Skip to main content
. 2017 Jun 16;8(38):62976–62983. doi: 10.18632/oncotarget.18520

Figure 2. Effects of tideglusib on tumor growth, myodifferentiation in vivo.

Figure 2

(A & B) Western blotting of vehicle and tideglusib treated human PDX derived primary culture (PCB82 and PCB380) for detection of GSK-3β mediated phosphorylation of β-catenin which showed reduction and an increase in total β-catenin. (C) Kaplan-Meier curve showing eRMS (PCB82) and aRMS mice (PCB380) treated with 200 mg/kg tideglusib via oral gavage daily experienced no effect on survival. (D & E) Western blotting of vehicle and tideglusib treated human PDX tumors (PCB82 and PCB380) for detection of GSK3β mediated phosphorylation of β-catenin which showed reduction and an increase in total β-catenin. (F) Densitometric analysis shows the reduction in phos-β-catenin upon tideglusib treatment in eRMS (PCB82) (upper panel) and aRMS (PCB380) (lower panel) to be statistically significant (*p>0.05; **p>0.001). Error bars represent mean ± S.D. (G & H) Western blotting of vehicle and tideglusib treated human PDX derived primary culture (PCB82 and PCB380) for detection of myogenin and myosin heavy chain (MHC). Differentiated HSMM used as a positive control.