Skip to main content
Scientific Data logoLink to Scientific Data
. 2017 Oct 17;4:170152. doi: 10.1038/sdata.2017.152

Gut bacterial communities of diarrheic patients with indications of Clostridioides difficile infection

Dominik Schneider 1, Andrea Thürmer 1, Kathleen Gollnow 1, Raimond Lugert 2, Katrin Gunka 2, Uwe Groß 2,*, Rolf Daniel 1,a,*
PMCID: PMC5644368  PMID: 29039846

Abstract

We present bacterial 16S rRNA gene datasets derived from stool samples of 44 patients with diarrhea indicative of a Clostridioides difficile infection. For 20 of these patients, C. difficile infection was confirmed by clinical evidence. Stool samples from patients originating from Germany, Ghana, and Indonesia were taken and subjected to DNA isolation. DNA isolations of stool samples from 35 asymptomatic control individuals were performed. The bacterial community structure was assessed by 16S rRNA gene analysis (V3-V4 region). Metadata from patients and control individuals include gender, age, country, presence of diarrhea, concomitant diseases, and results of microbiological tests to diagnose C. difficile presence. We provide initial data analysis and a dataset overview. After processing of paired-end sequencing data, reads were merged, quality-filtered, primer sequences removed, reads truncated to 400 bp and dereplicated. Singletons were removed and sequences were sorted by cluster size, clustered at 97% sequence similarity and chimeric sequences were discarded. Taxonomy to each operational taxonomic unit was assigned by BLASTn searches against Silva database 123.1 and a table was constructed.

Subject terms: Bacterial pathogenesis, Microbiome, Sequencing, Clostridium difficile, Gastroenteritis

Background & Summary

Infections with Clostridioides difficile (formerly Clostridium difficile, see Lawson et al.1) have significantly increased over the past decade2–5. The organism is a Gram-positive, obligate anaerobic spore-forming bacterium, which is frequently found as member of the gut microbiome in healthy individuals, but eventually can also act as human pathogen causing disease that ranges from severe diarrhea to life-threatening toxic megacolon6. It produces two potent exotoxins, toxin A (enterotoxin, tcdA) and toxin B (cytotoxin, tcdB)7. Some isolates also express a third, so-called binary toxin (C. difficile transferase, CDT)8. The risk to suffer from a C. difficile infection increases with prior broad-spectrum antibiotic treatment, which supports the assumption that an imbalanced gut microbiome increases the likelihood of a C. difficile infection9.

In this data report, we provide the bacterial community composition in stool samples of 79 human individuals including 44 patients with diarrhea indicative for infection with C. difficile and 35 asymptomatic control individuals from regions of Germany (Seesen, Lower Saxony), Ghana (Eikwe, Western Region), and Indonesia (Medan, Sumatra)., For 20 of the 44 patients, clinical evidence of a C. difficile infection was obtained. For the remaining patients, the presence of C. difficile was indicated by 16S rRNA gene data or MALDI-TOF mass spectrometry. In total, we provide 20,844,594 paired-end 16S rRNA gene reads sequenced with the v3 chemistry of Illumina and a MiSeq instrument. Correspondingly, this dataset represents a total of 10,422,297 bacterial 16S rRNA gene sequences. After all processing steps, which included read-merging, quality-filtering, primer sequence removal, dereplication, singleton removal, read-trimming, chimera removal, and removal of extrinsic domains (Archaea, chloroplasts) 7.204.189 (69.1%) high quality 16S rRNA gene sequences remained for analysis (see Table 1 (available online only) for 16S rRNA gene sequence processing statistics). Additionally, we supply metadata including gender, age, country, presence or absence of diarrhea, C. difficile ribotype, toxin PCR ribotype, toxin test from stool, concomitant diseases at time of sampling, and antiobiotic treatment within the last three months (Table 2 (available online only)).

Table 1. 16S rRNA gene sequence processing statistics and biosample accession numbers.

Sample name Biosample accession Raw reads (2x, paired-end) After PEAR % loss* After QF % loss * After taxonomy filter % loss *
patient_001 SAMN06011251 183,885 178,258 3.06 128,097 30.3 91,562 50.2
patient_002 SAMN06011252 283,254 272,331 3.86 208,965 26.2 189,871 33.0
patient_003 SAMN06011253 29,313 28,372 3.21 24,528 16.3 23,857 18.6
patient_004 SAMN06011254 19,854 18,967 4.47 16,185 18.5 14,889 25.0
patient_005 SAMN06011255 77,418 73,960 4.47 60,097 22.4 56,675 26.8
patient_006 SAMN06011256 118,110 112,829 4.47 92,535 21.7 73,601 37.7
patient_007 SAMN06011257 61,760 57,107 7.53 46,348 25.0 44,385 28.1
patient_008 SAMN06011258 188,584 183,121 2.90 160,489 14.9 151,302 19.8
patient_009 SAMN06011259 121,488 116,373 4.21 76,062 37.4 72,353 40.4
patient_010 SAMN06011260 47,754 45,826 4.04 38,386 19.6 36,312 24.0
patient_011 SAMN06011261 1,137,384 1,099,480 3.33 921,087 19.0 856,364 24.7
patient_012 SAMN06011262 29,601 28,353 4.22 23,893 19.3 20,824 29.7
patient_013 SAMN06011263 603,255 575,795 4.55 470,894 21.9 419,480 30.5
patient_014 SAMN06011264 27,890 26,906 3.53 22,664 18.7 21,306 23.6
patient_015 SAMN06011265 87,995 85,717 2.59 72,649 17.4 67,572 23.2
patient_016 SAMN06011266 81,374 77,871 4.30 65,934 19.0 56,602 30.4
patient_017 SAMN06011267 39,762 37,969 4.51 31,481 20.8 28,623 28.0
patient_018 SAMN06011268 69,262 66,730 3.66 25,195 63.6 23,399 66.2
patient_019 SAMN06011269 83,424 80,839 3.10 67,259 19.4 63,697 23.6
patient_020 SAMN06011270 108,817 104,597 3.88 89,081 18.1 85,928 21.0
patient_021 SAMN06011271 123,228 118,815 3.58 101,485 17.6 97,888 20.6
patient_022 SAMN06011272 27,398 26,520 3.20 21,818 20.4 19,523 28.7
patient_023 SAMN06011273 782,019 752,476 3.78 635,823 18.7 605,208 22.6
patient_024 SAMN06011274 570,482 548,037 3.93 466,962 18.1 450,550 21.0
patient_025 SAMN06011275 29,420 28,252 3.97 23,626 19.7 22,380 23.9
patient_026 SAMN06011276 58,090 55,621 4.25 26,390 54.6 24,952 57.0
patient_027 SAMN06011277 29,432 28,109 4.50 22,539 23.4 20,812 29.3
patient_028 SAMN06011278 181,138 173,803 4.05 140,608 22.4 126,714 30.0
patient_029 SAMN06011279 41,796 40,543 3.00 35,367 15.4 33,444 20.0
patient_030 SAMN06011280 45,345 43,748 3.52 30,554 32.6 28,364 37.4
patient_031 SAMN06011281 48,745 47,545 2.46 13,517 72.3 12,569 74.2
patient_032 SAMN06011282 50,655 48,039 5.16 21,797 57.0 20,248 60.0
patient_033 SAMN06011283 109,639 105,711 3.58 75,174 31.4 61,098 44.3
patient_034 SAMN06011284 19,449 18,806 3.31 16,053 17.5 14,558 25.1
patient_035 SAMN06011285 45,502 43,883 3.56 36,311 20.2 31,231 31.4
patient_036 SAMN06011286 112,545 107,687 4.32 80,577 28.4 78,582 30.2
patient_037 SAMN06011287 26,917 25,454 5.44 20,435 24.1 19,494 27.6
patient_038 SAMN06011288 43,597 42,515 2.48 34,868 20.0 33,540 23.1
patient_039 SAMN06011289 117,718 114,512 2.72 97,788 16.9 39,043 66.8
patient_040 SAMN06011290 73,905 69,618 5.80 54,943 25.7 52,717 28.7
patient_041 SAMN06011291 40,730 39,301 3.51 32,688 19.7 31,371 23.0
patient_042 SAMN06011292 38,409 37,155 3.26 31,748 17.3 29,962 22.0
patient_043 SAMN06011293 13,346 13,007 2.54 11,381 14.7 10,650 20.2
patient_044 SAMN06011294 16,592 15,995 3.60 13,586 18.1 13,207 20.4
patient_045 SAMN06011295 77,488 74,526 3.82 62,027 20.0 57,396 25.9
patient_046 SAMN06011296 66,527 64,443 3.13 51,997 21.8 50,861 23.5
patient_047 SAMN06011297 131,863 129,034 2.15 110,888 15.9 104,209 21.0
patient_048 SAMN06011298 27,782 27,214 2.04 22,383 19.4 22,103 20.4
patient_049 SAMN06011299 18,338 17,774 3.08 14,603 20.4 13,978 23.8
patient_050 SAMN06011300 47,408 46,252 2.44 39,412 16.9 36,086 23.9
patient_051 SAMN06011301 120,937 117,898 2.51 102,904 14.9 95,667 20.9
patient_052 SAMN06011302 59,282 57,527 2.96 49,677 16.2 47,377 20.1
patient_053 SAMN06011303 78,974 77,534 1.82 67,320 14.8 62,539 20.8
patient_054 SAMN06011304 35,543 34,385 3.26 28,947 18.6 24,646 30.7
patient_055 SAMN06011305 95,179 92,620 2.69 75,463 20.7 70,818 25.6
patient_056 SAMN06011306 27,168 26,425 2.73 22,551 17.0 21,338 21.5
patient_057 SAMN06011307 74,445 72,231 2.97 62,599 15.9 60,439 18.8
patient_058 SAMN06011308 329,680 317,312 3.75 268,820 18.5 257,896 21.8
patient_059 SAMN06011309 21,033 20,266 3.65 16,779 20.2 15,706 25.3
patient_060 SAMN06011310 432,732 421,277 2.65 352,201 18.6 336,711 22.2
patient_061 SAMN06011311 24,320 23,479 3.46 18,993 21.9 18,224 25.1
patient_062 SAMN06011312 38,558 35,981 6.68 28,868 25.1 27,283 29.2
patient_063 SAMN06011313 56,156 51,606 8.10 41,663 25.8 38,647 31.2
patient_064 SAMN06011314 46,732 44,780 4.18 34,617 25.9 33,399 28.5
patient_065 SAMN06011315 66,685 64,446 3.36 52,337 21.5 44,968 32.6
patient_066 SAMN06011316 133,075 128,615 3.35 100,317 24.6 98,069 26.3
patient_067 SAMN06011317 172,365 166,723 3.27 142,932 17.1 137,226 20.4
patient_068 SAMN06011318 70,140 68,535 2.29 59,169 15.6 55,802 20.4
patient_069 SAMN06011319 38,007 37,056 2.50 30,107 20.8 29,577 22.2
patient_070 SAMN06011320 13,530 13,126 2.99 11,143 17.6 10,443 22.8
patient_071 SAMN06011321 163,830 155,275 5.22 126,207 23.0 118,940 27.4
patient_072 SAMN06011322 82,488 79,151 4.05 64,796 21.4 59,576 27.8
patient_073 SAMN06011323 1,421,967 1,376,514 3.20 1,126,249 20.8 676,497 52.4
patient_074 SAMN06011324 122,784 117,609 4.21 96,116 21.7 86,400 29.6
patient_075 SAMN06011325 18,848 18,218 3.34 14,945 20.7 14,161 24.9
patient_076 SAMN06011326 34,771 33,688 3.11 27,875 19.8 26,132 24.8
patient_077 SAMN06011327 69,092 66,520 3.72 55,769 19.3 50,121 27.5
patient_078 SAMN06011328 113,883 111,135 2.41 98,305 13.7 92,503 18.8
patient_079 SAMN06011329 44,406 42,365 4.60 34,012 23.4 31,744 28.5

*calculated from raw reads.

Table 2. Metadata of patients.

Sample name C. difficile culture Ribotype Toxin PCR Ribotype Toxin from stool (GDH) C. difficile detection by NGS Conformity of C. difficile detection Country Gender Age (y) diarrhea Concomitant diseases Antibiotics last three months
patient_001 positive 27 A+B+CDT+ positive positive true Germany male 75 yes none yes
patient_002 positive 001/072 A+B+CDT− positive positive true Germany female 79 yes none no
patient_003 negative NA NA NA negative true Germany male 87 yes none yes
patient_004 negative NA NA NA positive false Germany female 93 yes none yes
patient_005 negative NA NA NA negative true Germany male 75 yes none yes
patient_006 negative NA NA NA positive false Germany female 62 no none no
patient_007 negative NA NA NA negative true Germany male 49 no none yes
patient_008 negative NA NA NA negative true Germany male 69 yes none no
patient_009 positive 001/072 A+B+CDT− negative positive true Germany male 77 yes none yes
patient_010 negative NA NA NA positive false Germany female 63 yes none no
patient_011 negative NA NA NA negative true Germany female 64 yes none no
patient_012 negative NA NA NA positive false Germany female 75 no none no
patient_013 negative NA NA NA positive false Germany female 75 no none no
patient_014 negative NA NA NA positive false Germany female 65 no none no
patient_015 negative NA NA NA negative true Germany male 71 no none yes
patient_016 negative NA NA NA positive false Germany male 79 no none no
patient_017 negative NA NA NA positive false Germany male 56 no none no
patient_018 positive 001/072 A+B+CDT− negative positive true Germany male 77 yes noro virus yes
patient_019 negative NA NA NA positive false Germany female 31 no none no
patient_020 positive 78 A+B+CDT+ negative positive true Germany male 57 yes noro virus yes
patient_021 negative NA NA NA positive false Germany male 85 yes none yes
patient_022 negative NA NA NA positive false Germany male 84 no none yes
patient_023 positive 78 A+B+CDT+ negative positive true Germany male 57 yes noro virus yes
patient_024 negative NA NA NA negative true Germany male 80 yes noro virus yes
patient_025 positive 78 A+B+CDT+ negative positive true Germany male 59 yes none yes
patient_026 positive 001/072 A+B+CDT− negative positive true Germany male 82 yes none yes
patient_027 negative NA NA NA positive false Germany female 81 no none NA
patient_028 negative NA NA NA negative true Germany female 72 yes none yes
patient_029 positive 2 A+B+CDT− positive positive true Germany male 91 yes none yes
patient_030 positive 001/072 A+B+CDT− positive positive true Germany female 84 yes none yes
patient_031 positive 78 A+B+CDT+ negative negative true Germany female 85 yes noro virus yes
patient_032 positive 2 A+B+CDT− negative positive true Germany female 70 yes none yes
patient_033 positive 001/072 A+B+CDT− negative positive true Germany male 73 yes none yes
patient_034 negative NA NA NA positive false Ghana male 45 no none Amoxicillin
patient_035 negative NA NA NA negative true Ghana male 47 yes suspected cholera no
patient_036 negative NA NA NA negative true Ghana male 9 no acute abdomen (suspected typhoid) no
patient_037 positive SLO 233 A+B+CDT− positive positive true Ghana female 1.17 no ETEC/LT Cloxacillin
patient_038 positive 084 (CE) A−B−CDT− negative positive true Ghana female 2 no ETEC/LT Amoxicillin
patient_039 positive SLO 095 A−B−CDT− negative positive true Ghana male 72 no none no
patient_040 positive 011/049 A−B−CDT− negative positive true Ghana female 30 no acute abdomen no
patient_041 positive SLO091 A−B−CDT− negative positive true Ghana male 1.17 yes malaria, rota virus, ETEC/LT no
patient_042 positive 097 (CE) A−B−CDT− negative negative true Ghana female 24 no none Metronidazole, Ciprofloxacin
patient_043 positive 084 (CE) A−B−CDT− negative positive true Ghana male 5 no Giardia no
patient_044 positive SLO 235 A−B−CDT− negative negative true Ghana female 0.67 no Shigella no
patient_045 negative NA NA NA positive false Ghana female 34 yes none no
patient_046 negative NA NA NA negative true Ghana female 1.42 yes malaria, chest infection no
patient_047 negative NA NA NA positive false Ghana male 44 yes none no
patient_048 negative NA NA NA positive false Ghana female 56 yes chest infection Amoxicillin in the last 6 months
patient_049 negative NA NA NA positive false Ghana male 84 yes none Metronidazole, Ampicillin
patient_050 negative NA NA NA positive false Ghana male 52 no none Metronidazole in the last 6 months
patient_051 negative NA NA NA negative true Ghana male 78 no none no
patient_052 negative NA NA NA negative true Ghana female 41 no none no
patient_053 negative NA NA NA positive false Ghana female 28 no none no
patient_054 negative NA NA NA negative true Ghana female 72 no none no
patient_055 positive SLO 233 A+B+CDT− positive positive true Ghana female 22 yes Campylobacter no
patient_056 positive 084 (CE) A−B−CDT− negative positive true Ghana female 40 yes none Metronidazole
patient_057 positive 084 (CE) A−B−CDT− negative negative true Ghana female 1.33 yes malaria, Campylobacter no
patient_058 negative NA NA NA positive false Indonesia male 3 no none no
patient_059 negative NA NA NA positive false Indonesia male 13 no none no
patient_060 negative NA NA NA positive false Indonesia male 65 no none no
patient_061 negative NA NA NA negative true Indonesia male 12 yes none no
patient_062 negative NA NA NA negative true Indonesia female 3 yes none no
patient_063 negative NA NA NA negative true Indonesia female 20 yes none no
patient_064 positive 17 A−B+CDT− negative positive true Indonesia female 56 yes none no
patient_065 negative NA NA NA positive false Indonesia male 1 yes none no
patient_066 negative NA NA NA negative true Indonesia female 70 yes none no
patient_067 negative NA NA NA negative true Indonesia female 26 yes none no
patient_068 negative NA NA NA positive false Indonesia male 46 yes none no
patient_069 negative NA NA NA positive false Indonesia female 53 yes none no
patient_070 positive 53 A+B+CDT− negative positive true Indonesia male 44 no none no
patient_071 positive SLO 236 A+B+CDT− positive positive true Indonesia female 0.75 no none no
patient_072 positive SLO 160 A+B+CDT− negative positive true Indonesia female 10 yes none no
patient_073 positive 10 A−B−CDT− negative positive true Indonesia male 0.16 yes none no
patient_074 negative NA NA NA positive false Indonesia female 11 no none no
patient_075 negative NA NA NA positive false Indonesia male 100 no none no
patient_076 negative NA NA NA positive false Indonesia female 85 no none no
patient_077 negative NA NA NA positive false Indonesia male 67 yes none no
patient_078 negative NA NA NA positive false Indonesia female 41 no none no
patient_079 negative NA NA NA positive false Indonesia female 49 no none no

The dataset contributes to unveil the significance of the gut microbiome in diseased and asymptomatic patients. In a first analysis, we observed C. difficile as a rather low abundant (mainly <1%, with one exception) bacterial community member in stool samples (Fig. 1). The exception was patient_029 (male, age 91), who showed a high abundance of C. difficile (42.67%).

Figure 1. Bacterial community composition at family level of human stool samples analysed in this study.

Figure 1

The bacterial community profiles are based on operational taxonomic unit (OTU, defined at 97% genetic identity) frequency in stool samples of 44 patients with diarrhea indicative of C. difficile infection and 35 asymptomatic control individuals (n=79). One stool sample per patient was used and amplicon PCRs were performed in triplicate for this analysis. Families, which exhibited an abundance of lower than 1% in the entire dataset, were summarized as rare taxa. Relative abundance of C. difficile (Peptoclostridium difficile in SILVA database 123.1) is displayed separately and exhibited highest similarity to Clostridioides difficile strain 630 delta erm (Accession number CP016318). Occurrence of diarrhea in patents is indicated by plus (patient exhibited diarrhea) and minus (no diarrhea), results from microbiological diagnosis of C. difficile infection (C. d. m. t.) are shown below (plus, positively tested for C. difficile; minus, negatively tested for C. difficile). Presence and absence of C. difficile in amplicon data (C. d. NGS) are indicated by plus (present) and minus (absent). Data processing and employed tools are described in detail in the methods section.

Whether the low abundance of C. difficile in most stool samples from diarrheic patients might indicate adhesion or invasion of C. difficile to the intestinal epithelium remains to be analyzed. However, a similar study also observed low abundances of C. difficile in CDI patients10. Furthermore, C. difficile is not the only potential pathogen of diseased patients. The stool samples of some patients contain other potentially pathogenic bacterial species belonging to different genera such as Escherichia/Shigella, Salmonella or Staphylococcus. In addition, some stool samples also contained facultative human-pathogenic Klebsiella and Pseudomonas species. These results support the hypothesis that the gut microbiome contributes to the pathogenic potential or at least can be used as an indicator of C. difficile infections. This is of special interest for C. difficile infections from Ghana, as most of the so far analyzed genomes of strains from this African country lack the toxin genes11. Furthermore, most German patients had a higher age than the patients from the other regions and showed a typical C. difficile infection profile, including treatment with antibiotics and presence of mainly toxin-positive strains. In contrast patients from Ghana and Indonesia were younger and had less antibiotic treatment than the German patients, and harboured predominantly toxin-negative strains (Table 2 (available online only)).

The Unifrac12 based bacterial community structure comparison shows variations in structure and diversity within potentially C. difficile-infected and reference patients (Fig. 2). We observed a low but significant correlation of the bacterial microbiome to patients who exhibited diarrhea (P=0.006, r2=0.0709) and diagnosed C. difficile positive by microbiological tests (P=0.017, r2=0.0628), respectively. In general, patients that have been diagnosed C. difficile positive harbour a less diverse bacterial microbiome (Fig. 2), which has also been observed recently13,14.

Figure 2. Multivariate analysis of the bacterial community from human stool samples.

Figure 2

Non-metric multidimensional scaling (NMDS) based on weighted Unifrac12 was used to display the bacterial community structure in 79 stool samples at same sequencing effort (10.000 reads per sample). Samples from patients who exhibited diarrhea at time of sampling are encased by diamond. Samples from patients that were positively tested on C. difficile by microbiological test are marked by plus, samples of patients where C. difficile was detected in the amplicon dataset are marked by cross. Point size represents the phylogenetic diversity (PD, Faith's Phylogenetic Diversity26) of the microbiome, samples are encircled by PD ranges from 0–10, 10–15, 15–20, and 20–30. Data processing and employed tools are described in detail in the methods section. All alpha diversity metrics obtained by QIIME are listed in Table 3 (available online only).

Methods

Stool sample preparation and processing

This study was approved by the Ethical Committee of the University Medical Center, Göttingen, Germany (2011-03-29). Diarrhea was defined as the passage of ≥three loose or liquid defecations per day. Upon informed consent, randomly selected patients with diarrhea and non-diarrheal volunteers agreed to submit a stool sample using stool containers and complete a standardised questionnaire about their lifestyle and medical history. Within two hours after providing the stool samples, they were cultured on Clostridium difficile agar base used with selective supplement (Oxoid, Basingstoke, Hampshire, UK) and 7% (v/v) defibrinated human blood for 48 h at 38 °C in anaerobic condition using gas packs (bioMérieux, Marcy-l’Ètoile, France). Stool samples were also tested for the presence of C. difficile glutamate dehydrogenase (GDH) antigen and toxins A and B by the C. DIFF QUIK CHEK COMPLETE test (Techlab, Blacksburg, USA). In addition, the stool sample that was used for C. difficile identification was also frozen immediately after taken from the patients, stored at −20 °C for a maximum of 11 months (based on duration of local sampling period) and transported within 24 h to Göttingen (Germany), where identification of C. difficile was confirmed by recultivation and MALDI-TOF mass spectrometry using Biotyper (Bruker Daltonics, Bremen, Germany) with score values of ≥2,000. All C. difficile strains were further characterized by toxin determination using the RealStar Clostridium difficile PCR Kit 1.0 (Altona Diagnostics, Hamburg, Germany). Ribotyping and toxinotyping was kindly performed by L. von Müller (Homburg, Germany) and M. Rupnik (Maribor, Slovenia) as previously be reported11. In addition, the Luminex xTag GPP test was used for all Ghanaian stool samples according to the manufacturer’s instructions (Luminex, Hertogenbosch, The Netherlands) in order to identify C. difficile and other potential intestinal pathogens11. The stool sample was also used for DNA isolation in order to determine bacterial community composition.

Nucleic acid extraction and amplification of 16S rRNA genes

DNA was extracted from all stool samples using the MagNA Pure LC 2.0 Instrument with the MagNA Pure LC Total Nucleic Acid Isolation kit following the instructions of the manufacturer (Roche, Mannheim, Germany). Bacterial 16S rRNA gene amplicons were generated using fusion primers TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-CCTACGGGNGGCWGCAG (MiSeq_overhang-D-Bact-0341-b-S-17) and GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-GACTACHVGGGTATCTAATCC (MiSeq_overhang-S-D-Bact-0785-a-A-21) including bacteria targeting primers from Klindworth et al.15. The PCR reaction mixture with a total volume 50 μl contained 1 U Phusion high fidelity DNA polymerase (Biozym Scientific, Oldendorf, Germany), 5% DMSO, 0.2 mM of each primer, 200 μM dNTP, 0.2 μl of 50 mM MgCl2, and 25 ng of isolated DNA. Thermal cycling scheme for bacterial amplicons was as follows: initial denaturation for 1 min at 98 °C, 25 cycles at 98 °C for 45 s, 45 s at 60 °C, and 30 s at 72 °C, and a final extension at 72 °C for 5 min. The resulting PCR products were checked by agarose gel electrophoresis for appropriate size and purified using the magnetic bead capture kit NucleoMag PCR (Macherey-Nagel, Düren, Germany) as recommended by the manufacturer. Quantification of the PCR products was performed using the Quant-iT dsDNA HS assay kit and a Qubit fluorometer (Invitrogen GmbH, Karlsruhe, Germany) following the manufacturer’s instructions. PCR products were used to attach indices and Illumina sequencing adapters using the Nextera XT Index kit (Illumina, San Diego). Index PCR was performed using 5 μl of template PCR product, 2.5 μl of each index primer, 12.5 μl of 2x KAPA HiFi HotStart ReadyMix and 2.5 μl PCR grade water. Thermal cycling scheme was as follows: 95 °C for 3 min, 8 cycles of 30 s at 95 °C, 30 s at 55 °C and 30 s at 72 °C and a final extension at 72 °C for 5 min. Bacterial 16S rRNA genes were sequenced using the dual index paired-end (v3, 2×300 bp) approach for the Illumina MiSeq platform as recommended by the manufacturer.

16S rRNA gene sequence processing and analyses

Demultiplexing and clipping of sequence adapters from raw sequences were performed by employing CASAVA data analysis software (Illumina). Paired-end sequences were merged using PEAR v0.9.1016 with default parameters. Subsequently, sequences with an average quality score lower than 20 and containing unresolved bases were removed with the split_libraries_fastq.py script from QIIME 1.9.117. We additionally removed non-clipped reverse and forward primer sequences by employing cutadapt 1.1018 with default settings. For operational taxonomic unit (OTU) clustering, we used USEARCH version 8.1.186119 with the UPARSE20 algorithm to truncate reads to 400 bp (-fastx_truncate), dereplicate (-derep_fulllength), sort by cluster size and remove singletons (-sortbysize). Subsequently, OTUs were clustered at 97% sequence identity using USEARCH (-cluster_otus), which includes de novo chimera removal. Additionally, chimeric sequences were removed using UCHIME21 included in software package USEARCH with reference mode (-uchime_ref) against RDPs trainset15_092015.fasta22. All quality-filtered sequences were mapped to chimera-free OTUs and an OTU table was created using USEARCH (-usearch_global). Taxonomic classification of the picked reference sequences (OTUs) was performed with parallel_assign_taxonomy_blast.py against SILVA SSU database release 123.123. Extrinsic domain OTUs, chloroplasts, and unclassified OTUs were removed from the dataset by employing filter_otu_table.py. Sample comparisons were performed at the same surveying effort, utilizing the lowest number of sequences by random resampling (10.000 reads per sample). Species richness, alpha and beta diversity estimates were determined using the QIIME script alpha_rarefaction.py. Non-metric multidimensional scaling (NMDS) and statistical tests were performed with the vegan package24 in R25.

Data Records

The paired-end reads of the 16S rRNA gene sequencing were deposited in the National Center for Biotechnology Information (Data Citation 1). The dataset consists of 158 zipped FASTQ files that were processed by the CASAVA software (Illumina), which includes demultiplexing and removal of adapter sequences. The OTU table (otu_table_PRJNA353065.xlsx) used for all analyses and the corresponding representative OTU sequences clustered at 97% genetic identity (otu_sequences_PRJNA353065.fasta) are accessible at figshare.com (Data Citation 2).

Technical Validation

Success of 16S rRNA gene amplicon generation was controlled by reviewing the amplicon size (approximately 550 bp) and absence of contaminations on an agarose gel. Additionally, negative (PCR reaction without template) and positive controls (genomic DNA of E. coli DH5a) were performed to ensure purity of the employed reagents. To reduce possible PCR biases, all PCRs were performed in triplicate and after purification pooled equimolar.

Usage Notes

The OTU table (otu_table_PRJNA353065.xlsx) used for all analyses and the corresponding representative OTU sequences clustered at 97% genetic identity (otu_sequences_PRJNA353065.fasta) are accessible at figshare (Data Citation 2).

Additional Information

How to cite this article: Schneider, D. et al. Gut bacterial communities of diarrheic patients with indications of Clostridioides difficile infection. Sci. Data 4:170152 doi: 10.1038/sdata.2017.152 (2017).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Material

sdata2017152-isa1.zip (4.4KB, zip)

Table 3. Diversity metrics for each bacterial microbiome at a sequence depth of 10.000 16S rRNA gene reads.

Sample name PD_whole_tree berger_parker_d brillouin_d chao1 chao1_lower_bound chao1_upper_bound dominance doubles enspie equitability esty_lower_bound esty_upper_bound fisher_alpha gini_index goods_coverage heip_e margalef mcintosh_d mcintosh_e menhinick michaelis_menten_fit observed observed_otus observed_species robbins shannon simpson simpson_e simpson_reciprocal singles strong
patient_001 4.161 0.835 0.807 47.749 37.729 89.166 0.702 3.5 1.425 0.23 0 0.002 4.463 0.998 0.999 0.038 3.626 0.164 0.84 0.344 36.036 34.4 34.4 34.4 0.001 1.173 0.298 0.042 1.425 9.7 0.824
patient_002 16.147 0.184 3.472 299.526 268.222 358.724 0.064 29.9 15.735 0.645 0.004 0.009 42.671 0.976 0.994 0.14 25.189 0.755 0.258 2.33 261.928 233 233 233 0.006 5.069 0.936 0.068 15.735 63.6 0.739
patient_003 4.448 0.988 0.086 59.046 33.798 149.066 0.976 2.7 1.024 0.028 0.001 0.002 2.942 0.998 0.998 0.004 2.486 0.012 0.99 0.239 38.576 23.9 23.9 23.9 0.002 0.129 0.024 0.043 1.024 15.1 0.946
patient_004 10.454 0.562 2.185 152.063 135.923 192.864 0.328 13.8 3.047 0.457 0.001 0.004 20.186 0.989 0.997 0.065 13.496 0.431 0.58 1.253 133.141 125.3 125.3 125.3 0.003 3.187 0.672 0.024 3.047 27.8 0.744
patient_005 10.483 0.383 2.476 160.903 137.006 216.238 0.186 14.9 5.369 0.523 0.002 0.005 18.931 0.99 0.996 0.095 12.779 0.574 0.437 1.187 132.337 118.7 118.7 118.7 0.004 3.604 0.814 0.045 5.369 35.3 0.765
patient_006 14.41 0.352 3.016 229.708 206.752 278.419 0.145 21.4 6.921 0.584 0.003 0.006 32.481 0.981 0.996 0.109 20.108 0.626 0.387 1.862 202.688 186.2 186.2 186.2 0.004 4.402 0.855 0.037 6.921 44.2 0.731
patient_007 10.589 0.509 1.739 164.959 139.239 222.362 0.334 17 2.993 0.369 0.002 0.006 18.854 0.994 0.996 0.041 12.736 0.426 0.585 1.183 138.591 118.3 118.3 118.3 0.004 2.538 0.666 0.025 2.993 39.2 0.841
patient_008 21.359 0.135 3.684 355.093 319.288 418.096 0.052 39.6 19.412 0.666 0.006 0.011 51.622 0.97 0.992 0.15 29.434 0.781 0.233 2.721 310.865 272.1 272.1 272.1 0.008 5.384 0.948 0.071 19.412 81.2 0.726
patient_009 4.886 0.415 1.549 52.88 44.309 85.316 0.283 5.6 3.531 0.419 0 0.002 5.489 0.996 0.999 0.093 4.365 0.473 0.534 0.412 43.804 41.2 41.2 41.2 0.001 2.246 0.717 0.086 3.531 12.1 0.838
patient_010 13.716 0.338 2.297 220.044 195.354 271.431 0.222 22.2 4.509 0.452 0.003 0.007 29.598 0.989 0.995 0.054 18.61 0.534 0.479 1.724 199.008 172.4 172.4 172.4 0.005 3.356 0.778 0.026 4.509 47 0.806
patient_011 11.525 0.241 3.042 202.257 170.498 270.235 0.09 17.8 11.079 0.619 0.003 0.006 23.561 0.986 0.995 0.145 15.374 0.707 0.305 1.426 156.56 142.6 142.6 142.6 0.005 4.427 0.91 0.078 11.079 45.9 0.751
patient_012 10.93 0.358 2.874 142.962 132.508 172.753 0.15 12.7 6.682 0.599 0.001 0.003 20.475 0.985 0.998 0.137 13.659 0.619 0.392 1.268 133.399 126.8 126.8 126.8 0.002 4.183 0.85 0.053 6.682 21 0.703
patient_013 14.921 0.203 3.422 262.995 231.609 324.168 0.068 26 14.711 0.654 0.004 0.008 35.082 0.978 0.994 0.156 21.432 0.747 0.266 1.984 219.964 198.4 198.4 198.4 0.006 4.989 0.932 0.074 14.711 58 0.719
patient_014 12.575 0.585 2.179 197.939 176.597 243.469 0.35 22.7 2.86 0.436 0.002 0.006 26.582 0.988 0.996 0.052 17.013 0.413 0.601 1.577 175.998 157.7 157.7 157.7 0.004 3.184 0.65 0.018 2.86 42.9 0.767
patient_015 15.965 0.223 3.168 256.497 235.69 298.721 0.089 29.7 11.3 0.597 0.003 0.007 38.767 0.98 0.995 0.111 23.278 0.71 0.304 2.154 245.062 215.4 215.4 215.4 0.005 4.627 0.911 0.052 11.3 49.5 0.764
patient_016 12.112 0.64 1.739 185.118 159.595 240.294 0.424 18.5 2.358 0.358 0.002 0.006 22.558 0.992 0.996 0.035 14.82 0.352 0.66 1.375 158.988 137.5 137.5 137.5 0.004 2.542 0.576 0.017 2.358 42 0.822
patient_017 12.682 0.253 2.65 190.523 165.267 247.519 0.144 15.5 6.928 0.538 0.002 0.005 24.055 0.988 0.996 0.094 15.645 0.626 0.385 1.451 160.459 145.1 145.1 145.1 0.004 3.861 0.856 0.048 6.928 38.4 0.777
patient_018 5.176 0.521 1.71 68.052 57.194 105.865 0.319 6 3.131 0.434 0 0.002 7.312 0.996 0.999 0.089 5.624 0.439 0.568 0.528 56.304 52.8 52.8 52.8 0.001 2.482 0.681 0.059 3.131 14.3 0.782
patient_019 8.764 0.238 2.75 117.019 101.269 160.077 0.101 10 9.898 0.612 0.001 0.004 14.017 0.99 0.998 0.164 9.891 0.689 0.321 0.921 100.038 92.1 92.1 92.1 0.002 3.994 0.899 0.108 9.898 23.4 0.762
patient_020 4.055 0.954 0.294 46.937 38.359 81.853 0.91 3.7 1.099 0.084 0 0.002 4.625 0.998 0.999 0.01 3.746 0.047 0.957 0.355 39.789 35.5 35.5 35.5 0.001 0.433 0.09 0.031 1.099 10.3 0.925
patient_021 9.485 0.926 0.491 145.711 117.66 209.04 0.858 15 1.165 0.111 0.002 0.006 14.58 0.997 0.996 0.007 10.228 0.074 0.935 0.952 126.8 95.2 95.2 95.2 0.004 0.728 0.142 0.012 1.165 39.3 0.927
patient_022 14.866 0.506 2.601 236.33 215.697 279.414 0.265 25.9 3.779 0.499 0.003 0.007 34.712 0.982 0.995 0.066 21.248 0.49 0.525 1.967 218.421 196.7 196.7 196.7 0.005 3.805 0.735 0.019 3.779 45.7 0.739
patient_023 6.892 0.68 1.482 100.411 85.57 143.617 0.475 9.1 2.107 0.344 0.001 0.003 11.477 0.995 0.998 0.045 8.328 0.314 0.694 0.777 85.434 77.7 77.7 77.7 0.002 2.159 0.525 0.027 2.107 19.9 0.814
patient_024 7.891 0.927 0.46 111.954 86.239 178.008 0.86 9.4 1.163 0.111 0.002 0.004 10.11 0.998 0.997 0.009 7.459 0.074 0.934 0.697 92.57 69.7 69.7 69.7 0.003 0.679 0.14 0.017 1.163 28.9 0.913
patient_025 4.528 0.711 1.133 52.104 41.701 91.291 0.525 4.4 1.904 0.314 0 0.002 4.985 0.997 0.999 0.058 4.006 0.278 0.727 0.379 40.649 37.9 37.9 37.9 0.001 1.645 0.475 0.05 1.904 12.3 0.829
patient_026 6.806 0.706 1.384 82.669 70.913 120.618 0.507 7.6 1.973 0.334 0.001 0.003 9.413 0.996 0.998 0.047 7.014 0.291 0.717 0.656 71.306 65.6 65.6 65.6 0.002 2.015 0.493 0.03 1.973 16.4 0.812
patient_027 10.591 0.203 2.837 158.235 136.719 208.113 0.096 15.5 10.455 0.597 0.002 0.005 19.232 0.988 0.997 0.138 12.953 0.698 0.313 1.203 130.374 120.3 120.3 120.3 0.003 4.126 0.904 0.087 10.455 34.8 0.77
patient_028 17.767 0.17 3.351 340.553 300.292 412.477 0.078 33.6 12.757 0.615 0.005 0.01 46.283 0.976 0.992 0.116 26.926 0.727 0.287 2.49 284.865 249 249 249 0.008 4.898 0.922 0.051 12.757 78 0.734
patient_029 7.401 0.425 2.131 80.851 70.88 115.381 0.224 6.2 4.456 0.51 0 0.002 9.615 0.994 0.999 0.115 7.144 0.532 0.477 0.668 70.403 66.8 66.8 66.8 0.001 3.094 0.776 0.067 4.456 14.2 0.763
patient_030 3.95 0.569 1.363 45.325 36.569 84.81 0.391 2.5 2.558 0.389 0 0.002 4.4 0.997 0.999 0.089 3.583 0.379 0.627 0.34 35.406 34 34 34 0.001 1.977 0.609 0.075 2.558 8.2 0.789
patient_031 11.078 0.208 3.178 184.15 161.285 235.493 0.08 16.7 12.45 0.646 0.002 0.005 23.618 0.983 0.996 0.167 15.407 0.724 0.287 1.429 151.223 142.9 142.9 142.9 0.004 4.625 0.92 0.087 12.45 38.3 0.704
patient_032 4.8 0.409 1.667 42.334 38.249 61.665 0.277 5 3.611 0.464 0 0.002 4.865 0.996 0.999 0.121 3.92 0.479 0.528 0.371 39.758 37.1 37.1 37.1 0.001 2.416 0.723 0.098 3.611 8.1 0.767
patient_033 10.956 0.221 3.159 166.344 142.767 226.439 0.085 10 11.719 0.657 0.001 0.004 20.576 0.984 0.997 0.184 13.713 0.715 0.296 1.273 131.58 127.3 127.3 127.3 0.003 4.595 0.915 0.092 11.719 28.2 0.686
patient_034 16.228 0.46 2.725 254.457 229.63 305.862 0.224 22.7 4.456 0.518 0.003 0.007 36.781 0.981 0.995 0.072 22.29 0.532 0.484 2.063 228.914 206.3 206.3 206.3 0.005 3.986 0.776 0.022 4.456 47.6 0.747
patient_035 9.666 0.237 2.849 131.463 121.285 160.903 0.117 11.9 8.514 0.605 0.001 0.003 18.381 0.987 0.998 0.145 12.464 0.664 0.347 1.158 121.658 115.8 115.8 115.8 0.002 4.144 0.883 0.074 8.514 20.2 0.718
patient_036 2.413 0.934 0.286 20.667 15.705 47.238 0.876 2 1.141 0.109 0 0.001 1.67 0.998 0.999 0.026 1.466 0.065 0.937 0.145 17.858 14.5 14.5 14.5 0.001 0.415 0.124 0.081 1.141 6.2 0.864
patient_037 5.802 0.375 1.482 66.58 52.916 114.969 0.3 4.7 3.332 0.386 0 0.002 6.469 0.996 0.999 0.074 5.049 0.457 0.55 0.475 51.858 47.5 47.5 47.5 0.001 2.15 0.7 0.07 3.332 14.5 0.851
patient_038 5.944 0.413 1.766 63.484 55.717 93.395 0.278 5.5 3.596 0.448 0 0.002 7.329 0.995 0.999 0.095 5.635 0.477 0.53 0.529 54.992 52.9 52.9 52.9 0.001 2.563 0.722 0.068 3.596 11.1 0.786
patient_039 12.45 0.158 3.149 202.605 181.765 249.729 0.081 19.2 12.311 0.623 0.002 0.005 28.111 0.983 0.996 0.14 17.828 0.722 0.29 1.652 179.838 165.2 165.2 165.2 0.004 4.588 0.919 0.075 12.311 37.2 0.734
patient_040 3.87 0.472 1.169 42.485 30.804 90.53 0.393 2.1 2.546 0.357 0 0.002 3.364 0.997 0.999 0.087 2.812 0.377 0.628 0.269 28.188 26.9 26.9 26.9 0.001 1.694 0.607 0.095 2.546 8.4 0.834
patient_041 5.024 0.428 1.699 57.243 46.02 99.753 0.264 4.4 3.785 0.457 0 0.002 5.597 0.996 0.999 0.111 4.441 0.491 0.516 0.419 45.912 41.9 41.9 41.9 0.001 2.463 0.736 0.091 3.785 11.7 0.779
patient_042 4.388 0.891 0.577 34.832 31.55 52.981 0.797 3.6 1.255 0.17 0 0.001 3.928 0.998 0.999 0.027 3.235 0.108 0.895 0.308 32.02 30.8 30.8 30.8 0.001 0.841 0.203 0.041 1.255 6.1 0.869
patient_043 7.855 0.46 2.118 116.103 86.772 212.871 0.246 3 4.059 0.496 0.001 0.003 10.837 0.993 0.998 0.102 7.926 0.509 0.5 0.74 77.03 74 74 74 0.002 3.077 0.754 0.055 4.059 18.4 0.766
patient_044 4.648 0.958 0.274 42.186 36.484 66.469 0.918 5.6 1.09 0.079 0 0.002 4.504 0.998 0.999 0.01 3.659 0.042 0.961 0.347 39.692 34.7 34.7 34.7 0.001 0.404 0.082 0.031 1.09 9.5 0.929
patient_045 9.217 0.403 2.118 121.98 100.456 179.741 0.236 9.3 4.23 0.477 0.001 0.004 13.213 0.993 0.997 0.086 9.402 0.519 0.49 0.876 93.587 87.6 87.6 87.6 0.003 3.079 0.764 0.048 4.23 25.6 0.774
patient_046 4.106 0.82 0.63 42.963 30.003 91.145 0.691 3.6 1.448 0.197 0 0.002 3.124 0.998 0.999 0.037 2.627 0.171 0.833 0.252 33.762 25.2 25.2 25.2 0.001 0.914 0.309 0.058 1.448 13 0.871
patient_047 16.292 0.28 2.767 247.855 216.74 308.925 0.133 24.8 7.524 0.537 0.004 0.008 32.063 0.986 0.994 0.084 19.891 0.642 0.371 1.842 210.583 184.2 184.2 184.2 0.006 4.038 0.867 0.041 7.524 56.1 0.771
patient_048 4.398 0.972 0.181 39.23 29.349 80.428 0.945 3.1 1.058 0.057 0 0.002 3.265 0.998 0.999 0.008 2.736 0.028 0.975 0.262 31.777 26.2 26.2 26.2 0.001 0.266 0.055 0.041 1.058 10 0.934
patient_049 7.766 0.328 1.895 88.194 77.719 119.936 0.232 10.4 4.315 0.446 0.001 0.003 10.582 0.995 0.998 0.08 7.763 0.524 0.485 0.725 81.659 72.5 72.5 72.5 0.002 2.753 0.768 0.06 4.315 18.2 0.823
patient_050 16.041 0.166 3.375 238.375 213.839 289.825 0.069 21.5 14.485 0.649 0.003 0.006 33.583 0.978 0.995 0.154 20.672 0.745 0.268 1.914 206.625 191.4 191.4 191.4 0.005 4.921 0.931 0.076 14.485 46.2 0.712
patient_051 12.965 0.411 2.695 193.632 172.897 239.501 0.188 19.6 5.307 0.54 0.002 0.006 26.179 0.986 0.996 0.092 16.796 0.572 0.441 1.557 171.619 155.7 155.7 155.7 0.004 3.929 0.812 0.034 5.307 39.4 0.754
patient_052 14.094 0.372 2.561 203.307 178.744 256.204 0.184 19.8 5.426 0.512 0.002 0.006 26.506 0.988 0.996 0.079 16.97 0.576 0.436 1.573 175.806 157.3 157.3 157.3 0.004 3.735 0.816 0.035 5.426 42.6 0.772
patient_053 12.022 0.281 2.843 186.495 165.239 233.363 0.121 19.1 8.268 0.575 0.002 0.006 24.534 0.987 0.996 0.114 15.906 0.659 0.353 1.475 161.067 147.5 147.5 147.5 0.004 4.141 0.879 0.056 8.268 39.5 0.758
patient_054 13.052 0.244 2.994 205.205 186.265 246.502 0.101 22.8 9.951 0.589 0.002 0.006 29.139 0.985 0.996 0.116 18.371 0.69 0.322 1.702 191.037 170.2 170.2 170.2 0.004 4.365 0.899 0.058 9.951 40.6 0.771
patient_055 13.858 0.436 2.705 239.039 205.412 306.875 0.205 20.6 4.887 0.532 0.003 0.007 29.555 0.985 0.995 0.084 18.588 0.553 0.46 1.722 190.916 172.2 172.2 172.2 0.005 3.948 0.795 0.028 4.887 52.8 0.749
patient_056 9.806 0.265 2.482 113.721 103.821 141.655 0.144 14.3 6.965 0.545 0.001 0.003 15.136 0.991 0.998 0.115 10.564 0.627 0.383 0.983 107.223 98.3 98.3 98.3 0.002 3.609 0.856 0.071 6.965 21.1 0.77
patient_057 5.545 0.83 0.797 55.201 45.543 93.428 0.696 5.4 1.438 0.215 0 0.002 5.644 0.998 0.999 0.03 4.473 0.168 0.838 0.422 46.202 42.2 42.2 42.2 0.001 1.16 0.304 0.034 1.438 10.3 0.863
patient_058 9.508 0.693 1.536 127.002 109.113 172.65 0.488 12.5 2.051 0.339 0.001 0.004 14.991 0.994 0.997 0.039 10.477 0.305 0.705 0.975 109.391 97.5 97.5 97.5 0.003 2.242 0.512 0.021 2.051 27.5 0.814
patient_059 12.206 0.146 3.094 142.632 135.244 164.787 0.071 15 14.066 0.639 0.001 0.003 21.383 0.985 0.998 0.166 14.169 0.741 0.27 1.315 141.994 131.5 131.5 131.5 0.002 4.501 0.929 0.107 14.066 18.9 0.748
patient_060 6.735 0.825 0.867 92.339 71.788 149.386 0.685 7.5 1.461 0.214 0.001 0.004 8.504 0.997 0.998 0.024 6.417 0.174 0.832 0.601 71.875 60.1 60.1 60.1 0.002 1.266 0.315 0.024 1.461 23.1 0.868
patient_061 4.342 0.972 0.199 33.837 31.309 49.793 0.945 2.8 1.059 0.059 0 0.001 3.928 0.998 1 0.008 3.235 0.028 0.975 0.308 35.542 30.8 30.8 30.8 0.001 0.294 0.055 0.034 1.059 5 0.939
patient_062 5.472 0.292 2.191 57.856 49.676 92.659 0.181 4.3 5.54 0.572 0 0.002 6.405 0.994 0.999 0.175 5.005 0.581 0.427 0.471 47.307 47.1 47.1 47.1 0.001 3.177 0.819 0.118 5.54 8.8 0.706
patient_063 9.678 0.584 1.604 111.554 95.686 152.539 0.373 13.4 2.678 0.364 0.001 0.004 12.859 0.995 0.997 0.048 9.185 0.393 0.616 0.856 99.425 85.6 85.6 85.6 0.003 2.335 0.627 0.031 2.678 26.3 0.847
patient_064 3.961 0.584 1.125 51.156 37.222 105.754 0.434 3.3 2.302 0.325 0 0.002 4.164 0.997 0.999 0.067 3.409 0.344 0.661 0.324 35.704 32.4 32.4 32.4 0.001 1.631 0.566 0.071 2.302 11.5 0.849
patient_065 31.261 0.117 4.357 552.24 516.702 609.598 0.034 66.7 29.503 0.724 0.008 0.014 99.232 0.933 0.989 0.182 49.694 0.824 0.193 4.587 526.176 458.7 458.7 458.7 0.011 6.4 0.966 0.064 29.503 111.7 0.656
patient_066 1.223 0.959 0.209 14.533 12.209 30.827 0.92 1.6 1.087 0.086 0 0.001 1.322 0.998 1 0.022 1.173 0.041 0.96 0.118 12.823 11.8 11.8 11.8 0 0.304 0.08 0.093 1.087 3.5 0.873
patient_067 10.533 0.757 1.267 185.211 150.312 261.957 0.582 14.7 1.72 0.268 0.003 0.006 19.385 0.994 0.996 0.022 13.04 0.24 0.772 1.211 141.471 121.1 121.1 121.1 0.004 1.857 0.418 0.014 1.72 43.7 0.852
patient_068 12.378 0.194 2.829 186.332 164.461 235.325 0.104 17.9 9.633 0.573 0.002 0.006 24.375 0.987 0.996 0.113 15.819 0.685 0.327 1.467 162.572 146.7 146.7 146.7 0.004 4.121 0.896 0.066 9.633 38.2 0.784
patient_069 4.583 0.753 0.648 53.067 37.112 112.511 0.621 3.4 1.609 0.19 0 0.002 3.987 0.998 0.999 0.031 3.279 0.214 0.791 0.312 40.862 31.2 31.2 31.2 0.001 0.941 0.379 0.052 1.609 12.8 0.921
patient_070 11.13 0.279 2.826 131.358 123.236 155.856 0.124 12.9 8.059 0.596 0.001 0.003 19.021 0.987 0.998 0.138 12.833 0.654 0.356 1.192 125.656 119.2 119.2 119.2 0.002 4.112 0.876 0.068 8.059 18.8 0.72
patient_071 5.988 0.404 1.663 63.155 51.953 102.474 0.282 5.9 3.553 0.434 0 0.002 6.455 0.996 0.999 0.094 5.038 0.474 0.533 0.474 49.531 47.4 47.4 47.4 0.001 2.413 0.718 0.075 3.553 13.6 0.812
patient_072 11.471 0.229 2.758 163.176 140.942 215.012 0.121 15.4 8.258 0.577 0.002 0.005 19.978 0.988 0.997 0.123 13.376 0.659 0.352 1.242 132.955 124.2 124.2 124.2 0.004 4.013 0.879 0.067 8.258 35 0.751
patient_073 3.985 0.351 1.857 39.5 30.856 78.2 0.21 1.2 4.774 0.559 0 0.001 3.537 0.996 0.999 0.202 2.942 0.548 0.459 0.281 27.639 28.1 28.1 28.1 0.001 2.688 0.79 0.17 4.774 6 0.724
patient_074 15.316 0.2 3.169 226.097 202.856 275.184 0.087 22.1 11.544 0.616 0.003 0.006 31.575 0.982 0.996 0.13 19.641 0.713 0.3 1.819 199.12 181.9 181.9 181.9 0.004 4.62 0.913 0.063 11.544 44.6 0.738
patient_075 13.044 0.311 3.071 174.409 164.052 201.061 0.12 20.8 8.319 0.613 0.001 0.004 26.521 0.982 0.997 0.136 16.981 0.66 0.352 1.574 169.247 157.4 157.4 157.4 0.003 4.476 0.88 0.053 8.319 26.2 0.725
patient_076 13.167 0.336 2.861 186.593 165.051 235.068 0.14 18 7.142 0.578 0.002 0.005 24.594 0.986 0.996 0.116 15.939 0.632 0.38 1.478 160.654 147.8 147.8 147.8 0.004 4.167 0.86 0.048 7.142 37.8 0.738
patient_077 12.093 0.46 2.344 167.736 148.555 211.009 0.246 20.2 4.069 0.484 0.002 0.005 21.716 0.989 0.996 0.073 14.353 0.509 0.502 1.332 147.723 133.2 133.2 133.2 0.004 3.417 0.754 0.031 4.069 37 0.759
patient_078 13.774 0.276 3.004 217.508 192.366 272.634 0.11 19.1 9.12 0.591 0.002 0.006 29.329 0.983 0.996 0.117 18.468 0.676 0.337 1.711 186.279 171.1 171.1 171.1 0.004 4.381 0.89 0.053 9.12 40.1 0.745
patient_079 14.008 0.206 3.221 165.954 157.416 189.872 0.088 16.9 11.413 0.647 0.001 0.004 25.553 0.981 0.998 0.164 16.46 0.711 0.301 1.526 161.042 152.6 152.6 152.6 0.002 4.692 0.912 0.075 11.413 21.7 0.682

Acknowledgments

This work was funded by the Federal State of Lower Saxony, Niedersächsisches Vorab (VWZN2889). We thank L. von Müller and M. Rupnik for kindly having performed ribotyping and toxinotyping. We thank the patients and healthy volunteers who provided their stool samples.

Footnotes

The authors declare no competing financial interests.

Data Citations

  1. Schneider D. 2016. NCBI Sequence Read Archive. SRP093596
  2. Schneider D. 2017. Figshare. https://doi.org/10.6084/m9.figshare.c.3877591.v1

References

  1. Lawson P. A., Citron D. M., Tyrrell K. L. & Finegold S. M. Reclassification of Clostridium difficile as Clostridioides difficile (Hall and O’Toole 1935) Prévot 1938. Anaerobe 40, 95–99 (2016). [DOI] [PubMed] [Google Scholar]
  2. Honda H. & Dubberke E. R. Clostridium difficile infection: a re-emerging threat. Mo. Med. 106, 287–291 (2009). [PMC free article] [PubMed] [Google Scholar]
  3. Rupnik M., Wilcox M. H. & Gerding D. N. Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat. Rev. Microbiol. 7, 526–536 (2009). [DOI] [PubMed] [Google Scholar]
  4. Lessa F. C., Gould C. V. & McDonald L. C. Current status of Clostridium difficile infection epidemiology. Clin. Infect. Dis. 55(Suppl 2): S65–S70 (2012). [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ghose C. Clostridium difficile infection in the twenty-first century. Emerg. Microbes Infect. 2, e62 (2013). [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hensgens M. P. M. et al. Clostridium difficile infection in the community: a zoonotic disease? Clin. Microbiol. Infect. 16, 635–645 (2012). [DOI] [PubMed] [Google Scholar]
  7. Hatheway C. L. Toxigenic clostridia. Clin. Microbiol. Rev. 3, 66–98 (1990). [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hemmasi S. et al. Interaction of the Clostridium difficile Binary Toxin CDT and Its Host Cell Receptor, Lipolysis-stimulated Lipoprotein Receptor (LSR). J. Biol. Chem. 290, 14031–14044 (2015). [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Almeida R., Gerbaba T. & Petrof E. O. Recurrent Clostridium difficile infection and the microbiome. J. Gastroenterol. 51, 1–10 (2016). [DOI] [PubMed] [Google Scholar]
  10. Schubert A. M. et al. Microbiome data distinguish patients with Clostridium difficile infection and non-C. difficile-associated diarrhea from healthy controls. MBio. 5, e01021–14 (2014). [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Janssen I. et al. High prevalence of nontoxigenic Clostridium difficile isolated from hospitalized and non-hospitalized individuals in rural Ghana. Int. J. Med. Microbiol. 306, 652–656 (2016). [DOI] [PubMed] [Google Scholar]
  12. Lozupone C. & Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005). [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Seekatz A. M., Rao K., Santhosh K. & Young V. B. Dynamics of the fecal microbiome in patients with recurrent and nonrecurrent Clostridium difficile infection. Genome Med. 8, 47 (2016). [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Longo D. L., Leffler D. A. & Lamont J. T. Clostridium difficile Infection. N. Engl. J. Med. 372, 1539–1548 (2015). [DOI] [PubMed] [Google Scholar]
  15. Klindworth A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013). [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Zhang J., Kobert K., Flouri T. & Stamatakis A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2014). [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Caporaso J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010). [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. journal 17, 10–12 (2011). [Google Scholar]
  19. Edgar R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010). [DOI] [PubMed] [Google Scholar]
  20. Edgar R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013). [DOI] [PubMed] [Google Scholar]
  21. Edgar R. C., Haas B. J., Clemente J. C., Quince C. & Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011). [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Cole J. R. et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42, D633–D642 (2014). [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Quast C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013). [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Oksanen J. et al. vegan: Community Ecology Package (2016).
  25. Team, R. C. R. A Language and Environment for Statistical Computing (2015).
  26. Faith D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992). [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Citations

  1. Schneider D. 2016. NCBI Sequence Read Archive. SRP093596
  2. Schneider D. 2017. Figshare. https://doi.org/10.6084/m9.figshare.c.3877591.v1

Supplementary Materials

sdata2017152-isa1.zip (4.4KB, zip)

Articles from Scientific Data are provided here courtesy of Nature Publishing Group

RESOURCES