Skip to main content
Genome Announcements logoLink to Genome Announcements
. 2017 Oct 5;5(40):e01127-17. doi: 10.1128/genomeA.01127-17

Complete Genome Sequence of the Fruiting Myxobacterium Myxococcus macrosporus Strain DSM 14697, Generated by PacBio Sequencing

Anke Treuner-Lange a, Marc Bruckskotten a, Oliver Rupp b, Alexander Goesmann b, Lotte Søgaard-Andersen a,
PMCID: PMC5629066  PMID: 28983009

ABSTRACT

Members of the Myxococcales order initiate a developmental program in response to starvation that culminates in formation of spore-filled fruiting bodies. To investigate the genetic basis for fruiting body formation, we present the complete 8.9-Mb genome sequence of Myxococcus macrosporus strain DSM 14697, generated using the PacBio sequencing platform.

GENOME ANNOUNCEMENT

Most members of the Myxococcales order initiate a developmental program in response to starvation that results in the formation of a multicellular fruiting body inside which cells differentiate to spores (1, 2). Analyses using Myxococcus xanthus as a model organism have provided important insights into regulation of fruiting body formation (3, 4). However, comparative genome investigations of different Myxococcales genome sequences have indicated that the developmental program that results in fruiting body formation is not highly conserved (57).

Only 20 genomes of the Myxococcales have been completely sequenced (5, 824). In addition, 36 Myxococcales draft genomes are available (2532). To generate additional resources for accurate genomic comparisons and eventually decipher and compare the genetic programs for fruiting body formation, we sequenced and annotated the complete genome of Myxococcus macrosporus strain DSM 14697, which was obtained from the Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH.

After verification of the formation of haystack-shaped fruiting bodies by M. macrosporus DSM 14697, we collected genomic DNA (33) and sequenced it using PacBio single-molecule real-time (SMRT) sequencing (34) on the PacBio RSII platform at the Max Planck-Genome-Centre Cologne, Germany. Two SMRT cells were used. After quality evaluation and filtering of 184,213 subreads, the assembly process using the HGAP assembly pipeline (35) resulted in one contig with 83-fold coverage, which allowed a manual closure of the contig. The genome was verified for completion and oriented with DnaA as the first locus tag. Genome annotation was done using Prokka (36). BLASTP searches against the RefSeq database were used to assign functional annotation and identify possible frameshifts in genes. The corresponding genes were removed from the annotation.

The complete genome sequence of M. macrosporus DSM 14697 contains 8,973,512 bp with a GC content of 70.6%. A total of 7,143 protein-coding sequences (CDSs) were identified together with 79 tRNA genes and 12 rRNA operons. The size of the M. macrosporus genome is similar to those of other sequenced genomes of fruiting myxobacteria, which range in size from 9.0 Mb to 16.0 Mb. Aligning the M. macrosporus genome with other completely sequenced Myxococcales genomes by using NUCmer (37) revealed overall synteny, particularly to other Myxococcus species in the following order (% alignment): Myxococcus fulvus HW-1 (93.5), M. xanthus DK 1622 (80.6), M. hansupus (73.4), M. fulvus 124B02 (43.9), and M. stipitatus DSM_14675 (38.3). The best matches outside the genus Myxococcus are to Corallococcus coralloides DSM_2259 (31.4) and Archangium gephyra DSM_2261 (20.3).

The M. macrosporus genome sequence will contribute to the investigation of the genetic programs leading to fruiting body formation.

Accession number(s).

The genome sequence was deposited in GenBank under accession number CP022203.

ACKNOWLEDGMENTS

The Max Planck Society supported this work. Bioinformatics support by the BMBF-funded project “Bielefeld-Gießen Center for Microbial Bioinformatics—BiGi” (grant number 031A533) within the German Network for Bioinformatics Infrastructure (de.NBI) is gratefully acknowledged.

Footnotes

Citation Treuner-Lange A, Bruckskotten M, Rupp O, Goesmann A, Søgaard-Andersen L. 2017. Complete genome sequence of the fruiting myxobacterium Myxococcus macrosporus strain DSM 14697, generated by PacBio sequencing. Genome Announc 5:e01127-17. https://doi.org/10.1128/genomeA.01127-17.

REFERENCES

  • 1.Dawid W. 2000. Biology and global distribution of myxobacteria in soils. FEMS Microbiol Rev 24:403–427. doi: 10.1111/j.1574-6976.2000.tb00548.x. [DOI] [PubMed] [Google Scholar]
  • 2.Reichenbach H. 1999. The ecology of the myxobacteria. Environ Microbiol 1:15–21. doi: 10.1046/j.1462-2920.1999.00016.x. [DOI] [PubMed] [Google Scholar]
  • 3.Konovalova A, Petters T, Søgaard-Andersen L. 2010. Extracellular biology of Myxococcus xanthus. FEMS Microbiol Rev 34:89–106. doi: 10.1111/j.1574-6976.2009.00194.x. [DOI] [PubMed] [Google Scholar]
  • 4.Kroos L. 2017. Highly signal-responsive gene regulatory network governing Myxococcus development. Trends Genet 33:3–15. doi: 10.1016/j.tig.2016.10.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Huntley S, Hamann N, Wegener-Feldbrügge S, Treuner-Lange A, Kube M, Reinhardt R, Klages S, Müller R, Ronning CM, Nierman WC, Søgaard-Andersen L. 2011. Comparative genomic analysis of fruiting body formation in Myxococcales. Mol Biol Evol 28:1083–1097. doi: 10.1093/molbev/msq292. [DOI] [PubMed] [Google Scholar]
  • 6.Arias Del Angel JA, Escalante AE, Martínez-Castilla LP, Benítez M. 2017. An Evo-Devo perspective on multicellular development of myxobacteria. J Exp Zool B Mol Dev Evol 328:165–178. doi: 10.1002/jez.b.22727. [DOI] [PubMed] [Google Scholar]
  • 7.Huntley S, Wuichet K, Søgaard-Andersen L. 2014. Genome evolution and content in the myxobacteria, p 31–50. In Yang Z, Higgs P (ed), Myxobacteria—genomics, cellular and molecular biology. Caister Academic Press, Norfolk, United Kingdom. [Google Scholar]
  • 8.Hwang C, Copeland A, Lucas S, Lapidus A, Barry K, Glavina Del Rio T, Dalin E, Tice H, Pitluck S, Sims D, Brettin T, Bruce DC, Detter JC, Han CS, Schmutz J, Larimer FW, Land ML, Hauser LJ, Kyrpides N, Lykidis A, Richardson P, Belieav A, Sanford RA, Löeffler FE, Fields MW. 2015. Complete genome sequence of Anaeromyxobacter sp. Fw109-5, an anaerobic, metal-reducing bacterium isolated from a contaminated subsurface environment. Genome Announc 3(1):e01449-14. doi: 10.1128/genomeA.01449-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Goldman BS, Nierman WC, Kaiser D, Slater SC, Durkin AS, Eisen JA, Eisen J, Ronning CM, Barbazuk WB, Blanchard M, Field C, Halling C, Hinkle G, Iartchuk O, Kim HS, Mackenzie C, Madupu R, Miller N, Shvartsbeyn A, Sullivan SA, Vaudin M, Wiegand R, Kaplan HB. 2006. Evolution of sensory complexity recorded in a myxobacterial genome. Proc Natl Acad Sci U S A 103:15200–15205. doi: 10.1073/pnas.0607335103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Schneiker S, Perlova O, Kaiser O, Gerth K, Alici A, Altmeyer MO, Bartels D, Bekel T, Beyer S, Bode E, Bode HB, Bolten CJ, Choudhuri JV, Doss S, Elnakady YA, Frank B, Gaigalat L, Goesmann A, Groeger C, Gross F, Jelsbak L, Jelsbak L, Kalinowski J, Kegler C, Knauber T, Konietzny S, Kopp M, Krause L, Krug D, Linke B, Mahmud T, Martinez-Arias R, McHardy AC, Merai M, Meyer F, Mormann S, Muñoz-Dorado J, Perez J, Pradella S, Rachid S, Raddatz G, Rosenau F, Ruckert C, Sasse F, Scharfe M, Schuster SC, Suen G, Treuner-Lange A, Velicer GJ, Vorholter FJ. 2007. Complete genome sequence of the myxobacterium Sorangium cellulosum. Nat Biotechnol 25:1281–1289. doi: 10.1038/nbt1354. [DOI] [PubMed] [Google Scholar]
  • 11.Han K, Li ZF, Peng R, Zhu LP, Zhou T, Wang LG, Li SG, Zhang XB, Hu W, Wu ZH, Qin N, Li YZ. 2013. Extraordinary expansion of a Sorangium cellulosum genome from an alkaline milieu. Sci Rep 3:2101. doi: 10.1038/srep02101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Li ZF, Li X, Liu H, Liu X, Han K, Wu ZH, Hu W, Li FF, Li YZ. 2011. Genome sequence of the halotolerant marine bacterium Myxococcus fulvus HW-1. J Bacteriol 193:5015–5016. doi: 10.1128/JB.05516-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Sanford RA, Cole JR, Tiedje JM. 2002. Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an aryl-halorespiring facultative anaerobic myxobacterium. Appl Environ Microbiol 68:893–900. doi: 10.1128/AEM.68.2.893-900.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Huntley S, Zhang Y, Treuner-Lange A, Kneip S, Sensen CW, Søgaard-Andersen L. 2012. Complete genome sequence of the fruiting myxobacterium Corallococcus coralloides DSM 2259. J Bacteriol 194:3012–3013. doi: 10.1128/JB.00397-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Ivanova N, Daum C, Lang E, Abt B, Kopitz M, Saunders E, Lapidus A, Lucas S, Glavina Del Rio T, Nolan M, Tice H, Copeland A, Cheng JF, Chen F, Bruce D, Goodwin L, Pitluck S, Mavromatis K, Pati A, Mikhailova N, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Detter JC, Brettin T, Rohde M, Göker M, Bristow J, Markowitz V, Eisen JA, Hugenholtz P, Kyrpides NC, Klenk HP. 2010. Complete genome sequence of Haliangium ochraceum type strain (SMP-2). Stand Genomic Sci 2:96–106. doi: 10.4056/sigs.69.1277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Huntley S, Kneip S, Treuner-Lange A, Søgaard-Andersen L. 2013. Complete genome sequence of Myxococcus stipitatus strain DSM 14675, a fruiting myxobacterium. Genome Announc 1(2):e00100-13. doi: 10.1128/genomeA.00100-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Thomas SH, Wagner RD, Arakaki AK, Skolnick J, Kirby JR, Shimkets LJ, Sanford RA, Löffler FE. 2008. The mosaic genome of Anaeromyxobacter dehalogenans strain 2CP-C suggests an aerobic common ancestor to the delta-proteobacteria. PLoS One 3:e2103. doi: 10.1371/journal.pone.0002103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Chen XJ, Han K, Feng J, Zhuo L, Li YJ, Li YZ. 2016. The complete genome sequence and analysis of a plasmid-bearing myxobacterial strain Myxococcus fulvus 124B02 ( M 206081 ). Stand Genomic Sci 11:1. doi: 10.1186/s40793-015-0121-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Garcia R, Gemperlein K, Müller R. 2014. Minicystis rosea gen. nov., sp. nov., a polyunsaturated fatty acid-rich and steroid-producing soil myxobacterium. Int J Syst Evol Microbiol 64:3733–3742. doi: 10.1099/ijs.0.068270-0. [DOI] [PubMed] [Google Scholar]
  • 20.Yamamoto E, Muramatsu H, Nagai K. 2014. Vulgatibacter incomptus gen. nov., sp. nov. and Labilithrix luteola gen. nov., sp. nov., two myxobacteria isolated from soil in Yakushima Island, and the description of Vulgatibacteraceae fam. nov., Labilitrichaceae fam. nov. and Anaeromyxobacteraceae fam. nov. Int J Syst Evol Microbiol 64:3360–3368. doi: 10.1099/ijs.0.063198-0. [DOI] [PubMed] [Google Scholar]
  • 21.Sharma G, Subramanian S. 2017. Unravelling the complete genome of Archangium gephyra DSM 2261T and evolutionary insights into myxobacterial chitinases. Genome Biol Evol 9:1304–1311. doi: 10.1093/gbe/evx066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Sharma G, Khatri I, Subramanian S. 2016. Complete genome of the starch-degrading myxobacteria Sandaracinus amylolyticus DSM 53668T. Genome Biol Evol 8:2520–2529. doi: 10.1093/gbe/evw151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Sharma G, Narwani T, Subramanian S. 2016. Complete genome sequence and comparative genomics of a novel myxobacterium Myxococcus hansupus. PLoS One 11:e0148593. doi: 10.1371/journal.pone.0148593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Zaburannyi N, Bunk B, Maier J, Overmann J, Müller R. 2016. Genome analysis of the fruiting body-forming myxobacterium Chondromyces crocatus reveals high potential for natural product biosynthesis. Appl Environ Microbiol 82:1945–1957. doi: 10.1128/AEM.03011-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Tonomura M, Ehara A, Suzuki H, Amachi S. 2015. Draft genome sequence of Anaeromyxobacter sp. strain PSR-1, an arsenate-respiring bacterium isolated from arsenic-contaminated soil. Genome Announc 3(3):e00472-15. doi: 10.1128/genomeA.00472-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Kudo K, Yamaguchi N, Makino T, Ohtsuka T, Kimura K, Dong DT, Amachi S. 2013. Release of arsenic from soil by a novel dissimilatory arsenate-reducing bacterium, Anaeromyxobacter sp. strain PSR-1. Appl Environ Microbiol 79:4635–4642. doi: 10.1128/AEM.00693-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Müller S, Willett JW, Bahr SM, Scott JC, Wilson JM, Darnell CL, Vlamakis HC, Kirby JR. 2013. Draft genome of a type 4 pilus defective Myxococcus xanthus strain, DZF1. Genome Announc 1(3):e00392-13. doi: 10.1128/genomeA.00392-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Müller S, Willett JW, Bahr SM, Darnell CL, Hummels KR, Dong CK, Vlamakis HC, Kirby JR. 2013. Draft genome sequence of Myxococcus xanthus wild-type strain DZ2, a model organism for predation and development. Genome Announc 1(3):e00217-13. doi: 10.1128/genomeA.00217-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Stevens DC, Young J, Carmichael R, Tan J, Taylor RE. 2014. Draft genome sequence of gephyronic acid producer Cystobacter violaceus strain Cb vi76. Genome Announc 2(6):e01299-14. doi: 10.1128/genomeA.01299-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Tatusova T, Ciufo S, Fedorov B, O’Neill K, Tolstoy I. 2014. RefSeq microbial genomes database: new representation and annotation strategy. Nucleic Acids Res 42:D553–D559. doi: 10.1093/nar/gkt1274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B, Robbertse B, Smith-White B, Ako-Adjei D, Astashyn A, Badretdin A, Bao Y, Blinkova O, Brover V, Chetvernin V, Choi J, Cox E, Ermolaeva O, Farrell CM, Goldfarb T, Gupta T, Haft D, Hatcher E, Hlavina W, Joardar VS, Kodali VK, Li W, Maglott D, Masterson P, McGarvey KM, Murphy MR, O’Neill K, Pujar S, Rangwala SH, Rausch D, Riddick LD, Schoch C, Shkeda A, Storz SS, Sun H, Thibaud-Nissen F, Tolstoy I, Tully RE, Vatsan AR, Wallin C, Webb D, Wu W, Landrum MJ, Kimchi A. 2016. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 44:D733–D745. doi: 10.1093/nar/gkv1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Adaikpoh BI, Dowd SE, Stevens DC. 2017. Draft genome sequence of Archangium sp. strain Cb G35. Genome Announc 5(8):e01678-18. doi: 10.1128/genomeA.01678-16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Wilson K. 2001. Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol Chapter 2:Unit 2.4. doi: 10.1002/0471142727.mb0204s56. [DOI] [PubMed] [Google Scholar]
  • 34.Au KF, Underwood JG, Lee L, Wong WH. 2012. Improving PacBio long read accuracy by short read alignment. PLoS One 7:e46679. doi: 10.1371/journal.pone.0046679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10:563–569. doi: 10.1038/nmeth.2474. [DOI] [PubMed] [Google Scholar]
  • 36.Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. doi: 10.1093/bioinformatics/btu153. [DOI] [PubMed] [Google Scholar]
  • 37.Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL. 2004. Versatile and open software for comparing large genomes. Genome Biol 5:R12. doi: 10.1186/gb-2004-5-2-r12. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genome Announcements are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES