 808 830 850
L banks of the superior temporal sulcus 42.7 5.96 5.76 5.73 5.72 5.72 2.31 2.37 2.39 2.48 2.51
R banks of the superior temporal sulcus 46.2 6.05 5.74 5.70 5.69 5.61 1.74 1.78 1.80 1.78 1.81
L caudal anterior cingulate 80.1 6.26 6.04 5.99 5.96 5.90 2.52 2.52 2.53 2.47 2.50
R caudal anterior cingulate 80.4 6.24 6.03 6.05 6.01 5.97 2.14 2.10 2.16 2.12 2.16
L caudal middle frontal 36.3 6.17 5.99 5.97 5.98 5.97 2.80 2.86 2.89 2.80 2.83
R caudal middle frontal 37.4 6.22 6.05 5.97 5.95 5.88 2.06 2.06 2.05 2.11 2.17
L cuneus 53.3 5.97 5.77 5.70 5.68 5.65 2.60 2.64 2.67 2.59 2.66
R cuneus 47.4 5.89 5.73 5.65 5.59 5.55 2.21 2.12 2.16 2.02 2.03
L entorhinal 90.5 6.16 5.99 5.96 5.91 5.92 2.68 2.80 2.80 2.80 2.81
R entorhinal 91.5 6.03 5.78 5.76 5.75 5.73 2.10 2.12 2.02 2.24 2.23
L frontal pole 38.8 6.10 5.84 5.81 5.71 5.67 1.77 1.81 1.80 1.87 1.87
R frontal pole 40.5 6.19 5.96 5.85 5.86 5.78 1.58 1.61 1.59 1.65 1.65
L fusiform 51.4 6.03 5.80 5.79 5.75 5.75 2.62 2.64 2.65 2.68 2.72
R fusiform 56.7 6.03 5.78 5.75 5.67 5.68 1.79 1.83 1.83 1.82 1.85
L inferior parietal 29.6 5.98 5.79 5.77 5.73 5.70 2.61 2.60 2.61 2.65 2.65
R inferior parietal 32.1 6.01 5.73 5.67 5.66 5.60 1.99 2.03 2.01 2.08 2.09
L inferior temporal 37.7 6.05 5.86 5.78 5.76 5.75 2.56 2.44 2.46 2.48 2.49
R inferior temporal 35.1 6.01 5.73 5.67 5.68 5.62 1.82 1.85 1.88 1.87 1.89
L insula 2.3 6.15 6.02 5.99 5.96 5.93 2.70 2.78 2.81 2.82 2.84
R insula 63.0 6.08 5.89 5.84 5.81 5.76 1.77 1.77 1.81 1.80 1.81
L isthmus cingulate 89.7 5.99 5.81 5.74 5.73 5.74 2.60 2.59 2.62 2.62 2.56
R isthmus cingulate 89.6 6.01 5.81 5.82 5.79 5.78 2.70 2.71 2.72 2.59 2.61
L lateral occipital 27.1 6.03 5.87 5.82 5.80 5.75 2.62 2.51 2.55 2.70 2.73
R lateral occipital 28.6 5.95 5.73 5.69 5.64 5.59 1.99 1.98 2.01 2.05 2.05
L lateral orbitofrontal 60.9 6.12 5.95 5.91 5.88 5.84 2.21 2.21 2.25 2.23 2.24
R lateral orbitofrontal 63.4 6.26 6.02 5.95 5.94 5.85 1.49 1.52 1.52 1.55 1.54
L lingual 81.1 6.02 5.85 5.82 5.79 5.81 2.62 2.56 2.59 2.70 2.70
R lingual 70.5 5.91 5.66 5.62 5.58 5.56 1.99 2.03 2.01 2.07 2.07
L medial orbitofrontal 62.5 6.03 5.81 5.78 5.78 5.70 1.58 1.54 1.52 1.57 1.53
R medial orbitofrontal 61.3 6.19 5.94 5.85 5.85 5.79 1.37 1.36 1.36 1.35 1.36
L middle temporal 28.6 6.07 5.88 5.82 5.83 5.76 2.56 2.57 2.60 2.61 2.60
R middle temporal 34.1 6.01 5.79 5.72 5.72 5.64 1.71 1.75 1.72 1.79 1.77
L paracentral 51.9 6.09 5.98 5.99 5.93 5.90 2.64 2.67 2.69 2.69 2.72
R paracentral 49.3 6.09 5.85 5.80 5.81 5.76 2.22 2.27 2.27 2.29 2.30
L parahippocampal 86.8 6.03 5.85 5.77 5.76 5.75 2.64 2.64 2.67 2.60 2.61
R parahippocampal 86.1 5.95 5.68 5.62 5.58 5.55 1.75 1.79 1.80 1.82 1.84
L pars opercularis 42.7 6.15 5.94 5.90 5.90 5.87 2.60 2.74 2.74 2.69 2.76
R pars opercularis 46.9 6.23 5.99 5.95 5.91 5.90 1.74 1.72 1.77 1.81 1.81
L pars orbitalis 39.9 6.15 5.98 5.97 6.01 5.95 2.34 2.40 2.44 2.42 2.42
R pars orbitalis 38.7 6.35 6.04 6.05 5.95 5.95 1.31 1.34 1.33 1.40 1.38
L pars triangularis 36.8 6.12 6.00 5.91 5.93 5.88 2.66 2.79 2.77 2.75 2.78
R pars triangularis 35.5 6.25 6.02 6.04 6.03 5.94 1.93 1.98 1.98 2.03 2.03
L pericalcarine 47.3 5.99 5.80 5.75 5.69 5.67 2.57 2.49 2.51 2.42 2.45
R pericalcarine 51.0 5.94 5.74 5.68 5.66 5.63 2.30 2.32 2.35 2.31 2.31
L postcentral 30.6 6.13 6.00 5.93 5.94 5.93 2.74 2.78 2.80 2.77 2.79
R postcentral 29.4 6.12 5.90 5.86 5.81 5.80 2.07 2.14 2.13 2.14 2.17
L posterior cingulate 80.1 6.13 6.01 6.00 5.98 5.93 2.65 2.74 2.76 2.68 2.70
R posterior cingulate 81.5 6.08 5.86 5.82 5.82 5.80 2.28 2.31 2.37 2.33 2.33
L precentral 32.9 6.14 6.02 6.03 6.05 6.02 2.78 2.85 2.86 2.84 2.86
R precentral 32.1 6.12 5.94 5.90 5.85 5.81 2.11 2.14 2.13 2.07 2.08
L precuneus 56.4 6.00 5.91 5.87 5.85 5.83 2.72 2.70 2.71 2.67 2.65
R precuneus 55.9 6.03 5.88 5.85 5.80 5.79 2.52 2.51 2.49 2.43 2.43
L rostral anterior cingulate 74.9 6.10 5.86 5.82 5.76 5.71 2.11 2.11 2.16 2.11 2.10
R rostral anterior cingulate 77.4 6.20 5.96 5.90 5.86 5.78 1.66 1.66 1.66 1.66 1.66
L rostral middle frontal 30.7 6.15 6.00 5.98 5.96 5.93 2.47 2.47 2.45 2.44 2.45
R rostral middle frontal 33.1 6.26 6.04 5.97 5.94 5.87 1.65 1.70 1.71 1.72 1.77
L superior frontal 30.4 6.18 6.03 5.97 5.96 5.91 2.51 2.54 2.54 2.48 2.51
R superior frontal 34.2 6.16 6.02 5.97 5.92 5.91 1.95 2.05 2.08 1.99 2.02
L superior parietal 35.2 6.02 5.85 5.83 5.81 5.82 2.69 2.77 2.77 2.78 2.78
R superior parietal 34.2 6.05 5.84 5.81 5.78 5.74 2.21 2.01 2.01 1.99 2.04
L superior temporal 39.9 6.13 5.93 5.86 5.85 5.83 2.71 2.76 2.76 2.80 2.82
R superior temporal 39.9 6.05 5.84 5.80 5.78 5.71 1.68 1.61 1.68 1.69 1.69
L supramarginal 33.6 6.03 5.81 5.80 5.79 5.74 2.70 2.72 2.76 2.81 2.79
R supramarginal 32.5 6.01 5.82 5.76 5.71 5.66 1.97 1.99 2.03 2.04 2.02
L temporal pole 75.9 6.23 6.01 6.02 5.96 5.93 2.63 2.68 2.71 2.72 2.75
R temporal pole 74.3 6.16 5.96 5.91 5.91 5.80 1.92 1.96 1.98 2.01 2.03
L transverse temporal 65.1 6.05 5.90 5.86 5.84 5.82 2.72 2.74 2.77 2.72 2.74
R transverse temporal 67.3 6.06 5.83 5.81 5.82 5.79 1.67 1.63 1.67 1.69 1.69

Note: This table shows the DPF and PPF for several fNIRS-accessible anatomical regions in the head of male subjects. The sensitivity of the region to fNIRS is provided in decibels (dB; 10×log10) and indicates the fraction of photons normalized to the incidence power reaching this region from the scalp at a source–detector distance of 30 mm.

Table 11.

Nearest 10-5 location for recording Brodmann areas (females).

BA Region Depth Position 1 Position 2 Position 3
Med (min to max) Name Depth Name Depth Name Depth
BA-1 L prim. somatosensory ctx 17.74 (9.83 to 26.80) C3h 18.83 C3 18.86 C1 21.91
BA-1 R prim. somatosensory ctx 16.66 (10.67 to 21.46) C4 16.58 C4h 18.52 C2 21.39
BA-2 L prim. somatosensory ctx 19.51 (13.90 to 26.80) C3 18.61 C3h 20.97 C1 22.91
BA-2 R prim. somatosensory ctx 18.68 (14.29 to 25.25) C4 15.81 C4h 21.27 C2 22.61
BA-3 L prim. somatosensory ctx 21.04 (15.31 to 27.58) FCC3h 22.31 C1 23.35 C3h 23.50
BA-3 R prim. somatosensory ctx 17.49 (14.38 to 24.37) C4 18.17 C2 22.14 C2h 22.33
BA-4 L prim. motor ctx 17.23 (13.92 to 26.61) FCC5h 19.14 C1h 19.40 FCC3 19.84
BA-4 R prim. motor ctx 18.42 (12.92 to 25.18) C2h 20.02 FCC4h 23.31 C4h 23.65
BA-5 L somatosensory assoc. ctx 21.88 (17.56 to 28.54) C1h 22.92 CCPz 25.65 Cz 28.59
BA-5 R somatosensory assoc. ctx 22.30 (17.25 to 29.13) CCP2 22.58 CCP2h 22.69 C2h 26.14
BA-6 L motor and suppl. motor ctx 20.53 (16.11 to 25.98) FCC1h 22.26 FCC1 22.58 FCCz 26.42
BA-6 R motor and suppl. motor ctx 18.57 (14.59 to 24.12) FCC4 17.50 FCC2h 21.81 FCC2 22.36
BA-7 L somatosensory assoc. ctx 23.36 (19.07 to 29.61) CP1 22.33 CP1h 23.50 CCP1h 24.14
BA-7 R somatosensory assoc. ctx 23.17 (19.08 to 30.78) CP2 22.49 CP2h 22.60 CCP2h 24.08
BA-8 L includes frontal eye fields 17.65 (11.58 to 24.82) F1h 18.42 FFC1h 19.25 FFC1 19.25
BA-8 R includes frontal eye fields 18.73 (12.52 to 23.75) FC4h 19.60 FFC2h 20.49 FFC2 21.10
BA-9 L dorsolateral prefrontal ctx 20.25 (13.85 to 25.88) F1 19.30 FCC3 23.50 FC3 24.01
BA-9 R dorsolateral prefrontal ctx 19.29 (14.34 to 25.82) FC4 22.04 FCC4 22.51 FC4h 22.65
BA-10 L frontopolar area 19.11 (14.97 to 25.12) F3 17.92 AFF1 23.95 AFF1h 24.01
BA-10 R frontopolar area 18.19 (15.34 to 23.34) F4 17.58 AFF2 21.14 AFF2h 21.60
BA-11 L orbitofrontal area 33.41 (28.12 to 39.29) AFp7 33.09 Fp1h 34.63 Fp1 36.82
BA-11 R orbitofrontal area 30.21 (25.89 to 38.14) F6 25.38 Fp2 35.30 AFp8 37.84
BA-17 L prim. visual ctx (V1) 16.78 (11.62 to 26.78) POO1 15.54 PO1 17.62 PO1h 18.74
BA-17 R prim. visual ctx (V1) 18.74 (14.12 to 25.58) PO2 16.87 PO4h 17.11 PO2h 18.08
BA-18 L visual assoc. ctx (V2) 18.44 (15.39 to 24.39) PPO3h 16.87 PPO1h 18.77 PO1h 20.92
BA-18 R visual assoc. ctx (V2) 18.54 (15.78 to 25.04) PPO4h 16.71 PPO2 17.32 PPO2h 20.19
BA-19 L associative visual ctx (V3) 19.96 (16.78 to 24.85) P1 20.43 CPP3 20.73 CPP5h 21.83
BA-19 R associative visual ctx (V3) 18.92 (16.35 to 24.77) P4h 18.80 P2 20.44 P2h 22.73
BA-20 L inferior temporal gyrus 25.54 (21.70 to 34.18) CCP5 27.47 T7h 31.55 C5 34.81
BA-20 R inferior temporal gyrus 25.99 (19.92 to 33.58) CCP6 24.14 C6 27.86 T8h 30.48
BA-21 L middle temporal gyrus 21.60 (17.42 to 28.05) CP5h 21.87 CCP5 22.68 C5 24.33
BA-21 R middle temporal gyrus 18.62 (13.02 to 25.89) CCP6 17.52 C6 20.17 FCC6 23.26
BA-22 L superior temporal gyrus 24.08 (20.95 to 27.83) CCP5h 23.16 C5h 27.15 FCC5h 30.81
BA-22 R superior temporal gyrus 23.02 (17.13 to 29.15) CCP6h 21.63 FCC6h 26.27 C6h 27.08
BA-23 L ventral post. cingulate ctx 56.82 (46.48 to 63.40) FCCz 46.02 Cz 46.94 FCC1h 47.40
BA-23 R ventral post. cingulate ctx 44.10 (35.34 to 51.29) FCC2h 42.34 C2h 42.53 C2 43.82
BA-24 L ventral ant. cingulate ctx 47.76 (35.43 to 56.48) FCC1h 40.09 FC1h 40.57 FCz 43.47
BA-24 R ventral ant. cingulate ctx 38.18 (28.41 to 45.94) C6h 34.65 FC2h 38.13 FCC2h 38.81
BA-25 L subgenual ctx 57.24 (46.45 to 61.82) F1 43.01 F1h 43.26 AFF1h 44.42
BA-25 R subgenual ctx 53.07 (27.08 to 61.68) FFC4 33.41 FC6h 33.94 FC4 35.13
BA-28 L post. entorhinal ctx 44.83 (38.39 to 53.50) FCC5 44.92 FTT7h 45.19 T7h 46.43
BA-28 R post. entorhinal ctx 42.91 (35.51 to 49.62) FCC6 42.79 T8h 44.40 FTT8h 44.97
BA-29 L retrospleniendral cingular ctx 48.81 (39.72 to 55.55) CPP1h 42.29 Pz 42.75 CPPz 43.08
BA-29 R retrosplenial cingular ctx 47.77 (40.83 to 53.92) CPz 43.79 CPP2h 44.13 CP2h 44.69
BA-30 L part of cingular ctx 45.68 (40.97 to 51.42) PPOz 39.63 P3h 41.55 P3 42.41
BA-30 R part of cingular ctx 44.24 (40.28 to 50.43) P4h 40.28 P4 42.00 CPP6h 43.56
BA-33 L part of ant. cingulate gyrus 44.31 (33.02 to 53.70) FC1h 38.46 FFC1 40.50 FFC1h 41.16
BA-33 R part of ant. cingulate gyrus 36.60 (22.79 to 41.50) FC4 33.49 FC2h 38.00 FFC2h 38.33
BA-34 L ant. entorhinal ctx 59.50 (51.99 to 64.17) T7h 47.81 FTT7h 47.88 FCC5 47.98
BA-34 R ant. entorhinal ctx 52.41 (45.77 to 58.64) C6 45.97 FCC6 45.98 FTT8h 46.85
BA-35 L perirhinal ctx 50.42 (46.74 to 56.03) CP5 47.13 CCP5 47.71 C5 48.48
BA-35 R perirhinal ctx 45.22 (38.15 to 54.14) CCP6 44.12 CP6 44.86 C6 45.09
BA-36 L parahippocampal ctx 41.38 (38.26 to 46.72) TP7h 39.01 CP5 41.41 CCP5 43.67
BA-36 R parahippocampal ctx 38.09 (31.44 to 44.12) CP6 32.80 CCP6 39.48 C6 40.59
BA-37 L fusiform gyrus 17.22 (11.79 to 24.04) CPP5h 17.98 CPP5 18.82 CP5 19.83
BA-37 R fusiform gyrus 16.62 (11.57 to 23.33) CP6 16.59 CP6h 18.37 CPP6h 19.85
BA-38 L temporopolar area 32.44 (27.60 to 41.44) FC5 31.97 FT7h 34.97 FTT7h 37.19
BA-38 R temporopolar area 29.50 (22.72 to 36.56) FC6 29.13 FCC6 29.72 FTT8h 34.47
BA-39 L angular gyrus 18.91 (14.61 to 26.24) CP3 19.53 CPP3 19.58 CP3h 21.81
BA-39 R angular gyrus 18.40 (12.94 to 25.00) CP4h 18.94 CP4 19.63 CPP4 19.91
BA-40 L supramarginal gyrus 20.14 (16.16 to 25.98) CCP3 19.49 CCP3h 22.03 C3h 23.20
BA-40 R supramarginal gyrus 20.10 (15.64 to 26.12) CCP4 18.71 CCP4h 22.57 C4h 22.84
BA-42 L prim. and auditory assoc. ctx 24.85 (16.20 to 29.57) C5h 24.54 CCP5h 25.97 FCC5h 28.06
BA-42 R prim. and auditory assoc. ctx 20.78 (12.53 to 27.26) C6h 21.51 CCP6h 22.05 C4 23.10
BA-43 L subcentral area 14.98 (8.86 to 24.00) C5h 15.33 FCC5h 16.68 FCC3 21.84
BA-43 R subcentral area 12.37 (5.01 to 20.88) C6h 15.14 C4 17.10 FCC4 19.85
BA-44 L pars opercularis 18.53 (13.47 to 25.58) FC5h 19.22 FCC5h 19.58 FC3 22.17
BA-44 R pars opercularis 17.85 (8.33 to 25.40) FCC6h 18.83 FC6h 18.89 FC4 21.75
BA-45 L pars triangularis 16.27 (12.91 to 24.41) FC5h 16.64 FFC5h 18.03 FC3 20.59
BA-45 R pars triangularis 14.26 (6.86 to 22.95) FC6h 15.77 FFC6h 16.57 FC4 17.23
BA-46 L dorsolateral prefrontal ctx 17.54 (13.29 to 24.16) FFC3 17.96 FFC5h 18.82 FC3 19.46
BA-46 R dorsolateral prefrontal ctx 16.75 (12.02 to 23.75) FFC6h 17.15 FFC4 18.62 FC4 19.60
BA-47 L inferior prefrontal gyrus 30.20 (25.36 to 37.90) FFC5 24.76 FC5 26.12 FFC5h 29.52
BA-47 R inferior prefrontal gyrus 29.08 (19.95 to 35.88) FFC6h 26.87 FC6h 27.59 FC6 31.25

Note: This table provides the depth (median and range) of several Brodmann areas in female subjects. For each region, the nearest three 10-5 coordinate positions and the depth of the region to this position is provided as guidance for the placement of fNIRS sensors.

Table 12.

Nearest 10-5 location for recording Brodmann areas (males).

BA Region Depth Position 1 Position 2 Position 3
Med (min to max) Name Depth Name Depth Name Depth
BA-1 L prim. somatosensory ctx 17.74 (9.83 to 26.80) C3h 18.83 C3 18.86 C1 21.91
BA-1 R prim. somatosensory ctx 16.66 (10.67 to 21.46) C4 16.58 C4h 18.52 C2 21.39
BA-2 L prim. somatosensory ctx 19.51 (13.90 to 26.80) C3 18.61 C3h 20.97 C1 22.91
BA-2 R prim. somatosensory ctx 18.68 (14.29 to 25.25) C4 15.81 C4h 21.27 C2 22.61
BA-3 L prim. somatosensory ctx 21.04 (15.31 to 27.58) FCC3h 22.31 C1 23.35 C3h 23.50
BA-3 R prim. somatosensory ctx 17.49 (14.38 to 24.37) C4 18.17 C2 22.14 C2h 22.33
BA-4 L prim. motor ctx 17.23 (13.92 to 26.61) FCC5h 19.14 C1h 19.40 FCC3 19.84
BA-4 R prim. motor ctx 18.42 (12.92 to 25.18) C2h 20.02 FCC4h 23.31 C4h 23.65
BA-5 L somatosensory assoc. ctx 21.88 (17.56 to 28.54) C1h 22.92 CCPz 25.65 Cz 28.59
BA-5 R somatosensory assoc. ctx 22.30 (17.25 to 29.13) CCP2 22.58 CCP2h 22.69 C2h 26.14
BA-6 L motor and suppl. motor ctx 20.53 (16.11 to 25.98) FCC1h 22.26 FCC1 22.58 FCCz 26.42
BA-6 R motor and suppl. motor ctx 18.57 (14.59 to 24.12) FCC4 17.50 FCC2h 21.81 FCC2 22.36
BA-7 L somatosensory assoc. ctx 23.36 (19.07 to 29.61) CP1 22.33 CP1h 23.50 CCP1h 24.14
BA-7 R somatosensory assoc. ctx 23.17 (19.08 to 30.78) CP2 22.49 CP2h 22.60 CCP2h 24.08
BA-8 L includes frontal eye fields 17.65 (11.58 to 24.82) F1h 18.42 FFC1h 19.25 FFC1 19.25
BA-8 R includes frontal eye fields 18.73 (12.52 to 23.75) FC4h 19.60 FFC2h 20.49 FFC2 21.10
BA-9 L dorsolateral prefrontal ctx 20.25 (13.85 to 25.88) F1 19.30 FCC3 23.50 FC3 24.01
BA-9 R dorsolateral prefrontal ctx 19.29 (14.34 to 25.82) FC4 22.04 FCC4 22.51 FC4h 22.65
BA-10 L frontopolar area 19.11 (14.97 to 25.12) F3 17.92 AFF1 23.95 AFF1h 24.01
BA-10 R frontopolar area 18.19 (15.34 to 23.34) F4 17.58 AFF2 21.14 AFF2h 21.60
BA-11 L orbitofrontal area 33.41 (28.12 to 39.29) AFp7 33.09 Fp1h 34.63 Fp1 36.82
BA-11 R orbitofrontal area 30.21 (25.89 to 38.14) F6 25.38 Fp2 35.30 AFp8 37.84
BA-17 L prim. visual ctx (V1) 16.78 (11.62 to 26.78) POO1 15.54 PO1 17.62 PO1h 18.74
BA-17 R prim. visual ctx (V1) 18.74 (14.12 to 25.58) PO2 16.87 PO4h 17.11 PO2h 18.08
BA-18 L visual assoc. ctx (V2) 18.44 (15.39 to 24.39) PPO3h 16.87 PPO1h 18.77 PO1h 20.92
BA-18 R visual assoc. ctx (V2) 18.54 (15.78 to 25.04) PPO4h 16.71 PPO2 17.32 PPO2h 20.19
BA-19 L associative visual ctx (V3) 19.96 (16.78 to 24.85) P1 20.43 CPP3 20.73 CPP5h 21.83
BA-19 R associative visual ctx (V3) 18.92 (16.35 to 24.77) P4h 18.80 P2 20.44 P2h 22.73
BA-20 L inferior temporal gyrus 25.54 (21.70 to 34.18) CCP5 27.47 T7h 31.55 C5 34.81
BA-20 R inferior temporal gyrus 25.99 (19.92 to 33.58) CCP6 24.14 C6 27.86 T8h 30.48
BA-21 L middle temporal gyrus 21.60 (17.42 to 28.05) CP5h 21.87 CCP5 22.68 C5 24.33
BA-21 R middle temporal gyrus 18.62 (13.02 to 25.89) CCP6 17.52 C6 20.17 FCC6 23.26
BA-22 L superior temporal gyrus 24.08 (20.95 to 27.83) CCP5h 23.16 C5h 27.15 FCC5h 30.81
BA-22 R superior temporal gyrus 23.02 (17.13 to 29.15) CCP6h 21.63 FCC6h 26.27 C6h 27.08
BA-23 L ventral post. cingulate ctx 56.82 (46.48 to 63.40) FCCz 46.02 Cz 46.94 FCC1h 47.40
BA-23 R ventral post. cingulate ctx 44.10 (35.34 to 51.29) FCC2h 42.34 C2h 42.53 C2 43.82
BA-24 L ventral ant. cingulate ctx 47.76 (35.43 to 56.48) FCC1h 40.09 FC1h 40.57 FCz 43.47
BA-24 R ventral ant. cingulate ctx 38.18 (28.41 to 45.94) C6h 34.65 FC2h 38.13 FCC2h 38.81
BA-25 L subgenual ctx 57.24 (46.45 to 61.82) F1 43.01 F1h 43.26 AFF1h 44.42
BA-25 R subgenual ctx 53.07 (27.08 to 61.68) FFC4 33.41 FC6h 33.94 FC4 35.13
BA-28 L post. entorhinal ctx 44.83 (38.39 to 53.50) FCC5 44.92 FTT7h 45.19 T7h 46.43
BA-28 R post. entorhinal ctx 42.91 (35.51 to 49.62) FCC6 42.79 T8h 44.40 FTT8h 44.97
BA-29 L retrospleniendral cingular ctx 48.81 (39.72 to 55.55) CPP1h 42.29 Pz 42.75 CPPz 43.08
BA-29 R retrosplenial cingular ctx 47.77 (40.83 to 53.92) CPz 43.79 CPP2h 44.13 CP2h 44.69
BA-30 L part of cingular ctx 45.68 (40.97 to 51.42) PPOz 39.63 P3h 41.55 P3 42.41
BA-30 R part of cingular ctx 44.24 (40.28 to 50.43) P4h 40.28 P4 42.00 CPP6h 43.56
BA-33 L part of ant. cingulate gyrus 44.31 (33.02 to 53.70) FC1h 38.46 FFC1 40.50 FFC1h 41.16
BA-33 R part of ant. cingulate gyrus 36.60 (22.79 to 41.50) FC4 33.49 FC2h 38.00 FFC2h 38.33
BA-34 L ant. entorhinal ctx 59.50 (51.99 to 64.17) T7h 47.81 FTT7h 47.88 FCC5 47.98
BA-34 R ant. entorhinal ctx 52.41 (45.77 to 58.64) C6 45.97 FCC6 45.98 FTT8h 46.85
BA-35 L perirhinal ctx 50.42 (46.74 to 56.03) CP5 47.13 CCP5 47.71 C5 48.48
BA-35 R perirhinal ctx 45.22 (38.15 to 54.14) CCP6 44.12 CP6 44.86 C6 45.09
BA-36 L parahippocampal ctx 41.38 (38.26 to 46.72) TP7h 39.01 CP5 41.41 CCP5 43.67
BA-36 R parahippocampal ctx 38.09 (31.44 to 44.12) CP6 32.80 CCP6 39.48 C6 40.59
BA-37 L fusiform gyrus 17.22 (11.79 to 24.04) CPP5h 17.98 CPP5 18.82 CP5 19.83
BA-37 R fusiform gyrus 16.62 (11.57 to 23.33) CP6 16.59 CP6h 18.37 CPP6h 19.85
BA-38 L temporopolar area 32.44 (27.60 to 41.44) FC5 31.97 FT7h 34.97 FTT7h 37.19
BA-38 R temporopolar area 29.50 (22.72 to 36.56) FC6 29.13 FCC6 29.72 FTT8h 34.47
BA-39 L angular gyrus 18.91 (14.61 to 26.24) CP3 19.53 CPP3 19.58 CP3h 21.81
BA-39 R angular gyrus 18.40 (12.94 to 25.00) CP4h 18.94 CP4 19.63 CPP4 19.91
BA-40 L supramarginal gyrus 20.14 (16.16 to 25.98) CCP3 19.49 CCP3h 22.03 C3h 23.20
BA-40 R supramarginal gyrus 20.10 (15.64 to 26.12) CCP4 18.71 CCP4h 22.57 C4h 22.84
BA-42 L prim. and auditory assoc. ctx 24.85 (16.20 to 29.57) C5h 24.54 CCP5h 25.97 FCC5h 28.06
BA-42 R prim. and auditory assoc. ctx 20.78 (12.53 to 27.26) C6h 21.51 CCP6h 22.05 C4 23.10
BA-43 L subcentral area 14.98 (8.86 to 24.00) C5h 15.33 FCC5h 16.68 FCC3 21.84
BA-43 R subcentral area 12.37 (5.01 to 20.88) C6h 15.14 C4 17.10 FCC4 19.85
BA-44 L pars opercularis 18.53 (13.47 to 25.58) FC5h 19.22 FCC5h 19.58 FC3 22.17
BA-44 R pars opercularis 17.85 (8.33 to 25.40) FCC6h 18.83 FC6h 18.89 FC4 21.75
BA-45 L pars triangularis 16.27 (12.91 to 24.41) FC5h 16.64 FFC5h 18.03 FC3 20.59
BA-45 R pars triangularis 14.26 (6.86 to 22.95) FC6h 15.77 FFC6h 16.57 FC4 17.23
BA-46 L dorsolateral prefrontal ctx 17.54 (13.29 to 24.16) FFC3 17.96 FFC5h 18.82 FC3 19.46
BA-46 R dorsolateral prefrontal ctx 16.75 (12.02 to 23.75) FFC6h 17.15 FFC4 18.62 FC4 19.60
BA-47 L inferior prefrontal gyrus 30.20 (25.36 to 37.90) FFC5 24.76 FC5 26.12 FFC5h 29.52
BA-47 R inferior prefrontal gyrus 29.08 (19.95 to 35.88) FFC6h 26.87 FC6h 27.59 FC6 31.25

Note: This table provides the depth (median and range) of several Brodmann areas in male subjects. For each region, the nearest three 10-5 coordinate positions and the depth of the region to this position is provided as guidance for the placement of fNIRS sensors.

Table 13.

Nearest 10-5 location for recording anatomical areas (females).

Region Depth Position 1 Position 2 Position 3
Med (min to max) Name Depth Name Depth Name Depth
L banks of the superior temporal sulcus 23.21 (16.11 to 29.05) CP5h 24.15 CP5 24.65 CCP5 25.29
R banks of the superior temporal sulcus 23.56 (16.16 to 30.42) CCP6h 23.27 CCP6 23.28 CP6h 24.67
L caudal anterior cingulate 39.28 (33.20 to 47.03) FC1h 39.75 FFC1h 40.09 FFC1 40.42
R caudal anterior cingulate 39.95 (34.10 to 46.30) FFC2h 39.84 FC2h 40.56 FCz 41.90
L caudal middle frontal 20.16 (14.04 to 26.27) FC3h 19.78 FCC3h 21.65 FC3 25.11
R caudal middle frontal 19.82 (13.18 to 25.70) FC2 20.11 FCC2 21.38 FC4h 22.56
L cuneus 28.23 (22.19 to 34.96) PPO1h 26.70 PPOz 26.84 P1h 29.63
R cuneus 27.75 (14.83 to 34.30) PPO2h 24.58 PPOz 27.04 Pz 28.87
L entorhinal 41.23 (33.56 to 44.60) T7h 44.20 T7 44.97 FTT7h 45.15
R entorhinal 40.97 (32.97 to 45.95) T8h 44.42 FTT8h 45.18 T8 46.69
L frontal pole 14.67 (10.80 to 19.21) AFp1 14.31 AFp3h 15.06 Fp1h 16.14
R frontal pole 14.63 (12.08 to 20.75) AFp4h 15.14 AFp2h 15.57 Fp2h 16.44
L fusiform 31.96 (28.22 to 39.27) P5 29.54 CPP5 33.07 T7h 35.53
R fusiform 32.62 (27.68 to 40.28) CPP6 31.97 T8h 35.69 CP6 36.44
L inferior parietal 18.27 (14.95 to 21.71) CPP3h 18.04 CP3h 19.44 CPP3 20.81
R inferior parietal 17.98 (14.16 to 23.42) CP4h 18.51 CP4 20.01 CPP4 20.12
L inferior temporal 19.80 (15.60 to 25.35) CP5 18.76 CPP5 19.50 T7h 26.28
R inferior temporal 18.96 (14.27 to 25.30) CP6 18.36 CPP6 18.78 T8h 26.15
L insula 35.28 (30.83 to 41.73) FCC5 34.27 FCC5h 35.36 C5h 38.60
R insula 33.90 (26.95 to 40.54) FCC6h 33.80 FCC6 33.84 C6h 36.07
L isthmus cingulate 53.73 (48.46 to 59.82) CPP1h 45.46 CP1h 46.50 CPz 46.86
R isthmus cingulate 53.32 (45.89 to 59.62) CPPz 46.69 CPz 46.70 CPP6h 47.21
L lateral occipital 14.29 (11.12 to 21.28) PPO3h 15.64 P5h 18.67 CPP5h 22.28
R lateral occipital 14.16 (11.54 to 21.02) PPO4 15.58 PPO4h 16.04 P6h 17.69
L lateral orbitofrontal 33.21 (28.82 to 42.25) AFp7 34.60 FFC5 34.91 FC5 35.63
R lateral orbitofrontal 33.93 (29.23 to 41.80) FFC6h 33.96 FFC6 36.12 FC6 37.89
L lingual 40.05 (33.31 to 47.05) POO1h 31.42 POz 34.42 PPO5h 40.61
R lingual 40.64 (35.95 to 46.43) PPO6h 39.09 P6h 42.05 CPP6h 43.89
L medial orbitofrontal 36.25 (31.39 to 43.95) Fp1h 34.31 Fp1 39.01 AFp7 44.25
R medial orbitofrontal 37.52 (31.86 to 42.82) AFp4h 32.85 Fp2h 34.98 Fp2 39.41
L middle temporal 15.91 (12.21 to 21.67) CP5 15.80 CCP5 20.30 C5 20.61
R middle temporal 15.29 (9.52 to 21.80) CP6h 14.71 CCP6 17.19 C6 18.61
L paracentral 31.27 (26.19 to 37.99) Cz 29.01 CCP1h 30.74 C1h 33.38
R paracentral 31.32 (25.47 to 37.74) CCPz 27.99 Cz 28.07 C2h 38.65
L parahippocampal 48.29 (44.53 to 52.38) TTP7h 43.48 CP5 44.23 TP7h 45.30
R parahippocampal 47.74 (39.64 to 52.87) T8h 43.22 CCP6 43.24 CP6 44.06
L pars opercularis 21.83 (17.86 to 28.37) FC5h 22.75 FC3 23.87 FC5 24.53
R pars opercularis 22.30 (16.78 to 29.90) FCC6h 23.33 FC6h 23.84 FC4 24.75
L pars orbitalis 18.73 (13.61 to 29.05) F5 19.09 FFC5 20.11 FC5 20.90
R pars orbitalis 18.34 (13.32 to 28.56) F6h 18.34 F6 19.33 FFC6 19.60
L pars triangularis 17.46 (14.39 to 24.87) FFC5 17.98 FC5h 19.21 FFC5h 20.92
R pars triangularis 17.34 (12.67 to 26.09) FC6h 18.01 FFC4 19.73 FFC6h 20.12
L pericalcarine 28.08 (23.56 to 38.01) PO1 23.55 PO1h 25.51 PPO1h 31.08
R pericalcarine 32.05 (21.59 to 39.28) PO2 24.32 PPO2 31.93 PPO2h 34.21
L postcentral 18.19 (14.12 to 26.28) C3 18.81 C3h 19.92 C5h 20.55
R postcentral 17.72 (13.57 to 24.70) C4 18.07 C4h 19.98 C2 21.34
L posterior cingulate 44.62 (39.13 to 50.33) FCC1h 42.71 C1h 43.63 C1 44.69
R posterior cingulate 43.89 (35.48 to 50.37) FCC2h 42.31 C2h 42.74 FCCz 43.52
L precentral 20.54 (15.71 to 26.01) FCC5h 20.53 FCC3 20.84 FCC3h 22.12
R precentral 19.80 (15.05 to 26.21) FCC4 19.33 FCC4h 21.07 FCC2 22.86
L precuneus 35.94 (29.59 to 42.34) CP1h 33.50 CPP1h 33.92 P1h 34.74
R precuneus 36.48 (31.00 to 41.39) CPz 32.01 CPPz 32.40 CPP2h 34.28
L rostral anterior cingulate 36.77 (31.08 to 44.50) AFF1 35.23 AFF1h 35.68 AF3 37.73
R rostral anterior cingulate 40.84 (34.05 to 47.05) AFF2h 37.10 AFF2 37.16 AFFz 37.63
L rostral middle frontal 16.65 (12.87 to 21.98) FFC3 18.34 F3h 19.18 FFC3h 19.42
R rostral middle frontal 17.44 (13.68 to 22.37) FFC4 18.91 FFC4h 19.49 F4h 19.83
L superior frontal 20.27 (15.51 to 27.77) FFC1 20.91 FC1h 22.51 FCC1h 24.18
R superior frontal 21.65 (17.08 to 27.22) FFC2h 21.40 FC2h 22.66 FCC2h 23.12
L superior parietal 21.50 (16.07 to 28.94) CCP1 22.65 CP1 22.84 CCP3h 26.16
R superior parietal 21.26 (16.90 to 27.98) CP2h 20.79 CCP2 23.82 CP2 23.85
L superior temporal 22.33 (18.26 to 27.88) CCP5h 24.11 C5 24.33 FCC5 24.37
R superior temporal 21.82 (13.63 to 28.74) C6h 19.10 FCC6 24.31 C6 24.56
L supramarginal 19.46 (16.28 to 24.64) CCP3 19.85 C3 20.09 CCP5h 25.75
R supramarginal 18.97 (12.41 to 26.09) C4 19.15 CCP4 19.43 CCP6h 25.53
L temporal pole 35.47 (27.47 to 42.46) FFT7h 36.07 FT7h 36.68 FTT7h 38.98
R temporal pole 35.78 (25.70 to 43.27) FT8h 36.88 FC6 38.00 FTT8h 40.29
L transverse temporal 32.22 (28.60 to 36.76) C5h 32.05 C5 32.85 CCP5h 35.98
R transverse temporal 30.89 (23.11 to 39.98) FCC6h 26.28 C6h 30.59 CCP6h 35.07

Note: This table provides the depth (median and range) of several anatomical regions in female subjects. For each region, the nearest three 10-5 coordinate positions and the depth of the region to this position is provided as guidance for the placement of fNIRS sensors.

Table 14.

Nearest 10-5 location for recording anatomical regions (males).

Region Depth Position 1 Position 2 Position 3
Med (min to max) Name Depth Name Depth Name Depth
L banks of the superior temporal sulcus 21.14 (11.90 to 27.00) CP5h 22.06 CCP5 22.16 CP5 23.25
R banks of the superior temporal sulcus 24.82 (14.22 to 30.44) CCP6h 23.45 CCP6 25.09 CP6h 25.12
L caudal anterior cingulate 40.99 (28.19 to 46.86) FC1h 40.37 FFC1 40.98 FFC1h 41.88
R caudal anterior cingulate 40.85 (30.59 to 46.40) FFC2h 40.65 F2h 41.09 FC2h 41.50
L caudal middle frontal 20.58 (11.99 to 26.63) FC3h 19.18 FCC3h 20.47 FC3 25.09
R caudal middle frontal 20.68 (11.36 to 24.36) FCC2 19.75 FC4h 21.57 FCC4h 22.44
L cuneus 28.89 (23.94 to 36.05) POz 27.02 PPOz 29.14 PPO1h 30.31
R cuneus 25.89 (17.16 to 34.01) POz 23.80 PPOz 27.69 PPO2h 27.89
L entorhinal 39.86 (30.13 to 43.65) FTT7h 44.17 T7 44.39 FTT7 45.12
R entorhinal 39.46 (25.51 to 45.07) FTT8h 45.25 T8 45.94 FTT8 45.99
L frontal pole 14.79 (11.31 to 21.25) AFp3h 14.50 AFp1 15.08 Fp1h 16.94
R frontal pole 15.58 (12.27 to 22.68) AFp2 15.39 AFp4h 15.55 Fp2h 17.47
L fusiform 32.59 (28.25 to 36.92) P5 27.23 CPP5 32.60 TP7h 37.36
R fusiform 34.15 (27.93 to 37.82) P6 30.32 T8h 36.96 CP6 38.16
L inferior parietal 18.17 (13.25 to 22.86) CPP3h 17.90 CPP3 19.44 CPP5h 23.46
R inferior parietal 17.88 (13.18 to 22.46) CPP4 19.32 CP4 20.07 CPP6h 22.35
L inferior temporal 20.37 (16.54 to 28.07) CPP5 20.29 TP7h 21.79 TTP7h 22.41
R inferior temporal 20.19 (13.89 to 27.26) CPP6 18.61 CP6 19.28 T8h 26.15
L insula 35.89 (30.59 to 40.19) FCC5 34.43 FCC5h 36.74 C5h 39.99
R insula 36.18 (29.30 to 40.25) FCC6 34.77 FC6 35.31 C6h 39.65
L isthmus cingulate 54.38 (47.55 to 59.31) CPP1h 46.37 P1h 46.79 CP1h 47.23
R isthmus cingulate 54.63 (47.31 to 60.58) CPP2h 46.44 CPPz 47.31 Pz 47.63
L lateral occipital 14.08 (11.73 to 19.74) PPO5h 15.27 P5h 18.50 P5 18.72
R lateral occipital 14.07 (11.69 to 18.85) PPO4h 16.01 PPO4 16.63 P6h 18.02
L lateral orbitofrontal 33.40 (30.05 to 37.97) F5 32.91 FFC5 34.98 AFp7 35.56
R lateral orbitofrontal 34.17 (29.27 to 39.09) FFC6h 34.25 F6 34.41 FFC6 35.79
L lingual 41.60 (35.07 to 46.59) P5h 43.98 P5 44.78 CPP5 45.74
R lingual 41.40 (37.28 to 46.82) POz 38.42 P6h 43.35 CPP6h 43.91
L medial orbitofrontal 37.24 (30.88 to 43.72) Fpz 33.39 Fp1h 36.19 Fp1 40.68
R medial orbitofrontal 38.62 (31.32 to 42.93) Fpz 32.72 Fp2h 35.50 Fp2 39.94
L middle temporal 16.32 (12.36 to 20.13) CP5 15.58 FTT7h 20.74 CCP5 21.14
R middle temporal 17.05 (9.74 to 20.93) CCP6 19.13 C6 19.72 FTT8h 22.50
L paracentral 31.12 (20.90 to 35.62) Cz 28.27 CCP1h 30.65 C1h 32.18
R paracentral 32.06 (22.04 to 41.07) CCPz 27.17 Cz 28.14 C2h 38.24
L parahippocampal 48.31 (43.27 to 53.86) CP5 44.20 TTP7h 44.84 TP7h 45.61
R parahippocampal 49.41 (36.90 to 53.63) T8h 44.15 CP6 44.80 TTP8h 45.03
L pars opercularis 22.15 (15.67 to 27.38) FC3 22.65 FC5h 23.34 FC5 24.43
R pars opercularis 24.02 (16.57 to 28.39) FCC4 24.70 FC6h 24.70 FC4 25.26
L pars orbitalis 17.71 (13.52 to 23.96) F5 17.57 FFC5 19.26 F7h 19.48
R pars orbitalis 17.38 (13.36 to 23.16) F6h 17.51 F6 18.16 FFC6 18.80
L pars triangularis 18.19 (13.52 to 24.03) FC5h 17.91 FFC5 19.05 FFC5h 21.84
R pars triangularis 17.05 (10.76 to 21.18) FC6h 17.62 FFC6 18.68 FFC6h 20.30
L pericalcarine 31.03 (24.03 to 37.99) POO1 24.55 PO1 27.94 PO1h 28.46
R pericalcarine 31.31 (23.03 to 38.29) PO2h 26.53 PO2 27.66 PPO2 35.70
L postcentral 18.34 (10.85 to 21.43) C3 18.69 C3h 18.83 C5h 20.26
R postcentral 18.67 (11.33 to 22.23) C4 17.89 C4h 19.57 CCP2 21.78
L posterior cingulate 45.87 (33.51 to 51.01) FCC1h 42.41 C1h 42.59 C1 44.66
R posterior cingulate 45.78 (33.09 to 50.59) FCCz 43.05 C2h 43.55 FCC2h 43.67
L precentral 20.42 (11.63 to 23.83) FCC3 19.95 FCC5h 19.95 C1 21.99
R precentral 20.83 (12.58 to 24.50) FCC4 19.43 C2h 21.33 C2 22.50
L precuneus 36.38 (31.31 to 41.92) CP1h 32.28 P1h 33.16 CPP1h 34.28
R precuneus 37.06 (31.98 to 40.83) CPPz 31.99 Pz 33.27 P2h 34.94
L rostral anterior cingulate 39.17 (34.16 to 44.98) AFF1 37.25 AFF1h 38.16 AF3 39.13
R rostral anterior cingulate 41.57 (34.99 to 48.21) AFF2h 38.32 AFF2 38.99 AFFz 39.26
L rostral middle frontal 16.12 (11.35 to 20.22) F3 17.77 FFC3 18.04 FFC3h 18.23
R rostral middle frontal 17.12 (11.97 to 21.71) FFC4 19.33 FC4 19.48 FFC4h 19.65
L superior frontal 21.12 (10.86 to 24.22) FFC1h 19.38 FC1h 21.49 FCC1h 22.69
R superior frontal 21.73 (12.48 to 26.70) FFC2h 21.41 FC2h 22.26 FCC2h 22.55
L superior parietal 20.93 (16.82 to 25.99) CP1 21.13 CPP1 22.33 CCP1 22.53
R superior parietal 20.75 (16.19 to 25.34) CPP2h 20.54 CP2h 21.07 CP2 23.20
L superior temporal 22.57 (18.86 to 26.22) FCC5 23.19 C5 23.55 CCP5h 24.95
R superior temporal 22.91 (16.21 to 27.73) FCC6 23.18 CCP6h 23.36 C6 25.65
L supramarginal 19.61 (15.15 to 24.27) CCP3 19.70 C5h 20.75 CCP5h 25.09
R supramarginal 20.28 (13.41 to 24.47) C4 19.41 CCP4 19.68 CCP6h 27.32
L temporal pole 35.35 (25.47 to 41.75) FT7 37.58 FT7h 38.97 FTT7 40.60
R temporal pole 36.35 (27.70 to 41.17) FFT8h 37.00 FT8h 39.84 FTT8h 41.67
L transverse temporal 33.52 (23.75 to 37.96) C5 32.11 C5h 33.11 CCP5h 37.45
R transverse temporal 34.22 (24.65 to 38.81) C6 32.98 C6h 33.67 CCP6h 38.18

Note: This table provides the depth (median and range) of several anatomical regions in male subjects. For each region, the nearest three 10-5 coordinate positions and the depth of the region to this position is provided as guidance for the placement of fNIRS sensors.

Table 15.

Generalized equation for DPF for 10-5 locations.

Name Beta values
β0 β1 β2 β3 β4 β5 β6 R2
Fp1 7.7×104 9.3×102 3.5×104 1.5×103 1.6×101 2.7×107 1.6×101 0.24
Fpz 4.9×1003 1.9×101 8.5×104 1.5×103 3.6×101 6.7×107 5.6×101 0.16
Fp2 1.5×103 8.7×102 1.3×104 1.5×103 4.0×102 1.5×107 1.2×101 0.19
AF9 4.7×103 4.6×102 2.3×103 2.8×103 9.2×101 1.9×106 1.2×102 0.91
AF7 2.8×103 3.5×101 4.0×103 2.1×103 1.5×100 3.5×106 1.9×102 0.24
AF5 7.0×104 1.1×101 8.3×105 9.8×104 2.0×102 9.4×108 7.4×100 0.17
AF3 1.0×103 9.8×102 1.9×104 1.1×103 6.0×102 1.8×107 1.3×101 0.18
AF1 1.3×103 1.1×101 2.3×105 1.2×103 1.4×102 1.2×108 3.8×100 0.17
AFz 1.5×103 1.2×101 6.5×104 1.4×103 2.6×101 5.5×107 2.7×101 0.19
AF2 1.1×103 1.2×101 3.9×104 1.3×103 1.6×101 3.2×107 1.5×101 0.20
AF4 9.8×104 9.4×102 6.1×105 1.2×103 3.4×102 3.6×108 7.9×101 0.21
AF6 2.0×104 7.9×102 2.7×104 1.1×103 1.1×101 2.3×107 8.7×100 0.19
AF8 4.4×104 2.7×102 1.7×103 1.8×103 6.8×101 1.4×106 8.3×101 0.24
AF10 1.9×103 8.1×102 3.8×103 2.9×103 1.5×100 3.3×106 1.9×102 0.66
F9 3.5×103 3.3×102 2.8×103 2.7×103 1.1×100 2.3×106 1.3×102 0.91
F7 9.0×103 6.9×102 5.9×104 1.8×103 2.1×101 5.2×107 3.3×101 0.21
F5 9.0×104 6.4×102 1.2×104 9.0×104 5.0×102 8.5×108 3.4×101 0.09
F3 5.0×104 1.0×101 7.6×104 1.1×103 2.9×101 6.5×107 3.0×101 0.13
F1 6.9×104 1.1×101 6.7×104 1.1×103 2.5×101 6.0×107 2.3×101 0.13
Fz 1.5×103 1.2×101 2.0×103 1.2×103 7.9×101 1.7×106 9.4×101 0.14
F2 1.4×103 9.7×102 2.0×103 1.2×103 8.2×101 1.7×106 1.0×102 0.16
F4 4.7×104 7.8×102 6.3×104 1.1×103 2.6×101 5.2×107 2.8×101 0.14
F6 8.8×104 8.9×102 6.4×104 9.7×104 2.6×101 5.3×107 2.7×101 0.12
F8 5.3×104 1.3×101 1.2×103 1.8×103 4.8×101 1.1×106 6.9×101 0.20
F10 3.3×103 3.9×102 1.5×103 2.6×103 5.9×101 1.2×106 7.0×101 0.82
FT9 2.2×103 6.4×102 2.7×103 2.2×103 1.1×100 2.2×106 1.4×102 0.76
FT7 9.6×104 5.0×103 1.7×104 2.1×103 8.6×102 1.1×107 6.8×100 0.26
FC5 8.9×104 5.8×102 5.2×104 1.0×103 2.1×101 4.3×107 3.5×101 0.09
FC3 2.6×104 1.1×101 4.0×104 1.1×103 1.5×101 3.4×107 1.3×101 0.12
FC1 2.0×103 1.2×101 1.3×103 1.3×103 5.1×101 1.1×106 5.8×101 0.17
FCz 6.6×105 1.5×101 2.1×103 1.4×103 8.4×101 1.8×106 1.0×102 0.21
FC2 2.2×104 1.2×101 4.2×103 1.4×103 1.6×100 3.5×106 2.0×102 0.25
FC4 3.6×104 1.1×101 2.4×103 1.1×103 9.5×101 2.0×106 1.2×102 0.18
FC6 1.7×103 9.1×102 1.0×103 9.7×104 4.3×101 8.3×107 5.2×101 0.15
FT8 2.9×103 2.1×101 4.0×103 1.6×103 1.6×100 3.3×106 2.1×102 0.16
FT10 1.8×103 9.6×104 2.3×103 2.3×103 9.0×101 2.0×106 1.1×102 0.96
T9 1.3×103 2.0×102 3.1×103 2.0×103 1.2×100 2.6×106 1.5×102 0.97
T7 8.9×104 9.6×103 5.4×104 2.1×103 2.6×101 3.8×107 3.3×101 0.25
C5 1.0×103 6.1×102 5.4×105 1.2×103 1.2×102 6.3×108 6.9×100 0.13
C3 7.2×104 4.6×102 4.8×104 1.4×103 2.0×101 3.8×107 2.2×101 0.20
C1 1.4×103 3.5×102 1.3×103 1.5×103 5.1×101 1.0×106 6.1×101 0.24
Cz 2.6×103 1.9×101 2.8×103 1.6×103 1.1×100 2.4×106 1.3×102 0.18
C2 1.2×103 1.6×101 3.1×103 1.5×103 1.2×100 2.7×106 1.5×102 0.16
C4 1.4×103 7.8×102 1.3×103 1.3×103 5.2×101 1.1×106 6.2×101 0.18
C6 1.7×103 6.6×102 6.9×104 1.1×103 2.9×101 5.5×107 3.3×101 0.15
T8 4.1×103 1.6×101 2.0×103 1.7×103 7.9×101 1.7×106 9.6×101 0.18
T10 2.5×103 2.7×102 4.0×103 1.8×103 1.6×100 3.4×106 2.0×102 0.21
TP9 7.0×105 5.2×102 1.8×103 1.7×103 7.5×101 1.4×106 9.5×101 0.96
TP7 1.3×103 3.0×102 5.4×106 2.3×103 2.9×102 7.3×108 4.1×101 0.25
CP5 8.9×104 8.3×102 8.1×104 1.5×103 2.9×101 7.4×107 4.1×101 0.23
CP3 2.6×104 4.0×102 2.7×105 1.6×103 4.3×102 4.5×108 2.9×100 0.28
CP1 4.6×104 1.2×103 4.6×104 1.7×103 2.1×101 3.3×107 2.4×101 0.30
CPz 6.3×104 1.4×102 8.1×104 1.8×103 3.4×101 6.4×107 4.0×101 0.32
CP2 1.8×103 7.9×102 1.4×103 1.8×103 5.5×101 1.2×106 6.5×101 0.31
CP4 7.7×104 5.4×102 1.5×104 1.6×103 4.1×102 1.6×107 9.9×100 0.28
CP6 1.5×103 5.7×102 5.6×104 1.4×103 2.0×101 5.0×107 3.0×101 0.17
TP8 3.4×103 1.3×102 3.8×104 1.9×103 1.2×101 3.6×107 2.0×101 0.26
TP10 9.5×104 7.8×102 3.5×103 1.5×103 1.4×100 2.9×106 1.8×102 0.54
P9 8.0×104 2.6×102 2.0×103 1.8×103 8.1×101 1.6×106 1.0×102 0.74
P7 2.3×104 2.4×102 1.7×103 2.1×103 6.4×101 1.5×106 7.4×101 0.33
P5 1.3×103 7.4×102 9.5×104 1.7×103 3.5×101 8.5×107 5.0×101 0.39
P3 1.6×104 7.0×102 6.1×104 1.7×103 2.7×101 4.7×107 3.1×101 0.31
P1 9.0×104 3.5×102 1.2×103 1.8×103 5.1×101 1.0×106 6.2×101 0.35
Pz 5.5×104 2.0×102 7.6×104 1.9×103 3.3×101 5.8×107 4.0×101 0.33
P2 1.0×103 3.7×102 1.1×103 1.9×103 4.6×101 8.9×107 5.6×101 0.33
P4 6.6×104 5.9×102 7.5×104 1.7×103 3.1×101 6.1×107 3.6×101 0.29
P6 5.2×104 6.9×102 9.7×104 1.6×103 3.7×101 8.3×107 5.4×101 0.30
P8 1.2×103 6.5×103 1.7×104 2.1×103 6.9×102 1.6×107 2.9×100 0.30
P10 1.0×103 1.1×101 3.8×104 1.7×103 1.9×101 2.4×107 2.3×101 0.86
PO9 6.1×104 7.0×102 1.8×103 1.7×103 7.1×101 1.5×106 8.8×101 0.58
PO7 4.5×103 1.2×101 2.1×103 2.3×103 8.3×101 1.8×106 9.9×101 0.31
PO5 1.1×103 8.5×102 1.0×104 1.8×103 2.1×102 1.2×107 6.7×100 0.37
PO3 6.7×104 6.8×102 1.1×103 1.8×103 4.6×101 9.4×107 5.5×101 0.34
PO1 9.6×104 4.9×102 1.6×103 1.8×103 6.4×101 1.3×106 7.7×101 0.33
POz 8.4×104 3.0×102 1.1×103 1.8×103 4.7×101 9.4×107 5.6×101 0.35
PO2 7.8×104 6.3×102 1.2×103 1.8×103 4.9×101 9.5×107 6.0×101 0.36
PO4 3.2×104 8.4×102 1.4×103 1.8×103 5.6×101 1.1×106 6.8×101 0.34
PO6 4.6×104 7.6×102 1.0×103 1.9×103 3.9×101 8.7×107 5.6×101 0.53
PO8 1.5×104 1.2×101 2.4×104 2.3×103 7.4×102 2.5×107 4.7×102 0.53
PO10 1.2×103 5.1×102 2.1×103 1.9×103 8.3×101 1.8×106 1.0×102 0.98
O1 1.9×103 4.2×103 5.0×104 2.4×103 1.7×101 4.6×107 1.2×101 0.39
Oz 1.2×103 4.7×102 1.7×104 1.9×103 5.1×102 1.7×107 1.1×101 0.49
O2 1.5×103 7.4×102 6.7×104 2.4×103 2.7×101 5.7×107 4.0×101 0.36
I1 1.2×103 7.8×102 3.0×103 2.0×103 1.2×100 2.5×106 1.5×102 0.89
Iz 6.9×104 5.7×102 3.1×103 2.0×103 1.2×100 2.5×106 1.6×102 0.39
I2 1.3×103 5.4×102 2.8×103 2.0×103 1.1×100 2.3×106 1.4×102 0.61
AFp9h 5.5×103 1.0×101 6.7×103 2.7×103 2.6×100 5.7×106 3.3×102 0.44
AFp7h 1.7×104 9.4×102 7.2×104 1.4×103 3.1×101 5.7×107 3.6×101 0.19
AFp5h 3.1×104 8.0×102 2.6×104 1.1×103 8.1×102 2.5×107 1.4×101 0.18
AFp3h 1.2×103 9.4×102 3.7×104 1.2×103 1.4×101 3.3×107 2.3×101 0.18
AFp1h 2.1×103 1.2×101 1.6×105 1.4×103 5.6×103 1.2×108 7.5×100 0.18
AFp2h 1.6×103 1.1×101 8.9×105 1.5×103 3.6×102 7.1×108 1.2×101 0.18
AFp4h 6.9×104 9.1×102 3.6×104 1.4×103 1.3×101 3.2×107 2.2×101 0.19
AFp6h 3.7×104 7.2×102 4.7×104 1.4×103 1.7×101 4.2×107 2.7×101 0.21
AFp8h 4.4×103 5.7×102 6.6×104 1.6×103 2.7×101 5.3×107 4.4×101 0.20
AFp10h 1.4×103 3.5×102 8.3×104 2.8×103 3.3×101 6.6×107 3.1×101 0.39
AFF9h 3.3×103 2.3×102 5.9×103 3.2×103 2.3×100 4.9×106 3.0×102 0.26
AFF7h 3.6×105 1.2×101 8.9×104 9.2×104 3.7×101 7.1×107 4.5×101 0.21
AFF5h 7.0×104 1.0×101 9.9×105 9.9×104 4.9×102 6.3×108 1.0×100 0.15
AFF3h 6.1×104 1.0×101 1.7×104 1.1×103 7.1×102 1.4×107 2.7×100 0.15
AFF1h 1.2×103 1.3×101 4.0×104 1.2×103 1.6×101 3.4×107 1.4×101 0.17
AFF2h 1.6×103 1.3×101 1.3×103 1.3×103 5.2×101 1.1×106 6.1×101 0.19
AFF4h 1.1×103 1.1×101 6.1×104 1.2×103 2.5×101 4.9×107 2.8×101 0.19
AFF6h 6.5×104 1.2×101 1.1×103 1.0×103 4.4×101 9.6×107 5.1×101 0.15
AFF8h 1.4×103 1.4×101 5.5×104 9.8×104 2.3×101 4.5×107 2.4×101 0.15
AFF10h 4.7×103 1.8×101 4.7×103 3.0×103 1.8×100 3.9×106 2.3×102 0.30
FFT9h 1.0×103 1.2×102 1.8×103 2.6×103 7.0×101 1.5×106 8.5×101 0.28
FFT7h 2.3×103 2.5×102 7.0×104 1.1×103 2.6×101 6.1×107 4.0×101 0.19
FFC5h 3.3×104 8.3×102 3.6×104 9.8×104 1.3×101 3.2×107 9.5×100 0.10
FFC3h 8.8×104 1.1×101 7.7×104 1.2×103 2.8×101 6.8×107 2.8×101 0.14
FFC1h 1.2×103 1.1×101 1.0×103 1.2×103 3.8×101 9.3×107 4.0×101 0.13
FFC2h 9.4×104 1.3×101 3.1×103 1.3×103 1.2×100 2.7×106 1.5×102 0.24
FFC4h 7.8×104 8.5×102 2.2×103 1.1×103 8.6×101 1.8×106 1.1×102 0.24
FFC6h 2.6×104 7.9×102 1.2×103 1.0×103 4.7×101 9.6×107 5.7×101 0.14
FFT8h 2.6×103 3.3×103 2.6×104 1.1×103 6.8×102 2.7×107 1.1×101 0.15
FFT10h 3.1×103 9.7×102 4.0×103 2.5×103 1.6×100 3.4×106 2.0×102 0.24
FTT9h 4.4×103 3.6×102 3.9×103 2.6×103 1.5×100 3.3×106 1.9×102 0.29
FTT7h 1.6×104 4.1×102 3.2×104 1.5×103 1.3×101 2.6×107 2.4×101 0.16
FCC5h 1.0×103 6.3×102 1.9×104 1.1×103 7.7×102 1.6×107 1.7×101 0.10
FCC3h 2.7×105 8.1×102 6.6×104 1.4×103 2.7×101 5.4×107 3.0×101 0.21
FCC1h 2.1×103 1.4×101 2.2×103 1.4×103 8.8×101 1.9×106 1.1×102 0.21
FCC2h 5.3×104 2.4×101 4.4×103 1.5×103 1.7×100 3.8×106 2.1×102 0.18
FCC4h 1.5×103 1.1×101 3.3×103 1.3×103 1.3×100 2.8×106 1.6×102 0.17
FCC6h 1.2×103 8.3×102 1.3×103 1.0×103 5.3×101 1.1×106 6.4×101 0.14
FTT8h 2.5×103 8.4×102 2.0×103 1.1×103 8.1×101 1.6×106 1.0×102 0.12
FTT10h 1.8×103 4.1×102 2.4×103 1.9×103 9.9×101 2.0×106 1.3×102 0.18
TTP9h 2.0×103 6.7×103 1.5×103 2.1×103 6.0×101 1.3×106 7.0×101 0.15
TTP7h 5.3×104 1.1×101 2.1×103 1.5×103 8.1×101 1.9×106 1.1×102 0.26
CCP5h 9.6×104 5.1×102 2.3×104 1.3×103 1.1×101 1.5×107 1.1×101 0.17
CCP3h 2.7×104 1.8×102 4.3×104 1.7×103 1.9×101 3.1×107 2.1×101 0.26
CCP1h 1.3×103 5.0×104 1.1×103 1.6×103 4.4×101 9.1×107 5.2×101 0.24
CCP2h 3.4×103 1.7×101 1.9×103 1.7×103 7.3×101 1.7×106 8.5×101 0.18
CCP4h 4.2×104 6.6×102 1.2×103 1.5×103 4.9×101 1.0×106 5.9×101 0.26
CCP6h 2.1×103 6.1×102 2.6×104 1.3×103 1.2×101 1.9×107 1.1×101 0.20
TTP8h 8.8×104 1.1×102 8.0×104 1.4×103 2.8×101 7.4×107 3.8×101 0.19
TTP10h 1.6×103 4.6×102 2.7×103 2.3×103 1.1×100 2.3×106 1.4×102 0.24
TPP9h 1.2×104 4.0×104 8.9×104 1.9×103 3.7×101 7.1×107 4.4×101 0.20
TPP7h 4.4×104 1.1×101 6.5×104 1.8×103 2.3×101 5.8×107 3.4×101 0.30
CPP5h 3.8×104 6.6×102 1.6×104 1.6×103 3.0×102 2.0×107 6.5×100 0.27
CPP3h 1.8×104 4.4×102 4.8×104 1.7×103 2.2×101 3.6×107 2.5×101 0.33
CPP1h 7.6×104 4.4×103 6.0×104 1.8×103 2.7×101 4.5×107 3.2×101 0.34
CPP2h 6.3×104 2.4×102 9.8×104 1.9×103 4.1×101 7.8×107 5.0×101 0.32
CPP4h 1.8×104 4.7×102 7.4×104 1.8×103 3.1×101 5.9×107 3.6×101 0.33
CPP6h 2.3×104 6.6×102 8.5×104 1.6×103 3.2×101 7.4×107 4.7×101 0.23
TPP8h 4.6×104 4.1×102 1.2×103 1.6×103 4.5×101 1.0×106 6.4×101 0.25
TPP10h 2.1×104 1.1×102 1.5×104 1.8×103 7.0×102 8.7×108 4.1×100 0.21
PPO9h 9.3×104 5.7×102 1.5×103 2.2×103 6.0×101 1.2×106 7.1×101 0.37
PPO7h 4.2×104 1.7×102 1.9×103 2.1×103 7.4×101 1.6×106 1.0×102 0.41
PPO5h 2.0×104 9.3×102 6.5×104 1.7×103 2.8×101 5.0×107 3.3×101 0.32
PPO3h 8.2×104 5.9×102 1.8×103 1.8×103 7.2×101 1.5×106 8.9×101 0.32
PPO1h 6.6×104 3.6×102 1.6×103 1.8×103 6.5×101 1.3×106 8.0×101 0.33
PPO2h 7.2×104 3.4×102 9.6×104 1.8×103 4.1×101 7.6×107 5.0×101 0.33
PPO4h 9.0×104 6.8×102 1.2×103 1.9×103 4.7×101 9.4×107 5.7×101 0.32
PPO6h 7.7×104 6.9×102 2.6×104 1.8×103 1.2×101 2.0×107 1.0×101 0.33
PPO8h 1.3×103 9.1×102 9.1×104 1.7×103 3.6×101 7.7×107 5.5×101 0.37
PPO10h 2.6×103 6.2×102 1.0×103 2.3×103 4.2×101 8.6×107 4.8×101 0.25
POO9h 8.5×104 6.7×103 1.5×103 2.1×103 6.1×101 1.2×106 7.7×101 0.37
POO7h 4.8×106 5.2×102 1.2×103 2.2×103 4.8×101 1.0×106 7.0×101 0.45
POO5h 1.0×103 1.1×102 9.4×104 2.0×103 3.8×101 7.8×107 4.5×101 0.34
POO3h 2.7×104 9.4×102 1.6×104 1.8×103 6.7×102 1.4×107 2.1×100 0.34
POO1h 1.4×103 8.7×102 1.6×103 1.9×103 6.4×101 1.3×106 7.8×101 0.47
POO2h 1.6×103 6.2×102 5.8×104 1.8×103 2.4×101 4.7×107 2.7×101 0.38
POO4h 7.6×104 8.1×102 8.9×104 1.8×103 3.7×101 7.1×107 4.4×101 0.39
POO6h 3.5×104 9.6×102 3.4×104 1.9×103 1.2×101 3.1×107 2.0×101 0.42
POO8h 1.4×103 3.6×102 8.9×104 2.0×103 3.5×101 7.5×107 3.9×101 0.31
POO10h 2.5×103 7.8×102 2.7×103 2.2×103 1.1×100 2.3×106 1.3×102 0.38
OI1h 7.2×104 1.1×101 3.8×103 2.3×103 1.5×100 3.2×106 1.9×102 0.40
OI2h 7.6×104 1.2×101 4.0×103 2.1×103 1.6×100 3.4×106 1.9×102 0.36
Fp1h 3.1×103 1.6×101 8.1×104 1.4×103 3.3×101 6.6×107 5.2×101 0.14
Fp2h 3.1×103 1.7×101 3.1×104 1.4×103 1.3×101 2.6×107 2.3×101 0.16
AF9h 2.2×103 6.2×102 3.4×103 3.2×103 1.4×100 2.9×106 1.7×102 0.37
AF7h 1.6×103 1.8×101 2.2×104 9.8×104 1.1×101 1.6×107 9.5×100 0.21
AF5h 1.0×103 1.0×101 1.1×104 1.1×103 3.2×102 1.2×107 9.2×100 0.17
AF3h 1.1×103 1.0×101 1.5×104 1.1×103 4.8×102 1.5×107 1.1×101 0.18
AF1h 1.7×103 1.2×101 3.5×104 1.3×103 1.4×101 2.9×107 1.1×101 0.18
AF2h 1.3×103 1.1×101 6.2×104 1.4×103 2.5×101 5.2×107 2.6×101 0.19
AF4h 1.1×103 1.1×101 1.5×104 1.3×103 6.8×102 1.1×107 3.6×100 0.21
AF6h 7.0×104 7.7×102 1.6×105 1.1×103 2.8×103 2.7×108 4.9×100 0.21
AF8h 4.5×105 1.1×101 1.3×103 1.1×103 5.0×101 1.1×106 5.9×101 0.17
AF10h 2.5×103 4.2×102 2.5×103 3.3×103 9.7×101 2.1×106 1.2×102 0.41
F9h 1.7×103 7.1×102 3.8×103 2.9×103 1.5×100 3.2×106 1.9×102 0.32
F7h 4.2×103 2.9×102 2.0×104 1.1×103 9.5×102 1.4×107 7.7×100 0.15
F5h 3.1×105 9.1×102 5.7×104 9.8×104 2.2×101 4.8×107 2.2×101 0.11
F3h 5.9×104 1.1×101 6.4×104 1.2×103 2.4×101 5.7×107 2.3×101 0.13
F1h 1.1×103 1.2×101 1.1×103 1.1×103 4.0×101 9.4×107 4.2×101 0.14
F2h 1.7×103 1.1×101 2.5×103 1.2×103 9.8×101 2.1×106 1.2×102 0.16
F4h 1.1×103 8.0×102 1.2×103 1.1×103 4.9×101 9.8×107 5.9×101 0.16
F6h 3.9×104 7.2×102 5.5×104 1.0×103 2.3×101 4.5×107 2.4×101 0.11
F8h 1.6×103 7.4×102 8.0×104 1.1×103 3.0×101 7.0×107 4.5×101 0.16
F10h 5.4×103 2.0×102 1.2×103 2.9×103 5.2×101 9.5×107 6.2×101 0.29
FT9h 1.4×104 1.6×101 2.1×103 2.5×103 8.7×101 1.8×106 1.1×102 0.19
FT7h 1.1×104 6.6×102 7.4×105 1.4×103 2.4×102 6.4×108 1.0×101 0.16
FC5h 7.0×104 8.1×102 1.1×104 1.0×103 4.7×102 7.6×108 1.4×101 0.09
FC3h 4.2×104 1.1×101 6.2×104 1.2×103 2.4×101 5.3×107 2.4×101 0.16
FC1h 1.9×103 1.2×101 1.6×103 1.3×103 6.1×101 1.3×106 7.1×101 0.20
FC2h 9.3×105 1.7×101 3.9×103 1.4×103 1.5×100 3.3×106 1.9×102 0.24
FC4h 1.5×105 1.1×101 3.4×103 1.2×103 1.3×100 2.9×106 1.7×102 0.24
FC6h 1.0×103 9.9×102 1.8×103 1.0×103 7.1×101 1.5×106 8.8×101 0.15
FT8h 1.4×103 2.2×102 9.6×104 1.1×103 4.1×101 7.6×107 5.1×101 0.16
FT10h 7.7×103 1.7×101 4.3×103 2.5×103 1.7×100 3.7×106 2.1×102 0.24
T9h 4.2×103 1.4×101 1.1×103 2.4×103 4.8×101 8.6×107 6.1×101 0.24
T7h 1.4×104 8.8×102 4.8×104 1.4×103 1.7×101 4.4×107 2.6×101 0.24
C5h 1.4×103 5.6×102 3.7×104 1.2×103 1.6×101 2.8×107 1.5×101 0.12
C3h 5.0×104 4.5×102 8.2×104 1.6×103 3.3×101 6.6×107 3.9×101 0.24
C1h 2.3×103 6.4×102 1.5×103 1.5×103 6.0×101 1.3×106 7.2×101 0.21
C2h 2.9×103 2.5×101 3.7×103 1.5×103 1.4×100 3.2×106 1.7×102 0.16
C4h 1.3×103 9.0×102 2.2×103 1.4×103 8.5×101 1.8×106 1.0×102 0.18
C6h 1.6×103 6.9×102 7.4×104 1.2×103 3.1×101 6.1×107 3.5×101 0.18
T8h 2.5×103 9.5×102 1.2×103 1.2×103 5.0×101 9.9×107 6.1×101 0.14
T10h 3.8×103 1.2×101 4.7×103 2.1×103 1.8×100 4.0×106 2.3×102 0.19
TP9h 5.8×104 4.6×102 9.3×104 2.2×103 4.1×101 6.9×107 5.1×101 0.20
TP7h 1.1×103 9.4×102 1.4×103 1.7×103 5.0×101 1.2×106 6.7×101 0.27
CP5h 7.7×104 5.2×102 1.6×104 1.5×103 3.2×102 2.0×107 7.0×100 0.21
CP3h 1.3×104 2.4×102 4.4×105 1.7×103 4.9×102 3.0×108 3.7×100 0.30
CP1h 7.1×104 9.5×103 7.4×104 1.7×103 3.2×101 5.7×107 3.8×101 0.30
CP2h 2.1×103 7.8×102 1.2×103 1.9×103 4.9×101 1.0×106 5.7×101 0.31
CP4h 5.2×105 4.5×102 5.6×104 1.7×103 2.4×101 4.4×107 2.7×101 0.31
CP6h 1.7×103 6.1×102 4.4×104 1.5×103 1.6×101 4.0×107 2.5×101 0.22
TP8h 1.6×103 7.0×103 4.7×104 1.6×103 1.7×101 4.4×107 2.6×101 0.23
TP10h 8.7×104 1.0×102 1.8×103 2.1×103 7.0×101 1.5×106 8.4×101 0.26
P9h 9.6×104 6.0×102 2.0×103 2.0×103 8.1×101 1.7×106 1.0×102 0.39
P7h 1.2×103 1.1×101 1.7×103 2.0×103 6.7×101 1.4×106 9.3×101 0.40
P5h 1.8×104 6.5×102 1.5×104 1.7×103 2.8×102 2.0×107 6.1×100 0.28
P3h 6.8×104 5.6×102 1.3×103 1.8×103 5.1×101 1.0×106 6.2×101 0.34
P1h 6.5×104 2.4×102 7.8×104 1.9×103 3.4×101 6.1×107 4.1×101 0.34
P2h 6.8×104 2.7×102 8.6×104 1.9×103 3.7×101 6.7×107 4.5×101 0.33
P4h 7.7×104 5.1×102 1.0×103 1.9×103 4.1×101 8.2×107 4.9×101 0.32
P6h 7.3×104 6.4×102 1.7×104 1.6×103 7.7×102 1.2×107 4.6×100 0.27
P8h 1.8×103 2.2×102 1.5×103 1.6×103 5.9×101 1.3×106 8.3×101 0.34
P10h 1.9×104 7.9×102 1.6×103 2.1×103 6.7×101 1.3×106 8.3×101 0.28
PO9h 6.0×104 9.1×103 3.0×103 2.1×103 1.2×100 2.5×106 1.5×102 0.32
PO7h 11.3×103 5.0×103 3.7×104 2.1×103 1.4×101 3.1×107 2.8×101 0.39
PO5h 3.5×104 8.4×102 3.4×104 1.8×103 1.5×101 2.6×107 1.5×101 0.36
PO3h 8.5×104 6.5×102 1.6×103 1.8×103 6.5×101 1.4×106 7.9×101 0.31
PO1h 8.5×104 3.9×102 1.7×103 1.8×103 6.9×101 1.4×106 8.4×101 0.37
PO2h 1.0×103 4.0×102 9.1×104 1.8×103 3.8×101 7.3×107 4.5×101 0.36
PO4h 6.6×104 7.8×102 1.4×103 1.8×103 5.8×101 1.2×106 7.1×101 0.35
PO6h 2.3×104 9.2×102 4.9×104 1.8×103 2.0×101 4.0×107 2.1×101 0.39
PO8h 7.8×104 8.9×102 1.4×103 2.1×103 5.6×101 1.2×106 8.0×101 0.55
PO10h 7.2×104 7.3×102 3.2×103 2.2×103 1.3×100 2.8×106 1.6×102 0.36
O1h 9.1×104 1.0×101 4.7×105 2.2×103 2.0×102 2.6×108 1.0×101 0.39
O2h 2.4×103 2.7×102 7.5×104 2.1×103 2.9×101 6.3×107 4.4×101 0.35
I1h 1.6×103 8.1×102 3.6×103 2.0×103 1.4×100 3.0×106 1.8×102 0.86
I2h 8.2×104 8.9×102 2.2×103 1.9×103 9.0×101 1.9×106 1.1×102 0.48
AFp9 4.2×103 5.6×102 3.6×103 2.3×103 1.4×100 3.1×106 1.7×102 0.48
AFp7 5.1×103 1.4×101 2.1×103 2.3×103 7.8×101 1.8×106 1.0×102 0.19
AFp5 2.5×104 8.4×102 1.1×104 1.2×103 1.8×102 1.4×107 5.5×100 0.19
AFp3 5.8×104 8.4×102 3.7×104 1.1×103 1.3×101 3.5×107 2.0×101 0.18
AFp1 1.9×103 1.2×101 2.5×104 1.3×103 9.8×102 2.2×107 1.9×101 0.16
AFpz 1.8×103 1.1×101 9.7×105 1.5×103 3.8×102 8.4×108 1.7×100 0.18
AFp2 1.4×103 1.1×101 2.1×104 1.4×103 8.6×102 1.8×107 1.8×101 0.18
AFp4 3.8×104 8.1×102 4.3×104 1.4×103 1.6×101 3.9×107 2.5×101 0.20
AFp6 6.8×104 6.8×102 5.5×104 1.4×103 2.2×101 4.7×107 3.5×101 0.21
AFp8 2.5×103 1.4×102 4.2×104 2.3×103 1.8×101 3.3×107 1.6×101 0.17
AFp10 3.4×103 5.0×102 2.2×103 2.3×103 8.8×101 1.8×106 1.1×102 0.36
AFF9 3.9×103 1.8×102 3.5×103 2.6×103 1.4×100 2.9×106 1.8×102 0.73
AFF7 7.8×104 6.5×102 2.8×103 1.6×103 1.1×100 2.3×106 1.4×102 0.20
AFF5 8.3×104 1.0×101 6.9×105 8.4×104 4.4×102 3.0×108 8.4×101 0.18
AFF3 8.1×104 1.0×101 1.4×104 1.1×103 6.4×102 1.0×107 2.7×100 0.15
AFF1 6.4×104 1.1×101 6.6×105 1.1×103 2.5×102 5.6×108 4.0×100 0.15
AFFz 1.5×103 1.4×101 1.0×103 1.3×103 4.1×101 8.7×107 4.6×101 0.18
AFF2 1.2×103 1.3×101 9.1×104 1.2×103 3.7×101 7.4×107 4.3×101 0.19
AFF4 3.0×104 1.1×101 9.0×104 1.1×103 3.6×101 7.5×107 4.1×101 0.18
AFF6 1.3×103 1.5×101 1.3×103 9.9×104 4.9×101 1.1×106 5.7×101 0.11
AFF8 6.2×104 1.7×101 8.4×104 1.5×103 3.4×101 7.1×107 3.8×101 0.24
AFF10 2.8×103 6.9×102 3.3×103 2.8×103 1.3×100 2.8×106 1.6×102 0.70
FFT9 1.8×103 2.1×103 1.5×103 2.7×103 5.9×101 1.2×106 7.3×101 0.83
FFT7 1.4×103 3.0×102 1.7×103 1.7×103 6.3×101 1.5×106 8.4×101 0.33
FFC5 1.4×103 3.9×102 2.1×104 9.3×104 8.3×102 1.7×107 1.7×101 0.07
FFC3 3.5×104 1.1×101 6.7×104 1.1×103 2.6×101 5.8×107 2.5×101 0.11
FFC1 1.5×103 1.2×101 1.0×103 1.1×103 3.8×101 9.1×107 3.9×101 0.14
FFCz 7.7×104 1.1×101 1.8×103 1.2×103 6.9×101 1.6×106 8.2×101 0.21
FFC2 9.5×104 1.0×101 3.0×103 1.2×103 1.2×100 2.5×106 1.5×102 0.25
FFC4 4.2×104 7.6×102 1.2×103 1.0×103 5.1×101 1.0×106 6.2×101 0.18
FFC6 1.2×103 8.4×102 6.3×104 9.4×104 2.7×101 5.1×107 3.0×101 0.14
FFT8 2.3×103 7.7×102 1.7×103 1.7×103 6.8×101 1.4×106 8.6×101 0.11
FFT10 1.9×103 1.7×102 4.2×103 2.7×103 1.7×100 3.5×106 2.1×102 0.93
FTT9 2.6×104 3.2×102 1.5×103 2.1×103 6.1×101 1.3×106 7.2×101 0.71
FTT7 1.3×103 8.3×102 1.5×103 2.2×103 6.0×101 1.3×106 7.1×101 0.16
FCC5 5.4×104 5.3×102 5.2×104 1.1×103 2.1×101 4.4×107 3.4×101 0.09
FCC3 9.8×104 7.1×102 4.0×105 1.2×103 2.6×102 2.0×108 2.4×100 0.14
FCC1 1.7×103 8.5×102 1.3×103 1.4×103 5.3×101 1.1×106 6.4×101 0.21
FCCz 1.2×103 2.3×101 3.4×103 1.5×103 1.3×100 2.9×106 1.6×102 0.20
FCC2 4.9×104 1.4×101 4.3×103 1.4×103 1.7×100 3.7×106 2.1×102 0.19
FCC4 1.1×103 9.2×102 2.1×103 1.2×103 8.5×101 1.8×106 1.0×102 0.13
FCC6 1.9×103 7.4×102 1.3×103 1.0×103 5.3×101 1.1×106 6.5×101 0.12
FTT8 3.1×103 1.7×102 1.5×103 1.5×103 6.1×101 1.2×106 7.8×101 0.14
FTT10 3.4×103 6.2×102 3.2×103 1.9×103 1.3×100 2.6×106 1.7×102 0.33
TTP9 1.7×103 5.1×102 1.1×103 1.9×103 4.0×101 9.4×107 4.4×101 0.42
TTP7 1.4×103 4.0×102 1.2×103 2.2×103 4.3×101 1.1×106 5.9×101 0.28
CCP5 7.9×104 7.9×102 3.5×104 1.3×103 1.1×101 3.3×107 1.9×101 0.18
CCP3 4.5×104 3.5×102 3.8×104 1.5×103 1.7×101 2.8×107 1.8×101 0.24
CCP1 6.9×104 9.1×103 7.7×104 1.6×103 3.2×101 6.1×107 3.8×101 0.25
CCPz 2.3×103 8.2×102 1.4×103 1.7×103 5.4×101 1.2×106 6.2×101 0.24
CCP2 2.3×103 1.3×101 2.0×103 1.6×103 7.7×101 1.7×106 9.1×101 0.21
CCP4 1.5×103 6.6×102 6.3×104 1.4×103 2.6×101 5.1×107 2.9×101 0.23
CCP6 1.5×103 3.9×102 1.0×105 1.2×103 2.8×102 2.2×108 1.8×101 0.16
TTP8 2.8×104 1.1×101 5.0×104 2.0×103 1.7×101 4.6×107 2.6×101 0.19
TTP10 2.1×103 7.2×102 1.8×103 1.7×103 7.3×101 1.5×106 9.0×101 0.13
TPP9 1.0×103 1.5×102 9.9×104 1.6×103 4.1×101 7.8×107 5.1×101 0.78
TPP7 8.6×105 4.0×102 9.1×105 2.0×103 6.2×102 5.9×108 3.0×100 0.29
CPP5 3.3×104 9.8×102 5.8×104 1.6×103 2.0×101 5.4×107 3.0×101 0.31
CPP3 4.5×105 5.4×102 7.0×107 1.7×103 3.2×102 66.8×108 1.6×100 0.31
CPP1 8.0×104 1.9×102 8.1×104 1.8×103 3.4×101 6.3×107 4.2×101 0.34
CPPz 5.5×104 1.4×102 6.2×104 1.9×103 2.7×101 4.6×107 3.2×101 0.33
CPP2 7.3×104 3.8×102 1.2×103 1.9×103 4.8×101 9.6×107 5.9×101 0.33
CPP4 8.1×105 5.7×102 1.7×104 1.7×103 4.9×102 1.8×107 1.1×101 0.29
CPP6 9.7×104 7.5×102 1.1×103 1.5×103 4.2×101 9.5×107 6.0×101 0.21
TPP8 4.0×104 2.8×103 7.2×104 2.0×103 2.7×101 6.3×107 4.0×101 0.27
TPP10 1.1×104 1.8×101 5.3×104 1.3×103 1.5×101 5.9×107 1.9×101 0.83
PPO9 8.4×104 5.9×102 1.2×103 1.7×103 4.8×101 9.3×107 6.0×101 0.80
PPO7 4.0×104 2.8×102 1.4×103 2.4×103 5.5×101 1.2×106 6.2×101 0.44
PPO5 2.5×104 5.8×102 1.2×104 1.8×103 1.9×102 1.5×107 5.7×100 0.31
PPO3 2.8×104 7.9×102 1.1×103 1.7×103 4.6×101 9.1×107 5.5×101 0.29
PPO1 9.0×104 4.3×102 1.9×103 1.8×103 7.6×101 1.6×106 9.4×101 0.33
PPOz 5.5×104 2.3×102 1.3×103 1.9×103 5.2×101 1.0×106 6.5×101 0.33
PPO2 8.2×104 5.7×102 1.1×103 1.9×103 4.7×101 9.1×107 5.7×101 0.33
PPO4 6.6×104 6.8×102 7.9×104 1.8×103 3.3×101 6.4×107 3.7×101 0.31
PPO6 1.1×103 8.9×102 8.0×105 1.7×103 2.4×102 8.2×108 8.9×100 0.36
PPO8 8.0×104 8.5×103 3.9×104 2.2×103 1.7×101 2.9×107 3.1×101 0.36
PPO10 6.6×104 3.8×102 8.0×104 1.9×103 2.9×101 7.8×107 4.1×101 0.47
POO9 2.1×103 5.8×102 3.4×103 1.9×103 1.3×100 2.8×106 1.7×102 0.93
POO7 2.0×104 1.1×102 4.7×104 2.3×103 1.8×101 4.0×107 1.4×101 0.40
POO5 4.9×104 4.5×102 6.2×104 2.0×103 2.5×101 5.3×107 3.8×101 0.35
POO3 3.1×104 7.4×102 7.4×104 1.9×103 3.0×101 6.2×107 3.3×101 0.40
POO1 5.4×104 9.4×102 1.1×103 1.9×103 4.5×101 9.3×107 5.2×101 0.37
POOz 1.1×103 6.2×102 1.0×103 1.8×103 4.2×101 8.6×107 4.9×101 0.46
POO2 1.4×103 7.8×102 1.0×103 1.8×103 4.2×101 8.3×107 5.0×101 0.37
POO4 7.5×104 9.2×102 3.0×104 1.8×103 1.3×101 2.2×107 1.3×101 0.37
POO6 1.1×103 6.7×102 2.9×104 1.9×103 1.3×101 2.0×107 2.6×101 0.46
POO8 1.2×103 1.9×102 1.5×103 2.4×103 5.5×101 1.3×106 6.1×101 0.33
POO10 1.5×103 6.7×102 2.6×103 2.1×103 1.0×100 2.2×106 1.3×102 0.78
OI1 3.8×104 2.1×102 2.3×103 2.2×103 9.2×101 1.9×106 1.2×102 0.39
OIz 1.3×104 8.5×102 4.0×103 2.1×103 1.5×100 3.4×106 1.9×102 0.39
OI2 3.4×104 2.8×102 4.1×103 2.2×103 1.6×100 3.5×106 2.0×102 0.38

Appendix A: Generalized Model of the Differential Pathlength Factor

The earlier works by Scholkmann and Wolf37 and Duncan et al.31 have suggested equations to estimate the DPF as a function of the subject age. Using our simulations from the N=90 subjects in this work, we attempted to fit a similar equation to the work of Scholkmann and Wolf to additionally incorporate head circumference and gender. The DPF values from each of the 320 10-5 positions on the head by 90 subjects were fit to a linear regression model using up to a third power of head circumference, age, and wavelength. A stepwise regression of the entire dataset was used to find the best set of covariates given the inclusion criteria of p<0.05 for the change in F-statistic of the increased model. Based on this, we model with a total of seven coefficients given by

DPF=β0+β1(circ)+β2(circ)2+β3(circ)3+β4{1  if  female0}+β5·(age)+β6·(λ),

where circ is the head circumference in millimeters, age is in months, and the wavelength is in nanometeres units.

Disclosures

None of the authors has any financial conflicts of interest to disclose related to this work.

References

  • 1.Jobsis F. F., “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198(4323), 1264–1267 (1977). 10.1126/science.929199 [DOI] [PubMed] [Google Scholar]
  • 2.Mihara M., Miyai I., “Review of functional near-infrared spectroscopy in neurorehabilitation,” Neurophotonics 3(3), 031414 (2016). 10.1117/1.NPh.3.3.031414 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Hoshi Y., Yamada Y., “Overview of diffuse optical tomography and its clinical applications,” J. Biomed. Opt. 21(9), 091312 (2016). 10.1117/1.JBO.21.9.091312 [DOI] [PubMed] [Google Scholar]
  • 4.Obrig H., “NIRS in clinical neurology—a ‘promising’ tool?” NeuroImage 85(Part 1), 535–546 (2014). 10.1016/j.neuroimage.2013.03.045 [DOI] [PubMed] [Google Scholar]
  • 5.Obrig H., Villringer A., “Beyond the visible—imaging the human brain with light,” J. Cereb. Blood Flow Metab. 23(1), 1–18 (2003). 10.1097/01.WCB.0000043472.45775.29 [DOI] [PubMed] [Google Scholar]
  • 6.Boas D. A., Dale A. M., Franceschini M. A., “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” NeuroImage 23(Suppl. 1), S275–S288 (2004). 10.1016/j.neuroimage.2004.07.011 [DOI] [PubMed] [Google Scholar]
  • 7.Li Y., et al. , “The neural substrates of cognitive flexibility are related to individual differences in preschool irritability: a fNIRS investigation,” Dev. Cognit. Neurosci. 25, 138–144 (2017). 10.1016/j.dcn.2016.07.002 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Perlman S. B., et al. , “fNIRS evidence of prefrontal regulation of frustration in early childhood,” NeuroImage 85, 326–334 (2014). 10.1016/j.neuroimage.2013.04.057 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Lloyd-Fox S., Blasi A., Elwell C. E., “Illuminating the developing brain: the past, present and future of functional near infrared spectroscopy,” Neurosci. Biobehav. Rev. 34(3), 269–284 (2010). 10.1016/j.neubiorev.2009.07.008 [DOI] [PubMed] [Google Scholar]
  • 10.Aslin R. N., Mehler J., “Near-infrared spectroscopy for functional studies of brain activity in human infants: promise, prospects, and challenges,” J. Biomed. Opt. 10(1), 011009 (2005). 10.1117/1.1854672 [DOI] [PubMed] [Google Scholar]
  • 11.Gervain J., et al. , “Near-infrared spectroscopy: a report from the McDonnell infant methodology consortium,” Dev. Cognit. Neurosci. 1(1), 22–46 (2011). 10.1016/j.dcn.2010.07.004 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Aslin R. N., “Questioning the questions that have been asked about the infant brain using near-infrared spectroscopy,” Cognit. Neuropsychol. 29(1–2), 7–33 (2012). 10.1080/02643294.2012.654773 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Fjell A. M., et al. , “One-year brain atrophy evident in healthy aging,” J. Neurosci. 29(48), 15223–15231 (2009). 10.1523/JNEUROSCI.3252-09.2009 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Bonnery C., et al. , “Changes in diffusion path length with old age in diffuse optical tomography,” J. Biomed. Opt. 17(5), 056002 (2012). 10.1117/1.JBO.17.5.056002 [DOI] [PubMed] [Google Scholar]
  • 15.Beauchamp M. S., et al. , “The developmental trajectory of brain-scalp distance from birth through childhood: implications for functional neuroimaging,” PLoS One 6(9), e24981 (2011). 10.1371/journal.pone.0024981 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Cope M., et al. , “Methods of quantitating cerebral near infrared spectroscopy data,” Adv. Exp. Med. Biol. 222, 183–189 (1988). 10.1007/978-1-4615-9510-6 [DOI] [PubMed] [Google Scholar]
  • 17.Perlman S. B., et al. , “Neural substrates of child irritability in typically developing and psychiatric populations,” Dev. Cognit. Neurosci. 14, 71–80 (2015). 10.1016/j.dcn.2015.07.003 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Dale A. M., Fischl B., Sereno M. I., “Cortical surface-based analysis. I. Segmentation and surface reconstruction,” NeuroImage 9(2), 179–194 (1999). 10.1006/nimg.1998.0395 [DOI] [PubMed] [Google Scholar]
  • 19.Glasser M. F., et al. , “The minimal preprocessing pipelines for the Human Connectome Project,” NeuroImage 80, 105–124 (2013). 10.1016/j.neuroimage.2013.04.127 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Segonne F., et al. , “A hybrid approach to the skull stripping problem in MRI,” NeuroImage 22(3), 1060–1075 (2004). 10.1016/j.neuroimage.2004.03.032 [DOI] [PubMed] [Google Scholar]
  • 21.Fang Q., Kaeli D. R., “Accelerating mesh-based Monte Carlo method on modern CPU architectures,” Biomed. Opt. Express 3(12), 3223–3230 (2012). 10.1364/BOE.3.003223 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Fang Q., “Mesh-based Monte Carlo method using fast ray-tracing in Plucker coordinates,” Biomed. Opt. Express 1(1), 165–175 (2010). 10.1364/BOE.1.000165 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Fang Q., Boas D. A., Eds., “Tetrahedral mesh generation from volumetric binary and grayscale images,” in ISBI’09 IEEE Int. Symp. on Biomedical Imaging: From Nano to Macro, IEEE; (2009). [Google Scholar]
  • 24.Strangman G., Franceschini M. A., Boas D. A., “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” NeuroImage 18(4), 865–879 (2003) 10.1016/S1053-8119(03)00021-1 [DOI] [PubMed] [Google Scholar]
  • 25.Jacques S. L., “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013). 10.1088/0031-9155/58/11/R37 [DOI] [PubMed] [Google Scholar]
  • 26.Friston K. J., Statistical Parametric Mapping: the Analysis of Functional Brain Images, 1st ed., p. 647, Elsevier/Academic Press, Amsterdam, Boston: (2007). [Google Scholar]
  • 27.Desikan R. S., et al. , “An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest,” NeuroImage 31(3), 968–980 (2006). 10.1016/j.neuroimage.2006.01.021 [DOI] [PubMed] [Google Scholar]
  • 28.Tzourio-Mazoyer N., et al. , “Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain,” NeuroImage 15(1), 273–289 (2002). 10.1006/nimg.2001.0978 [DOI] [PubMed] [Google Scholar]
  • 29.Huppert T. J., “Commentary on the statistical properties of noise and its implication on general linear models in functional near-infrared spectroscopy,” Neurophotonics 3(1), 010401 (2016). 10.1117/1.NPh.3.1.010401 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Joseph D. K., et al. , “Diffuse optical tomography system to image brain activation with improved spatial resolution and validation with functional magnetic resonance imaging,” Appl. Opt. 45(31), 8142–8151 (2006). 10.1364/AO.45.008142 [DOI] [PubMed] [Google Scholar]
  • 31.Duncan A., et al. , “Measurement of cranial optical path length as a function of age using phase resolved near infrared spectroscopy,” Pediatr. Res. 39(5), 889–894 (1996). 10.1203/00006450-199605000-00025 [DOI] [PubMed] [Google Scholar]
  • 32.Cooper C. E., et al. , “The noninvasive measurement of absolute cerebral deoxyhemoglobin concentration and mean optical path length in the neonatal brain by second derivative near infrared spectroscopy,” Pediatr. Res. 39(1), 32–38 (1996). 10.1203/00006450-199601000-00005 [DOI] [PubMed] [Google Scholar]
  • 33.van der Zee P., et al. , “Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infant as a function of inter optode spacing,” Adv. Exp. Med. Biol. 316, 143–153 (1992). 10.1007/978-1-4615-3404-4 [DOI] [PubMed] [Google Scholar]
  • 34.Essenpreis M., et al. , “Spectral dependence of temporal point spread functions in human tissues,” Appl. Opt. 32(4), 418–425 (1993). 10.1364/AO.32.000418 [DOI] [PubMed] [Google Scholar]
  • 35.Duncan A., et al. , “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol. 40(2), 295–304 (1995). 10.1088/0031-9155/40/2/007 [DOI] [PubMed] [Google Scholar]
  • 36.Zhao H., et al. , “Maps of optical differential pathlength factor of human adult forehead, somatosensory motor and occipital regions at multi-wavelengths in NIR,” Phys. Med. Biol. 47(12), 2075–2093 (2002). 10.1088/0031-9155/47/12/306 [DOI] [PubMed] [Google Scholar]
  • 37.Scholkmann F., Wolf M., “General equation for the differential pathlength factor of the frontal human head depending on wavelength and age,” J. Biomed. Opt. 18(10), 105004 (2013). 10.1117/1.JBO.18.10.105004 [DOI] [PubMed] [Google Scholar]

Articles from Neurophotonics are provided here courtesy of Society of Photo-Optical Instrumentation Engineers

RESOURCES