Abstract
Genome-wide association studies (GWASs) have reported numerous associations between risk variants and Alzheimer’s disease (AD). However, these associations do not necessarily indicate a causal relationship. If the risk variants can be demonstrated to be biologically functional, the possibility of a causal relationship would be increased. In this article, we reviewed all of the published GWASs to extract the genome-wide significant (p<5×10−8) and replicated associations between risk variants and AD or AD-biomarkers. The regulatory effects of these risk variants on the expression of a novel class of non-coding RNAs (piRNAs) and protein-coding RNAs (mRNAs), the alteration of proteins caused by these variants, the associations between AD and these variants in our own sample, the expression of piRNAs, mRNAs and proteins in human brains targeted by these variants, the expression correlations between the risk genes and APOE, the pathways and networks that the risk genes belonged to, and the possible long non-coding RNAs (LncRNAs) that might regulate the risk genes were analyzed, to investigate the potential biological functions of the risk variants and explore the potential mechanisms underlying the SNP-AD associations. We found replicated and significant associations for AD or AD-biomarkers, surprisingly, only at 17 SNPs located in 11 genes/snRNAs/LncRNAs in eight genomic regions. Most of these 17 SNPs enriched some AD-related pathways or networks, and were potentially functional in regulating piRNAs and mRNAs; some SNPs were associated with AD in our sample, and some SNPs altered protein structures. Most of the protein-coding genes regulated by the risk SNPs were expressed in human brain and correlated with APOE expression. We conclude that these variants were most robust risk markers for AD, and their contributions to AD risk was likely to be causal. As expected, APOE and the lipoprotein metabolism pathway possess the highest weight among these contributions.
Keywords: Alzheimer’s disease, GWAS, genome-wide significant, replicated, risk variant, gene expression, APOE
1. Introduction
Alzheimer’s disease (AD) is the most common cause of dementia. It affects several millions of people worldwide. It is a primary neurodegenerative cerebral disease in the elderly, characterized by two major histopathologic changes in the brain, i.e., extracellular amyloid plaques that are composed of Aβ40 and Aβ42 and intracellular neurofibrillary tangles (NFT) that are composed of hyperphosphorylated protein Tau (Masters et al. 1985). The core cerebrospinal fluid (CSF) biomarkers for the diagnosis of AD include Aβ42 (amyloid-42 peptide), T-tau (total tau), and P-tau (phosphorylated tau) (Anoop et al. 2010).
From 2007 till July, 2017, 1055 genome-wide association studies (GWASs) and whole genome/exome sequencing studies of AD or AD-biomarkers have been published. However, the vast majority of these studies produced results that were not significant at genome-wide level and/or were not replicated by any other study, and thus might confuse or even mislead the readers. Although some studies reported “replicable” findings at gene level (i.e., different risk markers from the same gene), the replicable findings at individual marker level (i.e., same risk markers) were not common. Here, we only followed up the latter, which we believe can really be called “replicated” and more conservative, robust and reliable than the “gene-level” findings.
In this article, we reviewed all of these published studies, and extracted the most robust, i.e., both genome-wide significant (p<5×10−8) and replicated, associations between risk SNPs and AD or AD-biomarkers. These associations themselves do not necessarily indicate a cause-effect relationship. However, if we can demonstrate that the risk SNPs are biologically functional, these associations are more likely to be causal ones. Thus, in this study, a series of functional analyses were conducted based on the pathway illustrated in Figure 1.
Figure 1. Illustration for the pathways underlying SNP-AD association.
[Solid lines: Directly evidenced by our study; Dash lines: Indirectly evidenced by literatures. ❶ LncRNA expression is regulated by the SNPs (by eQTL analysis); ❷ LncRNAs regulate the expression of the nearest protein-coding genes by sequence complementarity; ❸ mRNA expression of the risk genes is correlated to APOE mRNA expression (by correlation analysis); ❹ mRNA of APOE encodes APOE protein, and both mRNA and protein of APOE are expressed in brain and related to AD; ❺ RNAs/proteins expressed in brain are assumed to have potential brain functions; ❻ many brain functions are assumed to be related to the development of AD; ❼ piRNA expression is regulated by the risk SNPs (by transcriptome-wide eQTL analysis); ❽ piRNAs regulate the expression of the nearest protein-coding genes by sequence complementarity; ❾ mRNAs encode proteins; ❿ proteins are expressed in brains (by mass spectrometry-based proteomics microarray analyses); ⓫ mRNA expression is regulated by the risk SNPs (by cis-eQTL analysis and bioinformatic analysis); ⓬ protein structures are altered by SNPs (by bioinformatics analysis); ⓭ mRNA expression of risk genes is detected in brains (by RNA-Seq or RNA microarray analyses); ⓮ SNPs are associated with AD (by our study or published GWASs); ⓯ piRNAs are detected in brains (by microarray)]
2. Summary of Materials and Methods (much detailed in the Supplementary Materials)
All associations between SNPs and AD/AD-biomarkers screened from the published literatures that are genome-wide significant (p<5×10−8) and replicated across at least two independent studies are summarized in Table 1. These risk SNPs were genotyped in our own small cohort (6 AD and 6 controls) to replicate the SNP-AD association (Qiu et al. 2017), which was approved by the ethics committee of The Institute of Basic Medical Sciences of the Chinese Academy of Medical Sciences.
Table 1.
Replicated associations between genes and Alzheimer’s disease
| SNP | Location(GRCh38) | Gene (Alias) [Class] | Functional class | p-value | Ref. | p-value | Ref. | p-value | Ref. |
|---|---|---|---|---|---|---|---|---|---|
| rs6656401 | chr1:207518704 | CR1 (CD35) | Intron; chromatin | 6×10−24 | [1] | 4×10−9 | [2] | ||
| rs7561528 | chr2:127132061 | LOC105373605 [LncRNA] | Intron | 6×10−11 | [3] | 4×10−14 | [4] | ||
| rs6733839 | chr2:127135234 | LOC105373605 [LncRNA] | Intron; chromatin | 7×10−44 | [1] | 1×10−9 * | [5] | ||
| rs744373 | chr2:127137039 | LOC105373605 [LncRNA] | 3′ | 3×10−14 | [6] | 2×10−9 | [7] | 1×10−10 | [8] |
| rs2279590 | chr8:27598736 | APOJ (CLU) | Exon; chromatin | 9×10−9 | [2] | 2×10−6 ** | [5] | ||
| rs9331896 | chr8:27610169 | APOJ (CLU) | Intron; miRNA | 3×10−25 | [1] | 3×10−9 ** | [5] | ||
| rs11218343 | chr11:121564878 | SORL1 (LRP9) | Intron | 2×10−9 | [9] | 1×10−14 | [1] | 9×10−6 ** | [5] |
| rs10792832 | chr11:86156833 | RNU6−560P [snRNA] | 3′ | 9×10−26 | [1] | 4×10−6 * | [5] | ||
| rs3851179 | chr11:86157598 | RNU6-560P [snRNA] | 3′ | 1×10−9 | [10] | 2×10−6 ** | [5] | ||
| rs10498633 | chr14:92460608 | SLC24A4 (SHEP6) | Intron | 6×10−9 | [1] | 4×10−7 ** | [5] | ||
| rs6859 | chr19:44878777 | NECTIN2-TOMM40-APOE-APOC1 | Exon of NECTIN2;miRNA | 6×10−14 | [11] | 5×10−7 | [12] | 1×10−7 | [13] |
| rs157580 | chr19:44892009 | NECTIN2-TOMM40-APOE-APOC1 | Intron of TOMM40;TFBS | 8×10−89 | [7] | 1×10−40 | [14] | <1×10−6 # | [15] |
| rs2075650 | chr19:44892362 | NECTIN2-TOMM40-APOE-APOC1 | Intron of TOMM40 | 2×10−157 | [10] | 2×10−16 | [2] | 4×10−13 | [16] |
| (CD112-TOMM40-APOE-APOC1) | 3×10−11 | [17] | 1×10−295 | [18] | 9×10−116 | [19] | |||
| (APOE cluster) | 5×10−36 | [13] | <10−6 Δ,ΔΔ | [15] | <10−6¶ | [20] | |||
| rs429358 | chr19:44908684 | NECTIN2-TOMM40-APOE-APOC1 | Exon of APOE; 3D; | 7×10−16 | [21] | 4×10−9 | [21] | <10−6 #,###,Δ,ΔΔ | [15] |
| +rs7412 | Pathogenic; CpG | 4×10−17 # | [22] | 5×10−14 # | [23] | 2×10−33¶ | [24] | ||
| (ε2/ε3/ε4) | 1×10−7 ¶ | [24] | <10−6¶ | [20] | |||||
| rs4420638 | chr19:44919689 | NECTIN2-TOMM40-APOE-APOC1 | 3’ to APOC1 | 8×10−149 | [3] | 2×10−44 | [25] | 1×10−39 | [26] |
| 1×10−39 | [27] | 1×10−12 ø | [28] | ||||||
| rs3865444 | chr19:51224706 | CD33 | Exon of CD33; TFBS | 2×10−9 | [4] | 3×10−6 | [1] |
All target traits are Alzheimer’s disease, except for the following.
in APOE^ε4 carriers (*) or non-APOE^ε4 carriers (**);
age of onset of AD;
associated with Aβ42 (amyloid-42 peptide) (#), t-tau (total cerebrospinal fluid tau) (##), p-tau181p (tau phosphorylated at threonine 181) (###), t-tau/Aβ42 (Δ), p-tau181p/Aβ42 (ΔΔ);
hippocampal, amygdalar or total cerebral volume.
LncRNA, long non-coding RNA; snRNA, small nuclear RNA. TFBS, these SNPs are located in the transcription factor binding sites; chromatin, this SNP is located in an open chromatin region; miRNA, these SNPs may affect miRNA binding site activity, which may regulate protein translation; pathogenic, this SNP is clinically pathogenic; 3D, this SNP alters the protein structure; CpG, this SNP is located at an 880bp CpG island.
To explore the potential biological functions of these risk SNPs, we predicted their various functions using a series of bioinformatics analyses, and examined the potential regulatory effects of these SNPs on RNA expression using real molecular experiment, including the expression of the protein-coding mRNAs and the largest class of non-coding RNAs, i.e., piRNAs. The whole set of analyses was based on a regulation pathway illustrated in Figure 1.
For the mRNA expression, the genes that these risk SNPs are located were studied and the cis-regulatory effects of these SNPs on the mRNAs in human brains of a European cohort (n=134) were examined. For the piRNA expression, the transcriptome-wide piRNAs in human brains of our small Chinese cohort (6 AD and 6 controls; see above) were studied (Qiu et al. 2017) and the trans-regulatory effects of these SNPs on the piRNAs were examined. Furthermore, the expression of mRNAs and proteins encoding by these risk genes were examined in multiple brain regions in multiple independent European and American cohorts, the correlations between their mRNA expression and the APOE expression in brain were tested, and the most possible phenotype that these risk genes can predict for was explored using pathway/network analysis. Finally, the long non-coding RNAs (LncRNAs) proximate to these risk genes were explored. Integrating multiple independent pieces of positive evidence from these analyses would increase the possibility that the SNP-AD relationships are causal and suggest the potential mechanisms underlying these SNP-AD associations.
3. Results
3.1. Genome-wide Significant and Replicated Associations between SNPs and AD/AD-biomarkers
Although 10,393 candidate gene studies and 1055 GWASs on AD/AD-biomarkers have been published from 2007 till July, 2017, surprisingly, we could only extract the associations of 17 variants located in 11 genes/snRNAs/LncRNAs in eight loci from 28 studies that were genome-wide significant (1.0×10−295≤p≤9.0×10−9) and replicated across at least two independent studies (not only two independent samples in the same study) at single-point level. These eight loci include APOE cluster (NECTIN2-TOMM40-APOE-APOC1) (Abraham et al. 2008; Logue et al. 2011; Naj et al. 2010; Antunez et al. 2011; Feulner et al. 2010; Kim et al. 2011; Harold et al. 2009; Lambert et al. 2009; Nelson et al. 2014; Heinzen et al. 2010; Seshadri et al. 2010; Perez-Palma et al. 2014; Shen et al. 2010; Meda et al. 2012; Ramirez et al. 2014; Ramanan et al. 2014; Melville et al. 2012; Kamboh et al. 2012b; Li et al. 2008; Webster et al. 2008; Coon et al. 2007; Kamboh et al. 2012a), APOJ (Lambert et al. 2009; Jun et al. 2016; Lambert et al. 2013), SORL1 (Miyashita et al. 2013; Lambert et al. 2013; Jun et al. 2016), SLC24A4 (Jun et al. 2016; Lambert et al. 2013), CR1 (Lambert et al. 2013; Lambert et al. 2009), CD33 (Naj et al. 2011; Lambert et al. 2013), LOC105373605 (Kamboh et al. 2012b; Naj et al. 2011; Lambert et al. 2013; Jun et al. 2016; Hollingworth et al. 2011; Antunez et al. 2011; Hu et al. 2011) and RNU6-560P (Lambert et al. 2013; Jun et al. 2016; Harold et al. 2009) (Table 1), which is highly consistent with the gene list presented in the largest GWAS meta-analysis (Lambert et al. 2013). Among them, the associations between AD and variants (rs6859, rs157580, rs2075650, rs429358 and rs4420638) within APOE cluster are most robust. The associations between AD and rs6859 and rs157580 were replicated across three GWASs (8×10−89≤p≤6×10−14) (Abraham et al. 2008; Logue et al. 2011; Naj et al. 2010; Antunez et al. 2011; Feulner et al. 2010; Kim et al. 2011); the associations between either AD or age-of-onset of AD and rs4420638 were replicated across five GWASs (8×10−149≤p≤1×10−12) (Kamboh et al. 2012b; Coon et al. 2007; Li et al. 2008; Kamboh et al. 2012a; Webster et al. 2008); the associations between AD and rs2075650 were replicated across nine GWASs (1×10−295≤p≤3×10−11) (Harold et al. 2009; Lambert et al. 2009; Nelson et al. 2014; Heinzen et al. 2010; Seshadri et al. 2010; Perez-Palma et al. 2014; Naj et al. 2010; Kim et al. 2011; Shen et al. 2010); and the associations between AD or AD biomarkers (Aβ42, t-tau, p-tau181p, hippocampal, amygdalar or total cerebral volume) and rs429358+rs7412 (ε2/ε3/ε4) were replicated across eight GWASs (2×10−33≤p≤4×10−9) (Meda et al. 2012; Kim et al. 2011; Ramirez et al. 2014; Ramanan et al. 2014; Melville et al. 2012; Shen et al. 2010). Some of these associations have been validated by previous functional studies. Basically, other surrounding markers that might be in linkage disequilibrium with these 17 SNPs have not been reported to be genome-wide significant, replicated across studies or biologically functional (data not shown). Finally, more other phenotypes associated with these genes and the molecular functions of these genes are presented in Supplementary Table S1.
3.2. Bioinformatics Analysis
Among the 17 risk SNPs in Table 1, the only nonsynonymous variant is rs429358+rs7412 (ε2/ε3/ε4; Cys/Arg). It alters the APOE protein structure and has been demonstrated to be pathogenic, playing clinically significant roles in the development of AD. It is located at an 880bp CpG island of APOE, may alter the methylation status of this CpG island, and therefore affect the expression of APOE. One SNP at APOE cluster and one CD33 SNP at the transcription factor binding sites (TFBS) may affect the local DNA conformation and thereby influence the binding of transcription factors. Three SNPs located at the open chromatin regions are often associated with regulatory factor binding. Two SNPs may affect miRNA binding site activity, and therefore may regulate protein translation. Two SNPs are located in LncRNAs that might regulate the gene expression.
3.3. The Risk Variants May Regulate the Expression of Risk Genes in Human Brains
Cis-eQTL analysis showed that most SNPs had nominal cis-acting regulatory effects on mRNA expression (p<0.05). The effect of rs6656401 on CR1 in HIPP (p=2.7×10−5) and WHMT (p=6.5×10−7), and the effects of rs2279590 and rs9331896 on APOJ in TCTX (p=1.3×10−4 and 4.5×10−4, respectively) and WHMT (p=1.4×10−4 and 1.5×10−4, respectively) remained significant after Bonferroni correction. (Table 2)
Table 2.
cis-acting expression of quantitative locus (cis-eQTL) analysis on the risk markers in human brains of a UK European cohort (n=134)
| SNPs | Target | FCTX | TCTX | OCTX | PUTM | THAL | HIPP | SNIG | WHMT |
|---|---|---|---|---|---|---|---|---|---|
| rs6656401 | CR1 | 0.014 | 4.0×10−3 | 0.049 | 0.013 | 2.7×10−5* | 6.5×10−7* | ||
| rs2279590 | APOJ | 3.9×10−4 | 1.3×10−4* | 7.8×10−4 | 1.5×10−3 | 0.011 | 1.4×10−4* | ||
| rs9331896 | APOJ | 1.2×10−3 | 4.5×10−4 | 7.7×10−4 | 6.9×10−4 | 0.029 | 1.5×10−4* | ||
| rs6859 | TOMM40 | 5.0×10−3 | |||||||
| rs157580 | NECTIN2 | 0.036 | 8.1×10−4 | ||||||
| rs2075650 | NECTIN2 | 0.034 | |||||||
| rs2075650 | TOMM40 | 0.047 | |||||||
| rs429358 | NECTIN2 | 0.015 | |||||||
| rs429358 | APOC1 | 0.050 | |||||||
| rs4420638 | APOC1 | 0.017 | |||||||
| rs3865444 | CD33 | 0.017 |
The SNP list refers to Table 1. Brain regions: frontal cortex (FCTX), temporal cortex (TCTX), occipital cortex (specifically primary visual cortex, OCTX), putamen (PUTM), thalamus (THAL), hippocampus (HIPP), substantia nigra (SNIG), and intralobular white matter (WHMT).
The effects remaining significant after Bonferroni correction are bold, i.e., p<α=2.0×10−4=0.05/(10 brain tissues × 25 regulations).
3.4. The Risk Variants May Regulate the Expression of piRNAs in brains
We found difference in genotype frequency of rs2075650 at APOE cluster (A/G genotype frequency: 0.714 vs. 0.111; p=0.029) and allele frequency (G allele frequency: 0.357 vs. 0.056; p=0.055) between AD cases and controls in our small cohort. The association between this marker and AD or AD-biomarkers has been reported to be the most robust one in literatures. It has been reported to be extremely significant (with lowest p values) and has been replicated across nine (the highest number) independent GWASs (Table 1). Our small cohort had 35% of power (calculated by an R program pwr.chisq.test) to detect this association based on the most significant finding reported previously (Seshadri et al. 2010).
eQTL analysis showed that some risk SNPs had transcriptome-wide significant (p<5.3×10−6) regulatory effects on piRNAs (Table 3), including rs10792832 and rs3851179 at RNU6-560P and ε2/ε3/ε4 at APOE (9.4×10−8≤p≤4.7×10−6). (Table 3)
Table 3.
The piRNAs significantly correlated with risk SNPs for AD
| piRNA | location | RNU6-560P | APOE | |
|---|---|---|---|---|
|
|
|
|||
| rs10792832 | rs3851179 | (ε2/ε3/ε4) | ||
| DQ571511 | SNORD49A | 2.8×10−7 | 2.8×10−7 | |
| DQ570728 | SNORD63 | 4.0×10−6 | 4.0×10−6 | |
| DQ596993 | SNORD110 | 4.7×10−6 | 4.7×10−6 | |
| DQ581176 | Close to DLG5 | 4.1×10−7 | ||
| DQ589995 | LRRC37A4P | 3.3×10−6 | ||
| DQ574832 | Close to BUB1 | 5.1×10−6 | ||
| DQ574527 | FAM95B1 | 9.4×10−8 | ||
| DQ577188 | GOLGA6L9 | 4.3×10−6 | ||
| DQ571900 | LINC00837 | 3.0×10−6 | ||
α=5.3×10−6
3.5. mRNA/Protein Expression of Risk Genes in Human Brain
Except for CR1 and CD33, other seven protein-coding genes, including APOJ, SORL1, SLC24A4, NECTIN2, TOMM40, APOE and APOC1, had significant mRNA expression (36< normalized intensity <9088 or 1<RPKM<779) in 26 human brain regions in the three independent cohorts (Table 4). Specifically, in the first UK European cohort, all of these seven protein-coding genes were expressed in the ten brain regions including CRTX, FCTX, HIPP, MEDU, OCTX, PUTM, SNIG, TCTX, THAL, and WHMT (all log2(normalized intensity) > 5.17), except for the low expression of SLC24A4 in CRTX. In the American cohort, all seven genes were expressed in CTX, FCTX, ACTX, HPTH, HIPP, SNIG, NACC, CDNL, PUTM, AMYG, CRHM, CRBL and/or PITT. Among these seven genes, APOE (201.40≤RPKM≤778.30) and APOJ (48.90≤RPKM≤602.00) were expressed in highest density across all 13 brain regions, except for low expression of APOE in PITT. In the second UK European cohort, all seven genes were expressed in at least one of the 17 brain regions, including AMYG, CDNL, CRBL, CRPD, CCTX, DRGL, FTBR, HPTH, MEDU, OCTX, PITT, PONS, PFCX, TCTX, THAL, WHOL and PINL. Among these seven genes, APOE (102.58≤ normalized intensity ≤1875.35) and APOJ (856.65≤ normalized intensity ≤9087.92) were expressed in highest density across all 17 brain regions. Finally, in the Germany cohort, proteomic analysis showed that APOJ, TOMM40, APOE and APOC1 had significant protein expression in WHOL, FCTX or CRTX. Among these four genes, APOE (40ppm≤concentration≤267ppm) and APOJ (40≤ concentration≤291) were expressed in highest density across all three brain regions.
Table 4.
The mRNA and protein expression of risk genes in human brains in four cohorts
| WHOL | CTX | PFCX | FCTX | TCTX | ACTX | OCTX | CRTX | HPTH | HIPP | SNIG | NACC | CDNL | PUTM | MEDU | AMYG | CRHM | CRBL | PITT | THAL | CRPD | DRGL | FTBR | PONS | PINL | WHMT | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| mRNA expression in a UK European cohort (n=134) [log2-transformed normalized intensity values from Affymetrix Human ST 1.0 exon arrays]: | ||||||||||||||||||||||||||
| APOJ | 8.9 | 8.8 | 8.7 | 8.7 | 9.0 | 9.1 | 8.9 | 9.2 | 9.1 | 8.8 | ||||||||||||||||
| SORL1 | 8.9 | 8.8 | 8.9 | 8.7 | 8.7 | 8.8 | 8.0 | 8.6 | 8.5 | 8.8 | ||||||||||||||||
| SLC24A4 | 5.8 | 5.9 | 6.1 | - | 5.5 | 6.2 | 5.3 | 6.5 | 6.0 | 5.8 | ||||||||||||||||
| NECTIN2 | 6.2 | 6.2 | 6.1 | 5.9 | 6.4 | 6.5 | 6.3 | 6.5 | 6.4 | 6.2 | ||||||||||||||||
| TOMM40 | 6.3 | 6.3 | 6.3 | 6.4 | 6.2 | 6.3 | 6.3 | 6.3 | 6.2 | 6.4 | ||||||||||||||||
| APOE | 6.7 | 6.7 | 6.6 | 6.6 | 7.0 | 7.8 | 7.5 | 7.1 | 7.4 | 7.1 | ||||||||||||||||
| APOC1 | 5.4 | 5.4 | 5.5 | 5.3 | 5.5 | 5.8 | 5.8 | 5.5 | 5.6 | 5.6 | ||||||||||||||||
| mRNA expression in an American cohort (n=2712) [RPKM values from RNA-Seq]: | ||||||||||||||||||||||||||
| APOJ | 585.6 | 564.4 | 565.5 | 391.8 | 376.8 | 468.2 | 540.5 | 602.0 | 547.9 | 475.5 | 307.6 | 423.6 | 48.9 | |||||||||||||
| SORL1 | 14.1 | 17.4 | 11.6 | 10.0 | 11.0 | 13.8 | 9.0 | 9.0 | 6.4 | 7.8 | 19.7 | 20.3 | 15.3 | |||||||||||||
| SLC24A4 | 1.8 | 1.3 | - | - | - | 1.2 | 1.1 | - | - | - | - | - | - | |||||||||||||
| NECTIN2 | 4.6 | 4.1 | 4.6 | 5.8 | 4.0 | 5.2 | 3.9 | 4.4 | 4.1 | 4.7 | 2.0 | 3.4 | 15.6 | |||||||||||||
| TOMM40 | 11.0 | 10.7 | 8.3 | 9.3 | 7.4 | 8.0 | 7.4 | 7.4 | 7.5 | 6.4 | 12.5 | 12.5 | 10.0 | |||||||||||||
| APOE | 252.8 | 239.0 | 331.6 | 519.9 | 289.6 | 753.4 | 778.3 | 791.1 | 762.3 | 556.2 | 201.4 | 269.8 | - | |||||||||||||
| APOC1 | 4.2 | 4.0 | 4.7 | 43.6 | 11.1 | 75.1 | 81.2 | 78.9 | 72.6 | 25.8 | - | - | 3.4 | |||||||||||||
| mRNA expression in a UK European cohort (n=176; BioGPS) [normalized intensity values from Affymetrix microarray]: | ||||||||||||||||||||||||||
| APOJ | 5671.0 | 9087.9 | 2467.2 | 2637.9 | 3509.0 | 5470.7 | 3132.7 | 2342.2 | 6874.6 | 2878.1 | 729.9 | 3995.2 | 3565.2 | 1737.8 | 856.7 | 2452.2 | 8721.4 | |||||||||
| SORL1 | 607.9 | 1144.0 | 288.1 | 355.1 | 523.7 | 472.8 | 131.8 | 415.3 | 510.0 | 320.9 | 420.1 | 219.1 | 509.9 | - | 83.9 | 198.9 | 848.6 | |||||||||
| SLC24A4 | 45.5 | 43.7 | 47.9 | 49.5 | 48.2 | 47.2 | 50.9 | 48.7 | 45.5 | 47.9 | 48.2 | 48.7 | 48.3 | 48.4 | 47.6 | 48.4 | 46.8 | |||||||||
| NECTIN2 | - | - | - | 34.2 | - | - | - | - | - | - | 32.2 | - | - | - | - | - | 63.0 | |||||||||
| TOMM40 | 220.1 | 398.3 | 449.5 | 514.7 | 274.7 | 303.1 | 312.2 | 322.3 | 245.8 | 259.6 | 365.3 | 697.0 | 697.0 | 307.5 | 334.2 | 519.9 | 355.1 | |||||||||
| APOE | 1139.5 | 818.9 | 417.9 | 461.3 | 528.3 | 1769.5 | 990.9 | 438.2 | 1875.4 | 591.3 | 102.6 | 506.2 | 809.8 | 158.9 | 193.5 | 449.7 | 403.7 | |||||||||
| APOC1 | 40.8 | 32.0 | 32.7 | 134.5 | 40.8 | 150.8 | 164.8 | 95.6 | 56.4 | - | 65.6 | 122.7 | 30.1 | 33.6 | - | 100.1 | 36.0 | |||||||||
| protein expression in a Germany cohort (ProteomicsDB) [ppm values from mass spectrometry-based proteomics arrays]: | ||||||||||||||||||||||||||
| APOJ | 291 | 65 | 40 | |||||||||||||||||||||||
| TOMM40 | 149 | 27 | - | |||||||||||||||||||||||
| APOE | 267 | 221 | 40 | |||||||||||||||||||||||
| APOC1 | - | 10 | 19 | |||||||||||||||||||||||
The expression levels less than thresholds are not listed in this table [normalized intensity < 36, i.e., log2(normalized intensity) < 5.17 from microarray; RPKM < 1 from RNA-Seq; or raw protein concentration value < 10ppm from HPLC]. Brain regions: whole brain (WHOL), cortex (CTX), prefrontal cortex (PFCX), anterior cingulate cortex (ACTX), cerebellar cortex (CRTX), hypothalamus (HPTH), nucleus accumbens (NACC), caudate nucleus (CDNL), medulla (specifically inferior olivary nucleus, MEDU), amygdala (AMYG), cerebellar hemisphere (CRHM), pituitary (PITT), cerebellum peduncles (CRPD), dorsal root ganglion (DRGL), fetal brain (FTBR), pons (PONS), and pineal (PINL). Other abbreviations refer to Table 2.
3.6. The Expression of Eight Protein-Coding Genes Was Correlated with APOE Expression
The mRNA expression of all eight risk genes in brain was significantly correlated with APOE expression in at least one of the ten brain regions in the UK European cohort (0.29≤|r|≤0.81; 2.9×10−32≤p≤6.2×10−4), and APOJ, SORL1, APOE and APOC1 belong to the same lipoprotein metabolism pathway (www.reactome.org). Except for the negative correlations (r<0) between SORL1 and APOE in OCTX, FCTX and TCTX and between SLC24A4 and APOE in OCTX, all others were positive (r>0) (Table 5)
Table 5.
Significant expression correlation between APOE and other risk genes in human brain (n=134)
| CR1 | APOJ | SORL1 | SLC24A4 | NECTIN2 | TOMM40 | APOC1 | CD33 | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| r | p | r | p | r | p | r | p | r | p | r | p | r | p | r | p | |
| CRBL | .54 | 3.8×10−11 | .30 | 5.2×10−4 | .60 | 7.2×10−14 | ||||||||||
| FCTX | −.49 | 1.6×10−9 | .44 | 1.1×10−7 | ||||||||||||
| HIPP | .34 | 4.9×10−5 | .47 | 8.2×10−9 | ||||||||||||
| MEDU | .32 | 2.0×10−4 | .51 | 4.7×10−10 | .35 | 3.6×10−5 | .42 | 8.2×10−7 | ||||||||
| OCTX | .58 | 3.3×10−13 | −.52 | 1.2×10−10 | −.40 | 1.3×10−6 | .63 | 4.0×10−16 | ||||||||
| PUTM | .48 | 3.6×10−9 | .37 | 1.2×10−5 | .60 | 1.1×10−14 | .31 | 2.2×10−4 | .29 | 6.2×10−4 | ||||||
| SNIG | .44 | 2.1×10−7 | .71 | 4.0×10−21 | .73 | 2.2×10−23 | .81 | 2.9×10−32 | .70 | 1.2×10−20 | .70 | 7.5×10−21 | ||||
| TCTX | .47 | 9.5×10−9 | .56 | 3.4×10−12 | −.55 | 5.3×10−12 | .64 | 1.0×10−16 | .32 | 1.9×10−4 | .33 | 1.3×10−4 | ||||
| THAL | .39 | 2.7×10−6 | .46 | 2.2×10−8 | .61 | 5.3×10−15 | .54 | 2.9×10−11 | .49 | 3.1×10−9 | ||||||
| WHMT | .47 | 1.5×10−8 | .39 | 2.9×10−6 | .33 | 1.1×10−4 | ||||||||||
The abbreviations of brain regions refer to Table 4. r, correlation coefficient; α=6.3×10−4=0.05/(10 brain tissues × 8 genes); any correlation with p>α is not listed in this table.
3.7. Gene network and pathway analysis
Overrepresentation analysis using IPA identified biological pathways containing a statistically significant excess of these genes. The top 5 canonical pathways found to be overrepresented in these genes using IPA are shown in Table 6. Two canonical pathways related to the retinoid X receptor were the most significant enriched pathways: LXR/RXR Activation (p=1.50×10−5) and FXR/RXR Activation pathways (p=1.72×10−5). These were followed by Atherosclerosis Signaling (p=1.74×10−5), IL-12 Signaling and Production in Macrophages (p=2.64×10−5), and Production of Nitric Oxide and Reactive Oxygen Species in Macrophages (p=6.07×10−5) pathaways. Late-onset AD (p=1.75×10−10), efflux of phospholipid (p=1.92×10−7), AD (p=2.20×10−7), familial amyloidosis (p=4.48×10−7), lattice corneal dystrophy type I (p=4.84×10−7) were the top enriched diseases and functions. Only the network for Lipid Metabolism, Molecular Transport, Small Molecule Biochemistry was significantly enriched (Score=23). IPA knowledge base significantly associated this network to both late-onset AD (p=1.75×10−10), and AD (p=2.20×10−7) as shown in Figure 2.
Table 6.
Enrichment analysis for the risk genes using IPA
| Pathway/Phenotype/Network | p-value/score |
|---|---|
| Ingenuity Canonical Pathways | |
| LXR/RXR Activation | 1.50×10−5 |
| FXR/RXR Activation | 1.72×10−5 |
| Atherosclerosis Signaling | 1.74×10−5 |
| IL-12 Signaling and Production in Macrophages | 2.64×10−5 |
| Production of Nitric Oxide and Reactive Oxygen Species in Macrophages | 6.07×10−5 |
| Diseases or Functions Annotation | |
| late-onset Alzheimer’s disease | 1.92×10−10 |
| efflux of phospholipid | 1.75×10−7 |
| Alzheimer’s disease | 2.20×10−7 |
| familial amyloidosis | 4.48×10−7 |
| lattice corneal dystrophy type I | 4.84×10−7 |
| Networks | |
| Lipid Metabolism, Molecular Transport, Small Molecule Biochemistry | score: 23 |
Figure 2. The significantly enriched network Lipid Metabolism, Molecular Transport, Small Molecule Biochemistry.
[This figure was generated from a Core Analysis in IPA for the risk genes (green-colored) and their relationship to AD (red-colored)]
Current network and pathway analysis is limited by the state of current knowledge about gene interactions and functions in the biomedical literature. Thus, well studied genes have more complete, validated interaction and functional data in contrast to less studied ones. In this regard, these results represent our findings with respect to the current state of knowledge.
3.8. The LncRNAs Related to the Replicated Risk Genes
The LncRNAs proximate to each gene are listed in Table 7. One sense LncRNA 2.9 kb to SLC24A4 is a large intergenic non-coding RNA (LincRNA), with a length of 15 kb; three others overlapping with or close to SORL1 and CD33 are antisense LncRNAs, with lengths of 12 kb to 31 kb. The results presented above are also illustrated in Figure 1.
Table 7.
The LncRNAs or snRNAs proximate to the replicated risk genes for AD
| LncRNA name (NCBI Gene) | Alias | Length (nt) | Distance to risk gene | Category |
|---|---|---|---|---|
| XR_948110.2 | LOC105369536 | 13,932 | Overlap with exons 1&2 of SORL1 | antisense LncRNA |
| XP_016874140.1 | LOC105369535 | 11,887 | Covered by SORL1 | antisense LncRNA |
| XR_944153.1 | LOC105370627 | 15,237 | 2,931bp to TSS of SLC24A4 | sense LincRNA |
| XR_001753982.1 | LOC107985327 | 31,013 | 148bp to 3′ of CD33 | antisense LncRNA |
| XR_923311.2 | LOC105373605 | 29,009 | 99bp to 3′ of BIN1 | antisense LncRNA |
| NC_000011.10 | RNU6-560P | 108 | 83,453bp to TSS of PICALM | snRNA |
Sense, LncRNAs are transcribed from the same genomic strand as the protein-coding mRNAs; Antisense, LncRNAs are transcribed from the antisense strand.
4. Discussion
More than 10,000 genetic studies of AD have been published so far, and over 560 genes have been “associated” with AD risk, which might confuse the readers and some might mislead them due to the non-replicability issue. Our analysis first explicitly showed that, after stringent screening, only 17 SNPs in eight loci were robustly associated with AD; that is, these SNPs were biologically functional and potentially causal, and their associations with AD were genome-wide significant and replicated across independent studies. Most of these eight loci enriched some AD-related pathways or networks. We believe these SNPs/loci should have the highest possibility of contribution to AD risk. APOE and the lipoprotein metabolism pathway possess the highest weight among this contribution, as expected though. These risk SNPs/loci contribute to AD risk probably via common or distinct mechanisms. These mechanisms may be related to the direct or indirect regulatory functions of the risk variants. We illustrate possible mechanisms underlying these SNP-AD associations in Figure 1.
The cis-eQTL and bioinformatics analyses provided evidence to support that these replicated risk SNPs might be biologically functional in regulating piRNAs and mRNAs, altering protein structures, and influencing the transcription, expression and splicing of the risk genes. Many piRNAs, mRNAs and proteins targeted by these variants were expressed in human brains. This evidence increased the possibility that these risk SNPs might play functional roles in AD development.
As expected, association between APOE and AD has been intensively reported and is most robust. APOE is highly abundant in human brains. It may be directly involved in AD pathology or indirectly through a β-amyloid (Aβ) or tau pathway (Puglielli et al. 2003; Namba et al. 1991; Lilius et al. 1999). Six other protein-coding risk genes, including APOJ, SORL1, SLC24A4, NECTIN2, TOMM40 and APOC1, were significantly expressed in multiple human brain regions too. They were all correlated with APOE in expression. NECTIN2, TOMM40 and APOC1 are closely located within the same genomic cluster as APOE. APOJ, SORL1 and APOC1 belong to the same lipoprotein metabolism pathway (www.reactome.org) as APOE too. This pathway is critical in redistributing cholesterol and phospholipids in brains, responsible for the apoE4-associated neuropathology including the formation of neurotoxic fragments that have been demonstrated to be involved in the development of AD (Mahley 2016; Jones et al. 2010). APOE and APOJ expression in brains is the most abundant among all risk genes for AD. Apparently, APOE and the lipoprotein metabolism pathway possess the highest weight in contribution to the AD risk. Moreover, SLC24A4 is involved in neural development (Larsson et al. 2011). RIN3 next to SLC24A4 interacts with BIN1 in the early endocytic pathway (Kajiho et al. 2003), and BIN1 is another well-known risk gene for AD, which is probably the alternative non-APOE pathway via which SLC24A4 is implicated in AD (Tan et al. 2013).
The protein-coding risk gene CD33 was expressed a little bit lower than the threshold in brains in our four independent brain tissue cohorts (data not shown). However, this low expression was significantly correlated with APOE expression in SNIG and TCTX in our cohorts, and literatures have also reported low expression of CD33 around the threshold mainly in microglial cells (Jiang et al. 2014), which suggested it might still be able to play a direct functional role in AD too. CD33 can inhibit the uptake and clearance of Aβ42 in microglial cells and CD33 inactivation can mitigates Aβ pathology (Griciuc et al. 2013). CD33 was associated with accumulation of neuritic amyloid pathology and fibrillar amyloid, and increased numbers of activated human microglia (Bradshaw et al. 2013).
The protein-coding risk gene CR1 (i.e., CD35) was expressed much lower than the threshold in brains in our four independent brain cohorts (data not shown), consistent with previous reports (Fonseca et al. 2016). However, this very low expression was also significantly correlated with APOE expression in multiple brain regions in our cohorts. Some studies have also reported low expression of CR1 in some brain regions (Chibnik et al. 2011; Bralten et al. 2011), and CR1 interacted with APOE and participated in the clearance of β amyloid (Aβ) peptide. Aβ is the principal constituent of amyloid plaques that is one of the major brain lesions of individuals with AD (Thambisetty et al. 2013; Lambert et al. 2009; Biffi et al. 2012).
Additional functional pathway and network analysis with IPA suggested that more other pathways that these risk genes belong to might also be involved in AD. The top most significant canonical pathways resulting from the enrichment analysis were related to the retinoid X receptors (RXRs). Recent studies have pointed to a role of liver X receptor, a RXR binding partner, in the AD pathophysiology (Sandoval-Hernandez et al. 2015). The third most significant enriched canonical pathway was Atherosclerosis signaling. The association between cerebrovascular atherosclerosis and AD has been examined in many cross-sectional studies (Kim et al. 2016). Both Atherosclerosis and AD involve inflammation and macrophage infiltration (Lathe et al. 2014). Subsequently, two canonical pathways indicative of macrophage activation [production of IL-12 and nitric oxide and reactive oxygen species (NOROS)] were among the top 5 significantly enriched pathways. The NOROS pathway was listed as top 1 by a previous report (Li et al. 2015). Finally, if analyzed using MetaCore, the top 4 significantly enriched canonical pathways were all “immune response” pathways (data not shown), consistent with a previous report (Jones et al. 2010).
Recent evidence suggests that piRNAs are abundant in the brain (Mani and Juliano 2013; Rajasethupathy et al. 2012; Lee et al. 2011; Sharma et al. 2001; Perrat et al. 2013; Yan et al. 2011; Ghildiyal et al. 2008; Dharap et al. 2011; Peng and Lin 2013; Zuo et al. 2016b; Qiu et al. 2017). piRNAs may regulate the mRNAs and translation of the proximate risk genes (Grivna et al. 2006) or interact with neurotransmitters in brains (Ross et al. 2014; Rajasethupathy et al. 2012), and thus may play roles in brain disorders. Our transcriptome-wide eQTL screening demonstrated that the risk SNPs, especially in non-coding loci, might have trans-regulatory effects on piRNAs, which may suggest a novel mechanism underlying the SNP-disease associations.
Finally, five risk variants are located within or close to either an antisense LncRNA (i.e., LOC105373605) or a snRNA that does not encode any protein. These LncRNA and snRNA are proximate to BIN1 and PICALM, respectively. BIN1 and PICALM are expressed in human brains and have widely been associated with AD by numerous studies (Wang et al. 2016; Holler et al. 2014). The antisense LncRNA and snRNA might use diverse transcriptional and post-transcriptional mechanisms (Faghihi and Wahlestedt 2009; Villegas and Zaphiropoulos 2015; Zuo et al. 2016a) to regulate BIN1 and PICALM, respectively, to play roles in AD. PICALM and BIN1 were modifiers of Aβ toxicity and they could promote APP internalization, endocytic trafficking, and Aβ generation in neurons in vitro (Xiao et al. 2012; Treusch et al. 2011). Furthermore, several risk genes, e.g., SORL1, SLC24A4 and CD33, overlap with or are close to LncRNAs in genomic location, also suggesting the role of LncRNAs in AD. These hypotheses regarding LncRNAs and snRNAs should be tested in the future.
Supplementary Material
Supplementary Table S1. Biological functions of the risk genes/RNAs
Acknowledgments
This work was supported in part by National Institute on Drug Abuse (NIDA) grant K01 DA029643, National Institute on Alcohol Abuse and Alcoholism (NIAAA) grants R21 AA021380, R21 AA020319 and R21 AA023237, Chinese National Science Foundation (81201057), Shanghai Clinical Center for Psychiatric Disease, and Shanghai Municipal Commission Award (20124109).
Footnotes
Conflict of Interest: The authors declare no conflict of interest.
Author Contributions
Conceived and designed the experiments: X.G. X.L.
Performed the experiments: X.L. X.G. R.G.M. W.Q. X.L. Y.T. Z.W. C.M. Y.Z. X.W. Y.Z. Y.C. J.S. J.W. D.L. L.S. Y.X. N.L. T.S. J.Z. J.L. H.Z. J.X. L.K.
Analyzed the data: X.G. X.L. C.R.L. K.W.
Contributed reagents/materials/analysis tools: X.L. R.G.M.
Wrote the manuscript: X.G. X.L. R.G.M.
References
- Abraham R, Moskvina V, Sims R, Hollingworth P, Morgan A, Georgieva L, Dowzell K, Cichon S, Hillmer AM, O’Donovan MC, Williams J, Owen MJ, Kirov G. A genome-wide association study for late-onset Alzheimer’s disease using DNA pooling. BMC Med Genomics. 2008;1:44. doi: 10.1186/1755-8794-1-44. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anoop A, Singh PK, Jacob RS, Maji SK. CSF Biomarkers for Alzheimer’s Disease Diagnosis. International journal of Alzheimer’s disease. 2010;2010 doi: 10.4061/2010/606802. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Antunez C, Boada M, Gonzalez-Perez A, Gayan J, Ramirez-Lorca R, Marin J, Hernandez I, Moreno-Rey C, Moron FJ, Lopez-Arrieta J, Mauleon A, Rosende-Roca M, Noguera-Perea F, Legaz-Garcia A, Vivancos-Moreau L, Velasco J, Carrasco JM, Alegret M, Antequera-Torres M, Manzanares S, Romo A, Blanca I, Ruiz S, Espinosa A, Castano S, Garcia B, Martinez-Herrada B, Vinyes G, Lafuente A, Becker JT, Galan JJ, Serrano-Rios M, Vazquez E, Tarraga L, Saez ME, Lopez OL, Real LM, Ruiz A Alzheimer’s Disease Neuroimaging I. The membrane-spanning 4-domains, subfamily A (MS4A) gene cluster contains a common variant associated with Alzheimer’s disease. Genome Med. 2011;3(5):33. doi: 10.1186/gm249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Biffi A, Shulman JM, Jagiella JM, Cortellini L, Ayres AM, Schwab K, Brown DL, Silliman SL, Selim M, Worrall BB, Meschia JF, Slowik A, De Jager PL, Greenberg SM, Schneider JA, Bennett DA, Rosand J. Genetic variation at CR1 increases risk of cerebral amyloid angiopathy. Neurology. 2012;78(5):334–341. doi: 10.1212/WNL.0b013e3182452b40. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradshaw EM, Chibnik LB, Keenan BT, Ottoboni L, Raj T, Tang A, Rosenkrantz LL, Imboywa S, Lee M, Von Korff A, Morris MC, Evans DA, Johnson K, Sperling RA, Schneider JA, Bennett DA, De Jager PL Alzheimer Disease Neuroimaging I. CD33 Alzheimer’s disease locus: altered monocyte function and amyloid biology. Nature neuroscience. 2013;16(7):848–850. doi: 10.1038/nn.3435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bralten J, Franke B, Arias-Vasquez A, Heister A, Brunner HG, Fernandez G, Rijpkema M. CR1 genotype is associated with entorhinal cortex volume in young healthy adults. Neurobiology of aging. 2011;32(11):2106e2107–2111. doi: 10.1016/j.neurobiolaging.2011.05.017. [DOI] [PubMed] [Google Scholar]
- Chibnik LB, Shulman JM, Leurgans SE, Schneider JA, Wilson RS, Tran D, Aubin C, Buchman AS, Heward CB, Myers AJ, Hardy JA, Huentelman MJ, Corneveaux JJ, Reiman EM, Evans DA, Bennett DA, De Jager PL. CR1 is associated with amyloid plaque burden and age-related cognitive decline. Ann Neurol. 2011;69(3):560–569. doi: 10.1002/ana.22277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coon KD, Myers AJ, Craig DW, Webster JA, Pearson JV, Lince DH, Zismann VL, Beach TG, Leung D, Bryden L, Halperin RF, Marlowe L, Kaleem M, Walker DG, Ravid R, Heward CB, Rogers J, Papassotiropoulos A, Reiman EM, Hardy J, Stephan DA. A high-density whole-genome association study reveals that APOE is the major susceptibility gene for sporadic late-onset Alzheimer’s disease. J Clin Psychiatry. 2007;68(4):613–618. doi: 10.4088/jcp.v68n0419. [DOI] [PubMed] [Google Scholar]
- Dharap A, Nakka VP, Vemuganti R. Altered expression of PIWI RNA in the rat brain after transient focal ischemia. Stroke. 2011;42(4):1105–1109. doi: 10.1161/STROKEAHA.110.598391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Faghihi MA, Wahlestedt C. Regulatory roles of natural antisense transcripts. Nature reviews Molecular cell biology. 2009;10(9):637–643. doi: 10.1038/nrm2738. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feulner TM, Laws SM, Friedrich P, Wagenpfeil S, Wurst SH, Riehle C, Kuhn KA, Krawczak M, Schreiber S, Nikolaus S, Forstl H, Kurz A, Riemenschneider M. Examination of the current top candidate genes for AD in a genome-wide association study. Mol Psychiatry. 2010;15(7):756–766. doi: 10.1038/mp.2008.141. [DOI] [PubMed] [Google Scholar]
- Fonseca MI, Chu S, Pierce AL, Brubaker WD, Hauhart RE, Mastroeni D, Clarke EV, Rogers J, Atkinson JP, Tenner AJ. Analysis of the Putative Role of CR1 in Alzheimer’s Disease: Genetic Association, Expression and Function. PLoS One. 2016;11(2):e0149792. doi: 10.1371/journal.pone.0149792. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ghildiyal M, Seitz H, Horwich MD, Li C, Du T, Lee S, Xu J, Kittler EL, Zapp ML, Weng Z, Zamore PD. Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. Science. 2008;320(5879):1077–1081. doi: 10.1126/science.1157396. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griciuc A, Serrano-Pozo A, Parrado AR, Lesinski AN, Asselin CN, Mullin K, Hooli B, Choi SH, Hyman BT, Tanzi RE. Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron. 2013;78(4):631–643. doi: 10.1016/j.neuron.2013.04.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grivna ST, Beyret E, Wang Z, Lin H. A novel class of small RNAs in mouse spermatogenic cells. Genes Dev. 2006;20(13):1709–1714. doi: 10.1101/gad.1434406. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Williams A, Jones N, Thomas C, Stretton A, Morgan AR, Lovestone S, Powell J, Proitsi P, Lupton MK, Brayne C, Rubinsztein DC, Gill M, Lawlor B, Lynch A, Morgan K, Brown KS, Passmore PA, Craig D, McGuinness B, Todd S, Holmes C, Mann D, Smith AD, Love S, Kehoe PG, Hardy J, Mead S, Fox N, Rossor M, Collinge J, Maier W, Jessen F, Schurmann B, van den Bussche H, Heuser I, Kornhuber J, Wiltfang J, Dichgans M, Frolich L, Hampel H, Hull M, Rujescu D, Goate AM, Kauwe JS, Cruchaga C, Nowotny P, Morris JC, Mayo K, Sleegers K, Bettens K, Engelborghs S, De Deyn PP, Van Broeckhoven C, Livingston G, Bass NJ, Gurling H, McQuillin A, Gwilliam R, Deloukas P, Al-Chalabi A, Shaw CE, Tsolaki M, Singleton AB, Guerreiro R, Muhleisen TW, Nothen MM, Moebus S, Jockel KH, Klopp N, Wichmann HE, Carrasquillo MM, Pankratz VS, Younkin SG, Holmans PA, O’Donovan M, Owen MJ, Williams J. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nature genetics. 2009;41(10):1088–1093. doi: 10.1038/ng.440. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heinzen EL, Need AC, Hayden KM, Chiba-Falek O, Roses AD, Strittmatter WJ, Burke JR, Hulette CM, Welsh-Bohmer KA, Goldstein DB. Genome-wide scan of copy number variation in late-onset Alzheimer’s disease. J Alzheimers Dis. 2010;19(1):69–77. doi: 10.3233/JAD-2010-1212. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holler CJ, Davis PR, Beckett TL, Platt TL, Webb RL, Head E, Murphy MP. Bridging integrator 1 (BIN1) protein expression increases in the Alzheimer’s disease brain and correlates with neurofibrillary tangle pathology. J Alzheimers Dis. 2014;42(4):1221–1227. doi: 10.3233/JAD-132450. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hollingworth P, Harold D, Sims R, Gerrish A, Lambert JC, Carrasquillo MM, Abraham R, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Jones N, Stretton A, Thomas C, Richards A, Ivanov D, Widdowson C, Chapman J, Lovestone S, Powell J, Proitsi P, Lupton MK, Brayne C, Rubinsztein DC, Gill M, Lawlor B, Lynch A, Brown KS, Passmore PA, Craig D, McGuinness B, Todd S, Holmes C, Mann D, Smith AD, Beaumont H, Warden D, Wilcock G, Love S, Kehoe PG, Hooper NM, Vardy ER, Hardy J, Mead S, Fox NC, Rossor M, Collinge J, Maier W, Jessen F, Ruther E, Schurmann B, Heun R, Kolsch H, van den Bussche H, Heuser I, Kornhuber J, Wiltfang J, Dichgans M, Frolich L, Hampel H, Gallacher J, Hull M, Rujescu D, Giegling I, Goate AM, Kauwe JS, Cruchaga C, Nowotny P, Morris JC, Mayo K, Sleegers K, Bettens K, Engelborghs S, De Deyn PP, Van Broeckhoven C, Livingston G, Bass NJ, Gurling H, McQuillin A, Gwilliam R, Deloukas P, Al-Chalabi A, Shaw CE, Tsolaki M, Singleton AB, Guerreiro R, Muhleisen TW, Nothen MM, Moebus S, Jockel KH, Klopp N, Wichmann HE, Pankratz VS, Sando SB, Aasly JO, Barcikowska M, Wszolek ZK, Dickson DW, Graff-Radford NR, Petersen RC, van Duijn CM, Breteler MM, Ikram MA, DeStefano AL, Fitzpatrick AL, Lopez O, Launer LJ, Seshadri S, Berr C, Campion D, Epelbaum J, Dartigues JF, Tzourio C, Alperovitch A, Lathrop M, Feulner TM, Friedrich P, Riehle C, Krawczak M, Schreiber S, Mayhaus M, Nicolhaus S, Wagenpfeil S, Steinberg S, Stefansson H, Stefansson K, Snaedal J, Bjornsson S, Jonsson PV, Chouraki V, Genier-Boley B, Hiltunen M, Soininen H, Combarros O, Zelenika D, Delepine M, Bullido MJ, Pasquier F, Mateo I, Frank-Garcia A, Porcellini E, Hanon O, Coto E, Alvarez V, Bosco P, Siciliano G, Mancuso M, Panza F, Solfrizzi V, Nacmias B, Sorbi S, Bossu P, Piccardi P, Arosio B, Annoni G, Seripa D, Pilotto A, Scarpini E, Galimberti D, Brice A, Hannequin D, Licastro F, Jones L, Holmans PA, Jonsson T, Riemenschneider M, Morgan K, Younkin SG, Owen MJ, O’Donovan M, Amouyel P, Williams J consortium E, consortium C, Alzheimer’s Disease Neuroimaging I. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nature genetics. 2011;43(5):429–435. doi: 10.1038/ng.803. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hu X, Pickering E, Liu YC, Hall S, Fournier H, Katz E, Dechairo B, John S, Van Eerdewegh P, Soares H Alzheimer’s Disease Neuroimaging I. Meta-analysis for genome-wide association study identifies multiple variants at the BIN1 locus associated with late-onset Alzheimer’s disease. PLoS One. 2011;6(2):e16616. doi: 10.1371/journal.pone.0016616. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jiang T, Yu JT, Hu N, Tan MS, Zhu XC, Tan L. CD33 in Alzheimer’s disease. Molecular neurobiology. 2014;49(1):529–535. doi: 10.1007/s12035-013-8536-1. [DOI] [PubMed] [Google Scholar]
- Jones L, Holmans PA, Hamshere ML, Harold D, Moskvina V, Ivanov D, Pocklington A, Abraham R, Hollingworth P, Sims R, Gerrish A, Pahwa JS, Jones N, Stretton A, Morgan AR, Lovestone S, Powell J, Proitsi P, Lupton MK, Brayne C, Rubinsztein DC, Gill M, Lawlor B, Lynch A, Morgan K, Brown KS, Passmore PA, Craig D, McGuinness B, Todd S, Holmes C, Mann D, Smith AD, Love S, Kehoe PG, Mead S, Fox N, Rossor M, Collinge J, Maier W, Jessen F, Schurmann B, Heun R, Kolsch H, van den Bussche H, Heuser I, Peters O, Kornhuber J, Wiltfang J, Dichgans M, Frolich L, Hampel H, Hull M, Rujescu D, Goate AM, Kauwe JS, Cruchaga C, Nowotny P, Morris JC, Mayo K, Livingston G, Bass NJ, Gurling H, McQuillin A, Gwilliam R, Deloukas P, Al-Chalabi A, Shaw CE, Singleton AB, Guerreiro R, Muhleisen TW, Nothen MM, Moebus S, Jockel KH, Klopp N, Wichmann HE, Ruther E, Carrasquillo MM, Pankratz VS, Younkin SG, Hardy J, O’Donovan MC, Owen MJ, Williams J. Genetic evidence implicates the immune system and cholesterol metabolism in the aetiology of Alzheimer’s disease. PLoS One. 2010;5(11):e13950. doi: 10.1371/journal.pone.0013950. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jun G, Ibrahim-Verbaas CA, Vronskaya M, Lambert JC, Chung J, Naj AC, Kunkle BW, Wang LS, Bis JC, Bellenguez C, Harold D, Lunetta KL, Destefano AL, Grenier-Boley B, Sims R, Beecham GW, Smith AV, Chouraki V, Hamilton-Nelson KL, Ikram MA, Fievet N, Denning N, Martin ER, Schmidt H, Kamatani Y, Dunstan ML, Valladares O, Laza AR, Zelenika D, Ramirez A, Foroud TM, Choi SH, Boland A, Becker T, Kukull WA, van der Lee SJ, Pasquier F, Cruchaga C, Beekly D, Fitzpatrick AL, Hanon O, Gill M, Barber R, Gudnason V, Campion D, Love S, Bennett DA, Amin N, Berr C, Tsolaki M, Buxbaum JD, Lopez OL, Deramecourt V, Fox NC, Cantwell LB, Tarraga L, Dufouil C, Hardy J, Crane PK, Eiriksdottir G, Hannequin D, Clarke R, Evans D, Mosley TH, Jr, Letenneur L, Brayne C, Maier W, De Jager P, Emilsson V, Dartigues JF, Hampel H, Kamboh MI, de Bruijn RF, Tzourio C, Pastor P, Larson EB, Rotter JI, O’Donovan MC, Montine TJ, Nalls MA, Mead S, Reiman EM, Jonsson PV, Holmes C, St George-Hyslop PH, Boada M, Passmore P, Wendland JR, Schmidt R, Morgan K, Winslow AR, Powell JF, Carasquillo M, Younkin SG, Jakobsdottir J, Kauwe JS, Wilhelmsen KC, Rujescu D, Nothen MM, Hofman A, Jones L, Haines JL, Psaty BM, Van Broeckhoven C, Holmans P, Launer LJ, Mayeux R, Lathrop M, Goate AM, Escott-Price V, Seshadri S, Pericak-Vance MA, Amouyel P, Williams J, van Duijn CM, Schellenberg GD, Farrer LA Consortium I. A novel Alzheimer disease locus located near the gene encoding tau protein. Mol Psychiatry. 2016;21(1):108–117. doi: 10.1038/mp.2015.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kajiho H, Saito K, Tsujita K, Kontani K, Araki Y, Kurosu H, Katada T. RIN3: a novel Rab5 GEF interacting with amphiphysin II involved in the early endocytic pathway. Journal of cell science. 2003;116(Pt 20):4159–4168. doi: 10.1242/jcs.00718. [DOI] [PubMed] [Google Scholar]
- Kamboh MI, Barmada MM, Demirci FY, Minster RL, Carrasquillo MM, Pankratz VS, Younkin SG, Saykin AJ, Sweet RA, Feingold E, DeKosky ST, Lopez OL Alzheimer’s Disease Neuroimaging I. Genome-wide association analysis of age-at-onset in Alzheimer’s disease. Mol Psychiatry. 2012a;17(12):1340–1346. doi: 10.1038/mp.2011.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kamboh MI, Demirci FY, Wang X, Minster RL, Carrasquillo MM, Pankratz VS, Younkin SG, Saykin AJ, Jun G, Baldwin C, Logue MW, Buros J, Farrer L, Pericak-Vance MA, Haines JL, Sweet RA, Ganguli M, Feingold E, Dekosky ST, Lopez OL, Barmada MM Alzheimer’s Disease Neuroimaging I. Genome-wide association study of Alzheimer’s disease. Transl Psychiatry. 2012b;2:e117. doi: 10.1038/tp.2012.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim S, Swaminathan S, Shen L, Risacher SL, Nho K, Foroud T, Shaw LM, Trojanowski JQ, Potkin SG, Huentelman MJ, Craig DW, DeChairo BM, Aisen PS, Petersen RC, Weiner MW, Saykin AJ Alzheimer’s Disease Neuroimaging I. Genome-wide association study of CSF biomarkers Abeta1-42, t-tau, and p-tau181p in the ADNI cohort. Neurology. 2011;76(1):69–79. doi: 10.1212/WNL.0b013e318204a397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim TW, Song IU, Jeong DS, Lee KS. Clinical effect of cerebrovascular atherosclerosis on cognition in Alzheimer’s disease. Archives of gerontology and geriatrics. 2016;63:55–58. doi: 10.1016/j.archger.2015.11.009. [DOI] [PubMed] [Google Scholar]
- Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, Combarros O, Zelenika D, Bullido MJ, Tavernier B, Letenneur L, Bettens K, Berr C, Pasquier F, Fievet N, Barberger-Gateau P, Engelborghs S, De Deyn P, Mateo I, Franck A, Helisalmi S, Porcellini E, Hanon O, de Pancorbo MM, Lendon C, Dufouil C, Jaillard C, Leveillard T, Alvarez V, Bosco P, Mancuso M, Panza F, Nacmias B, Bossu P, Piccardi P, Annoni G, Seripa D, Galimberti D, Hannequin D, Licastro F, Soininen H, Ritchie K, Blanche H, Dartigues JF, Tzourio C, Gut I, Van Broeckhoven C, Alperovitch A, Lathrop M, Amouyel P European Alzheimer’s Disease Initiative I. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nature genetics. 2009;41(10):1094–1099. doi: 10.1038/ng.439. [DOI] [PubMed] [Google Scholar]
- Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, DeStafano AL, Bis JC, Beecham GW, Grenier-Boley B, Russo G, Thorton-Wells TA, Jones N, Smith AV, Chouraki V, Thomas C, Ikram MA, Zelenika D, Vardarajan BN, Kamatani Y, Lin CF, Gerrish A, Schmidt H, Kunkle B, Dunstan ML, Ruiz A, Bihoreau MT, Choi SH, Reitz C, Pasquier F, Cruchaga C, Craig D, Amin N, Berr C, Lopez OL, De Jager PL, Deramecourt V, Johnston JA, Evans D, Lovestone S, Letenneur L, Moron FJ, Rubinsztein DC, Eiriksdottir G, Sleegers K, Goate AM, Fievet N, Huentelman MW, Gill M, Brown K, Kamboh MI, Keller L, Barberger-Gateau P, McGuiness B, Larson EB, Green R, Myers AJ, Dufouil C, Todd S, Wallon D, Love S, Rogaeva E, Gallacher J, St George-Hyslop P, Clarimon J, Lleo A, Bayer A, Tsuang DW, Yu L, Tsolaki M, Bossu P, Spalletta G, Proitsi P, Collinge J, Sorbi S, Sanchez-Garcia F, Fox NC, Hardy J, Deniz Naranjo MC, Bosco P, Clarke R, Brayne C, Galimberti D, Mancuso M, Matthews F, Moebus S, Mecocci P, Del Zompo M, Maier W, Hampel H, Pilotto A, Bullido M, Panza F, Caffarra P, Nacmias B, Gilbert JR, Mayhaus M, Lannefelt L, Hakonarson H, Pichler S, Carrasquillo MM, Ingelsson M, Beekly D, Alvarez V, Zou F, Valladares O, Younkin SG, Coto E, Hamilton-Nelson KL, Gu W, Razquin C, Pastor P, Mateo I, Owen MJ, Faber KM, Jonsson PV, Combarros O, O’Donovan MC, Cantwell LB, Soininen H, Blacker D, Mead S, Mosley TH, Jr, Bennett DA, Harris TB, Fratiglioni L, Holmes C, de Bruijn RF, Passmore P, Montine TJ, Bettens K, Rotter JI, Brice A, Morgan K, Foroud TM, Kukull WA, Hannequin D, Powell JF, Nalls MA, Ritchie K, Lunetta KL, Kauwe JS, Boerwinkle E, Riemenschneider M, Boada M, Hiltuenen M, Martin ER, Schmidt R, Rujescu D, Wang LS, Dartigues JF, Mayeux R, Tzourio C, Hofman A, Nothen MM, Graff C, Psaty BM, Jones L, Haines JL, Holmans PA, Lathrop M, Pericak-Vance MA, Launer LJ, Farrer LA, van Duijn CM, Van Broeckhoven C, Moskvina V, Seshadri S, Williams J, Schellenberg GD, Amouyel P European Alzheimer’s Disease I, Genetic, Environmental Risk in Alzheimer’s D Alzheimer’s Disease Genetic C, Cohorts for H, Aging Research in Genomic E. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nature genetics. 2013;45(12):1452–1458. doi: 10.1038/ng.2802. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Larsson M, Duffy DL, Zhu G, Liu JZ, Macgregor S, McRae AF, Wright MJ, Sturm RA, Mackey DA, Montgomery GW, Martin NG, Medland SE. GWAS findings for human iris patterns: associations with variants in genes that influence normal neuronal pattern development. American journal of human genetics. 2011;89(2):334–343. doi: 10.1016/j.ajhg.2011.07.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lathe R, Sapronova A, Kotelevtsev Y. Atherosclerosis and Alzheimer--diseases with a common cause? Inflammation, oxysterols, vasculature. BMC geriatrics. 2014;14:36. doi: 10.1186/1471-2318-14-36. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee EJ, Banerjee S, Zhou H, Jammalamadaka A, Arcila M, Manjunath BS, Kosik KS. Identification of piRNAs in the central nervous system. RNA. 2011;17(6):1090–1099. doi: 10.1261/rna.2565011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li H, Wetten S, Li L, St Jean PL, Upmanyu R, Surh L, Hosford D, Barnes MR, Briley JD, Borrie M, Coletta N, Delisle R, Dhalla D, Ehm MG, Feldman HH, Fornazzari L, Gauthier S, Goodgame N, Guzman D, Hammond S, Hollingworth P, Hsiung GY, Johnson J, Kelly DD, Keren R, Kertesz A, King KS, Lovestone S, Loy-English I, Matthews PM, Owen MJ, Plumpton M, Pryse-Phillips W, Prinjha RK, Richardson JC, Saunders A, Slater AJ, St George-Hyslop PH, Stinnett SW, Swartz JE, Taylor RL, Wherrett J, Williams J, Yarnall DP, Gibson RA, Irizarry MC, Middleton LT, Roses AD. Candidate single-nucleotide polymorphisms from a genomewide association study of Alzheimer disease. Arch Neurol. 2008;65(1):45–53. doi: 10.1001/archneurol.2007.3. [DOI] [PubMed] [Google Scholar]
- Li X, Long J, He T, Belshaw R, Scott J. Integrated genomic approaches identify major pathways and upstream regulators in late onset Alzheimer’s disease. Scientific reports. 2015;5:12393. doi: 10.1038/srep12393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lilius L, Froelich Fabre S, Basun H, Forsell C, Axelman K, Mattila K, Andreadis A, Viitanen M, Winblad B, Fratiglioni L, Lannfelt L. Tau gene polymorphisms and apolipoprotein E epsilon4 may interact to increase risk for Alzheimer’s disease. Neuroscience letters. 1999;277(1):29–32. doi: 10.1016/s0304-3940(99)00833-2. [DOI] [PubMed] [Google Scholar]
- Logue MW, Schu M, Vardarajan BN, Buros J, Green RC, Go RC, Griffith P, Obisesan TO, Shatz R, Borenstein A, Cupples LA, Lunetta KL, Fallin MD, Baldwin CT, Farrer LA Multi-Institutional Research on Alzheimer Genetic Epidemiology Study G. A comprehensive genetic association study of Alzheimer disease in African Americans. Arch Neurol. 2011;68(12):1569–1579. doi: 10.1001/archneurol.2011.646. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mahley RW. Central Nervous System Lipoproteins: ApoE and Regulation of Cholesterol Metabolism. Arteriosclerosis, thrombosis, and vascular biology. 2016;36(7):1305–1315. doi: 10.1161/ATVBAHA.116.307023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mani SR, Juliano CE. Untangling the web: the diverse functions of the PIWI/piRNA pathway. Mol Reprod Dev. 2013;80(8):632–664. doi: 10.1002/mrd.22195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proceedings of the National Academy of Sciences of the United States of America. 1985;82(12):4245–4249. doi: 10.1073/pnas.82.12.4245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meda SA, Narayanan B, Liu J, Perrone-Bizzozero NI, Stevens MC, Calhoun VD, Glahn DC, Shen L, Risacher SL, Saykin AJ, Pearlson GD. A large scale multivariate parallel ICA method reveals novel imaging-genetic relationships for Alzheimer’s disease in the ADNI cohort. NeuroImage. 2012;60(3):1608–1621. doi: 10.1016/j.neuroimage.2011.12.076. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Melville SA, Buros J, Parrado AR, Vardarajan B, Logue MW, Shen L, Risacher SL, Kim S, Jun G, DeCarli C, Lunetta KL, Baldwin CT, Saykin AJ, Farrer LA Alzheimer’s Disease Neuroimaging I. Multiple loci influencing hippocampal degeneration identified by genome scan. Ann Neurol. 2012;72(1):65–75. doi: 10.1002/ana.23644. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miyashita A, Koike A, Jun G, Wang LS, Takahashi S, Matsubara E, Kawarabayashi T, Shoji M, Tomita N, Arai H, Asada T, Harigaya Y, Ikeda M, Amari M, Hanyu H, Higuchi S, Ikeuchi T, Nishizawa M, Suga M, Kawase Y, Akatsu H, Kosaka K, Yamamoto T, Imagawa M, Hamaguchi T, Yamada M, Morihara T, Takeda M, Takao T, Nakata K, Fujisawa Y, Sasaki K, Watanabe K, Nakashima K, Urakami K, Ooya T, Takahashi M, Yuzuriha T, Serikawa K, Yoshimoto S, Nakagawa R, Kim JW, Ki CS, Won HH, Na DL, Seo SW, Mook-Jung I, St George-Hyslop P, Mayeux R, Haines JL, Pericak-Vance MA, Yoshida M, Nishida N, Tokunaga K, Yamamoto K, Tsuji S, Kanazawa I, Ihara Y, Schellenberg GD, Farrer LA, Kuwano R Alzheimer Disease Genetics C. SORL1 is genetically associated with late-onset Alzheimer’s disease in Japanese, Koreans and Caucasians. PLoS One. 2013;8(4):e58618. doi: 10.1371/journal.pone.0058618. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Naj AC, Beecham GW, Martin ER, Gallins PJ, Powell EH, Konidari I, Whitehead PL, Cai G, Haroutunian V, Scott WK, Vance JM, Slifer MA, Gwirtsman HE, Gilbert JR, Haines JL, Buxbaum JD, Pericak-Vance MA. Dementia revealed: novel chromosome 6 locus for late-onset Alzheimer disease provides genetic evidence for folate-pathway abnormalities. PLoS Genet. 2010;6(9):e1001130. doi: 10.1371/journal.pgen.1001130. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN, Buros J, Gallins PJ, Buxbaum JD, Jarvik GP, Crane PK, Larson EB, Bird TD, Boeve BF, Graff-Radford NR, De Jager PL, Evans D, Schneider JA, Carrasquillo MM, Ertekin-Taner N, Younkin SG, Cruchaga C, Kauwe JS, Nowotny P, Kramer P, Hardy J, Huentelman MJ, Myers AJ, Barmada MM, Demirci FY, Baldwin CT, Green RC, Rogaeva E, St George-Hyslop P, Arnold SE, Barber R, Beach T, Bigio EH, Bowen JD, Boxer A, Burke JR, Cairns NJ, Carlson CS, Carney RM, Carroll SL, Chui HC, Clark DG, Corneveaux J, Cotman CW, Cummings JL, DeCarli C, DeKosky ST, Diaz-Arrastia R, Dick M, Dickson DW, Ellis WG, Faber KM, Fallon KB, Farlow MR, Ferris S, Frosch MP, Galasko DR, Ganguli M, Gearing M, Geschwind DH, Ghetti B, Gilbert JR, Gilman S, Giordani B, Glass JD, Growdon JH, Hamilton RL, Harrell LE, Head E, Honig LS, Hulette CM, Hyman BT, Jicha GA, Jin LW, Johnson N, Karlawish J, Karydas A, Kaye JA, Kim R, Koo EH, Kowall NW, Lah JJ, Levey AI, Lieberman AP, Lopez OL, Mack WJ, Marson DC, Martiniuk F, Mash DC, Masliah E, McCormick WC, McCurry SM, McDavid AN, McKee AC, Mesulam M, Miller BL, Miller CA, Miller JW, Parisi JE, Perl DP, Peskind E, Petersen RC, Poon WW, Quinn JF, Rajbhandary RA, Raskind M, Reisberg B, Ringman JM, Roberson ED, Rosenberg RN, Sano M, Schneider LS, Seeley W, Shelanski ML, Slifer MA, Smith CD, Sonnen JA, Spina S, Stern RA, Tanzi RE, Trojanowski JQ, Troncoso JC, Van Deerlin VM, Vinters HV, Vonsattel JP, Weintraub S, Welsh-Bohmer KA, Williamson J, Woltjer RL, Cantwell LB, Dombroski BA, Beekly D, Lunetta KL, Martin ER, Kamboh MI, Saykin AJ, Reiman EM, Bennett DA, Morris JC, Montine TJ, Goate AM, Blacker D, Tsuang DW, Hakonarson H, Kukull WA, Foroud TM, Haines JL, Mayeux R, Pericak-Vance MA, Farrer LA, Schellenberg GD. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nature genetics. 2011;43(5):436–441. doi: 10.1038/ng.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Namba Y, Tomonaga M, Kawasaki H, Otomo E, Ikeda K. Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer’s disease and kuru plaque amyloid in Creutzfeldt-Jakob disease. Brain research. 1991;541(1):163–166. doi: 10.1016/0006-8993(91)91092-f. [DOI] [PubMed] [Google Scholar]
- Nelson PT, Estus S, Abner EL, Parikh I, Malik M, Neltner JH, Ighodaro E, Wang WX, Wilfred BR, Wang LS, Kukull WA, Nandakumar K, Farman ML, Poon WW, Corrada MM, Kawas CH, Cribbs DH, Bennett DA, Schneider JA, Larson EB, Crane PK, Valladares O, Schmitt FA, Kryscio RJ, Jicha GA, Smith CD, Scheff SW, Sonnen JA, Haines JL, Pericak-Vance MA, Mayeux R, Farrer LA, Van Eldik LJ, Horbinski C, Green RC, Gearing M, Poon LW, Kramer PL, Woltjer RL, Montine TJ, Partch AB, Rajic AJ, Richmire K, Monsell SE, Schellenberg GD, Fardo DW Alzheimer’ Disease Genetic C. ABCC9 gene polymorphism is associated with hippocampal sclerosis of aging pathology. Acta Neuropathol. 2014;127(6):825–843. doi: 10.1007/s00401-014-1282-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peng JC, Lin H. Beyond transposons: the epigenetic and somatic functions of the Piwi-piRNA mechanism. Curr Opin Cell Biol. 2013;25(2):190–194. doi: 10.1016/j.ceb.2013.01.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perez-Palma E, Bustos BI, Villaman CF, Alarcon MA, Avila ME, Ugarte GD, Reyes AE, Opazo C, De Ferrari GV Alzheimer’s Disease Neuroimaging I, Group N-LNFS. Overrepresentation of glutamate signaling in Alzheimer’s disease: network-based pathway enrichment using meta-analysis of genome-wide association studies. PLoS One. 2014;9(4):e95413. doi: 10.1371/journal.pone.0095413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perrat PN, DasGupta S, Wang J, Theurkauf W, Weng Z, Rosbash M, Waddell S. Transposition-driven genomic heterogeneity in the Drosophila brain. Science. 2013;340(6128):91–95. doi: 10.1126/science.1231965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Puglielli L, Tanzi RE, Kovacs DM. Alzheimer’s disease: the cholesterol connection. Nature neuroscience. 2003;6(4):345–351. doi: 10.1038/nn0403-345. [DOI] [PubMed] [Google Scholar]
- Qiu W, Guo X, Lin X, Yang Q, Zhang W, Zhang Y, Zuo L, Zhu Y, Li CR, Ma C, Luo X. Transcriptome-wide piRNA profiling in human brains of Alzheimer’s disease. Neurobiology of aging. 2017;57:170–177. doi: 10.1016/j.neurobiolaging.2017.05.020. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rajasethupathy P, Antonov I, Sheridan R, Frey S, Sander C, Tuschl T, Kandel ER. A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity. Cell. 2012;149(3):693–707. doi: 10.1016/j.cell.2012.02.057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramanan VK, Risacher SL, Nho K, Kim S, Swaminathan S, Shen L, Foroud TM, Hakonarson H, Huentelman MJ, Aisen PS, Petersen RC, Green RC, Jack CR, Koeppe RA, Jagust WJ, Weiner MW, Saykin AJ Alzheimer’s Disease Neuroimaging I. APOE and BCHE as modulators of cerebral amyloid deposition: a florbetapir PET genome-wide association study. Mol Psychiatry. 2014;19(3):351–357. doi: 10.1038/mp.2013.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramirez A, van der Flier WM, Herold C, Ramonet D, Heilmann S, Lewczuk P, Popp J, Lacour A, Drichel D, Louwersheimer E, Kummer MP, Cruchaga C, Hoffmann P, Teunissen C, Holstege H, Kornhuber J, Peters O, Naj AC, Chouraki V, Bellenguez C, Gerrish A, Heun R, Frolich L, Hull M, Buscemi L, Herms S, Kolsch H, Scheltens P, Breteler MM, Ruther E, Wiltfang J, Goate A, Jessen F, Maier W, Heneka MT, Becker T, Nothen MM International Genomics of Alzheimer’s P, Alzheimer’s Disease Neuroimaging I. SUCLG2 identified as both a determinator of CSF Abeta1-42 levels and an attenuator of cognitive decline in Alzheimer’s disease. Hum Mol Genet. 2014;23(24):6644–6658. doi: 10.1093/hmg/ddu372. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ross RJ, Weiner MM, Lin H. PIWI proteins and PIWI-interacting RNAs in the soma. Nature. 2014;505(7483):353–359. doi: 10.1038/nature12987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sandoval-Hernandez AG, Buitrago L, Moreno H, Cardona-Gomez GP, Arboleda G. Role of Liver X Receptor in AD Pathophysiology. PLoS One. 2015;10(12):e0145467. doi: 10.1371/journal.pone.0145467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seshadri S, Fitzpatrick AL, Ikram MA, DeStefano AL, Gudnason V, Boada M, Bis JC, Smith AV, Carassquillo MM, Lambert JC, Harold D, Schrijvers EM, Ramirez-Lorca R, Debette S, Longstreth WT, Jr, Janssens AC, Pankratz VS, Dartigues JF, Hollingworth P, Aspelund T, Hernandez I, Beiser A, Kuller LH, Koudstaal PJ, Dickson DW, Tzourio C, Abraham R, Antunez C, Du Y, Rotter JI, Aulchenko YS, Harris TB, Petersen RC, Berr C, Owen MJ, Lopez-Arrieta J, Varadarajan BN, Becker JT, Rivadeneira F, Nalls MA, Graff-Radford NR, Campion D, Auerbach S, Rice K, Hofman A, Jonsson PV, Schmidt H, Lathrop M, Mosley TH, Au R, Psaty BM, Uitterlinden AG, Farrer LA, Lumley T, Ruiz A, Williams J, Amouyel P, Younkin SG, Wolf PA, Launer LJ, Lopez OL, van Duijn CM, Breteler MM Consortium C, Consortium G, Consortium E. Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA. 2010;303(18):1832–1840. doi: 10.1001/jama.2010.574. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sharma AK, Nelson MC, Brandt JE, Wessman M, Mahmud N, Weller KP, Hoffman R. Human CD34(+) stem cells express the hiwi gene, a human homologue of the Drosophila gene piwi. Blood. 2001;97(2):426–434. doi: 10.1182/blood.v97.2.426. [DOI] [PubMed] [Google Scholar]
- Shen L, Kim S, Risacher SL, Nho K, Swaminathan S, West JD, Foroud T, Pankratz N, Moore JH, Sloan CD, Huentelman MJ, Craig DW, Dechairo BM, Potkin SG, Jack CR, Jr, Weiner MW, Saykin AJ Alzheimer’s Disease Neuroimaging I. Whole genome association study of brain-wide imaging phenotypes for identifying quantitative trait loci in MCI and AD: A study of the ADNI cohort. NeuroImage. 2010;53(3):1051–1063. doi: 10.1016/j.neuroimage.2010.01.042. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tan MS, Yu JT, Tan L. Bridging integrator 1 (BIN1): form, function, and Alzheimer’s disease. Trends in molecular medicine. 2013;19(10):594–603. doi: 10.1016/j.molmed.2013.06.004. [DOI] [PubMed] [Google Scholar]
- Thambisetty M, An Y, Nalls M, Sojkova J, Swaminathan S, Zhou Y, Singleton AB, Wong DF, Ferrucci L, Saykin AJ, Resnick SM Baltimore Longitudinal Study of A, the Alzheimer’s Disease Neuroimaging I. Effect of complement CR1 on brain amyloid burden during aging and its modification by APOE genotype. Biological psychiatry. 2013;73(5):422–428. doi: 10.1016/j.biopsych.2012.08.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Treusch S, Hamamichi S, Goodman JL, Matlack KE, Chung CY, Baru V, Shulman JM, Parrado A, Bevis BJ, Valastyan JS, Han H, Lindhagen-Persson M, Reiman EM, Evans DA, Bennett DA, Olofsson A, DeJager PL, Tanzi RE, Caldwell KA, Caldwell GA, Lindquist S. Functional links between Abeta toxicity, endocytic trafficking, and Alzheimer’s disease risk factors in yeast. Science. 2011;334(6060):1241–1245. doi: 10.1126/science.1213210. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Villegas VE, Zaphiropoulos PG. Neighboring gene regulation by antisense long non-coding RNAs. International journal of molecular sciences. 2015;16(2):3251–3266. doi: 10.3390/ijms16023251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang Z, Lei H, Zheng M, Li Y, Cui Y, Hao F. Meta-analysis of the Association between Alzheimer Disease and Variants in GAB2, PICALM, and SORL1. Molecular neurobiology. 2016;53(9):6501–6510. doi: 10.1007/s12035-015-9546-y. [DOI] [PubMed] [Google Scholar]
- Webster JA, Myers AJ, Pearson JV, Craig DW, Hu-Lince D, Coon KD, Zismann VL, Beach T, Leung D, Bryden L, Halperin RF, Marlowe L, Kaleem M, Huentelman MJ, Joshipura K, Walker D, Heward CB, Ravid R, Rogers J, Papassotiropoulos A, Hardy J, Reiman EM, Stephan DA. Sorl1 as an Alzheimer’s disease predisposition gene? Neurodegener Dis. 2008;5(2):60–64. doi: 10.1159/000110789. [DOI] [PubMed] [Google Scholar]
- Xiao Q, Gil SC, Yan P, Wang Y, Han S, Gonzales E, Perez R, Cirrito JR, Lee JM. Role of phosphatidylinositol clathrin assembly lymphoid-myeloid leukemia (PICALM) in intracellular amyloid precursor protein (APP) processing and amyloid plaque pathogenesis. The Journal of biological chemistry. 2012;287(25):21279–21289. doi: 10.1074/jbc.M111.338376. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yan Z, Hu HY, Jiang X, Maierhofer V, Neb E, He L, Hu Y, Hu H, Li N, Chen W, Khaitovich P. Widespread expression of piRNA-like molecules in somatic tissues. Nucleic acids research. 2011;39(15):6596–6607. doi: 10.1093/nar/gkr298. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zuo L, Tan Y, Wang Z, Wang K, Zhang X, Chen X, Li C, Wang T, Luo X. Long non-coding RNAs in psychiatric disorders. Psychiatric Genet. 2016a;26(3):109–116. doi: 10.1097/YPG.0000000000000129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zuo L, Wang Z, Tan Y, Chen X, Luo X. piRNAs and their functions in the brain. Int J Hum Genet. 2016b;16(1–2):53–60. doi: 10.1080/09723757.2016.11886278. [DOI] [PMC free article] [PubMed] [Google Scholar]
References
- 1.Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, DeStafano AL, Bis JC, Beecham GW, Grenier-Boley B, Russo G, Thorton-Wells TA, Jones N, Smith AV, Chouraki V, Thomas C, Ikram MA, Zelenika D, Vardarajan BN, Kamatani Y, Lin CF, Gerrish A, Schmidt H, Kunkle B, Dunstan ML, Ruiz A, Bihoreau MT, Choi SH, Reitz C, Pasquier F, Cruchaga C, Craig D, Amin N, Berr C, Lopez OL, De Jager PL, Deramecourt V, Johnston JA, Evans D, Lovestone S, Letenneur L, Moron FJ, Rubinsztein DC, Eiriksdottir G, Sleegers K, Goate AM, Fievet N, Huentelman MW, Gill M, Brown K, Kamboh MI, Keller L, Barberger-Gateau P, McGuiness B, Larson EB, Green R, Myers AJ, Dufouil C, Todd S, Wallon D, Love S, Rogaeva E, Gallacher J, St George-Hyslop P, Clarimon J, Lleo A, Bayer A, Tsuang DW, Yu L, Tsolaki M, Bossu P, Spalletta G, Proitsi P, Collinge J, Sorbi S, Sanchez-Garcia F, Fox NC, Hardy J, Deniz Naranjo MC, Bosco P, Clarke R, Brayne C, Galimberti D, Mancuso M, Matthews F, Moebus S, Mecocci P, Del Zompo M, Maier W, Hampel H, Pilotto A, Bullido M, Panza F, Caffarra P, Nacmias B, Gilbert JR, Mayhaus M, Lannefelt L, Hakonarson H, Pichler S, Carrasquillo MM, Ingelsson M, Beekly D, Alvarez V, Zou F, Valladares O, Younkin SG, Coto E, Hamilton-Nelson KL, Gu W, Razquin C, Pastor P, Mateo I, Owen MJ, Faber KM, Jonsson PV, Combarros O, O’Donovan MC, Cantwell LB, Soininen H, Blacker D, Mead S, Mosley TH, Jr, Bennett DA, Harris TB, Fratiglioni L, Holmes C, de Bruijn RF, Passmore P, Montine TJ, Bettens K, Rotter JI, Brice A, Morgan K, Foroud TM, Kukull WA, Hannequin D, Powell JF, Nalls MA, Ritchie K, Lunetta KL, Kauwe JS, Boerwinkle E, Riemenschneider M, Boada M, Hiltuenen M, Martin ER, Schmidt R, Rujescu D, Wang LS, Dartigues JF, Mayeux R, Tzourio C, Hofman A, Nothen MM, Graff C, Psaty BM, Jones L, Haines JL, Holmans PA, Lathrop M, Pericak-Vance MA, Launer LJ, Farrer LA, van Duijn CM, Van Broeckhoven C, Moskvina V, Seshadri S, Williams J, Schellenberg GD, Amouyel P European Alzheimer’s Disease I, Genetic, Environmental Risk in Alzheimer’s D, Alzheimer’s Disease Genetic C, Cohorts for H, Aging Research in Genomic E. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. 2013;45:1452–1458. doi: 10.1038/ng.2802. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, Combarros O, Zelenika D, Bullido MJ, Tavernier B, Letenneur L, Bettens K, Berr C, Pasquier F, Fievet N, Barberger-Gateau P, Engelborghs S, De Deyn P, Mateo I, Franck A, Helisalmi S, Porcellini E, Hanon O, de Pancorbo MM, Lendon C, Dufouil C, Jaillard C, Leveillard T, Alvarez V, Bosco P, Mancuso M, Panza F, Nacmias B, Bossu P, Piccardi P, Annoni G, Seripa D, Galimberti D, Hannequin D, Licastro F, Soininen H, Ritchie K, Blanche H, Dartigues JF, Tzourio C, Gut I, Van Broeckhoven C, Alperovitch A, Lathrop M, Amouyel P European Alzheimer’s Disease Initiative I. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet. 2009;41:1094–1099. doi: 10.1038/ng.439. [DOI] [PubMed] [Google Scholar]
- 3.Kamboh MI, Demirci FY, Wang X, Minster RL, Carrasquillo MM, Pankratz VS, Younkin SG, Saykin AJ, Jun G, Baldwin C, Logue MW, Buros J, Farrer L, Pericak-Vance MA, Haines JL, Sweet RA, Ganguli M, Feingold E, Dekosky ST, Lopez OL, Barmada MM Alzheimer’s Disease Neuroimaging I. Genome-wide association study of Alzheimer’s disease. Transl Psychiatry. 2012;2:e117. doi: 10.1038/tp.2012.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN, Buros J, Gallins PJ, Buxbaum JD, Jarvik GP, Crane PK, Larson EB, Bird TD, Boeve BF, Graff-Radford NR, De Jager PL, Evans D, Schneider JA, Carrasquillo MM, Ertekin-Taner N, Younkin SG, Cruchaga C, Kauwe JS, Nowotny P, Kramer P, Hardy J, Huentelman MJ, Myers AJ, Barmada MM, Demirci FY, Baldwin CT, Green RC, Rogaeva E, St George-Hyslop P, Arnold SE, Barber R, Beach T, Bigio EH, Bowen JD, Boxer A, Burke JR, Cairns NJ, Carlson CS, Carney RM, Carroll SL, Chui HC, Clark DG, Corneveaux J, Cotman CW, Cummings JL, DeCarli C, DeKosky ST, Diaz-Arrastia R, Dick M, Dickson DW, Ellis WG, Faber KM, Fallon KB, Farlow MR, Ferris S, Frosch MP, Galasko DR, Ganguli M, Gearing M, Geschwind DH, Ghetti B, Gilbert JR, Gilman S, Giordani B, Glass JD, Growdon JH, Hamilton RL, Harrell LE, Head E, Honig LS, Hulette CM, Hyman BT, Jicha GA, Jin LW, Johnson N, Karlawish J, Karydas A, Kaye JA, Kim R, Koo EH, Kowall NW, Lah JJ, Levey AI, Lieberman AP, Lopez OL, Mack WJ, Marson DC, Martiniuk F, Mash DC, Masliah E, McCormick WC, McCurry SM, McDavid AN, McKee AC, Mesulam M, Miller BL, Miller CA, Miller JW, Parisi JE, Perl DP, Peskind E, Petersen RC, Poon WW, Quinn JF, Rajbhandary RA, Raskind M, Reisberg B, Ringman JM, Roberson ED, Rosenberg RN, Sano M, Schneider LS, Seeley W, Shelanski ML, Slifer MA, Smith CD, Sonnen JA, Spina S, Stern RA, Tanzi RE, Trojanowski JQ, Troncoso JC, Van Deerlin VM, Vinters HV, Vonsattel JP, Weintraub S, Welsh-Bohmer KA, Williamson J, Woltjer RL, Cantwell LB, Dombroski BA, Beekly D, Lunetta KL, Martin ER, Kamboh MI, Saykin AJ, Reiman EM, Bennett DA, Morris JC, Montine TJ, Goate AM, Blacker D, Tsuang DW, Hakonarson H, Kukull WA, Foroud TM, Haines JL, Mayeux R, Pericak-Vance MA, Farrer LA, Schellenberg GD. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet. 2011;43:436–441. doi: 10.1038/ng.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Jun G, Ibrahim-Verbaas CA, Vronskaya M, Lambert JC, Chung J, Naj AC, Kunkle BW, Wang LS, Bis JC, Bellenguez C, Harold D, Lunetta KL, Destefano AL, Grenier-Boley B, Sims R, Beecham GW, Smith AV, Chouraki V, Hamilton-Nelson KL, Ikram MA, Fievet N, Denning N, Martin ER, Schmidt H, Kamatani Y, Dunstan ML, Valladares O, Laza AR, Zelenika D, Ramirez A, Foroud TM, Choi SH, Boland A, Becker T, Kukull WA, van der Lee SJ, Pasquier F, Cruchaga C, Beekly D, Fitzpatrick AL, Hanon O, Gill M, Barber R, Gudnason V, Campion D, Love S, Bennett DA, Amin N, Berr C, Tsolaki M, Buxbaum JD, Lopez OL, Deramecourt V, Fox NC, Cantwell LB, Tarraga L, Dufouil C, Hardy J, Crane PK, Eiriksdottir G, Hannequin D, Clarke R, Evans D, Mosley TH, Jr, Letenneur L, Brayne C, Maier W, De Jager P, Emilsson V, Dartigues JF, Hampel H, Kamboh MI, de Bruijn RF, Tzourio C, Pastor P, Larson EB, Rotter JI, O’Donovan MC, Montine TJ, Nalls MA, Mead S, Reiman EM, Jonsson PV, Holmes C, St George-Hyslop PH, Boada M, Passmore P, Wendland JR, Schmidt R, Morgan K, Winslow AR, Powell JF, Carasquillo M, Younkin SG, Jakobsdottir J, Kauwe JS, Wilhelmsen KC, Rujescu D, Nothen MM, Hofman A, Jones L, Haines JL, Psaty BM, Van Broeckhoven C, Holmans P, Launer LJ, Mayeux R, Lathrop M, Goate AM, Escott-Price V, Seshadri S, Pericak-Vance MA, Amouyel P, Williams J, van Duijn CM, Schellenberg GD, Farrer LA Consortium I. A novel Alzheimer disease locus located near the gene encoding tau protein. Mol Psychiatry. 2016;21:108–117. doi: 10.1038/mp.2015.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Hollingworth P, Harold D, Sims R, Gerrish A, Lambert JC, Carrasquillo MM, Abraham R, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Jones N, Stretton A, Thomas C, Richards A, Ivanov D, Widdowson C, Chapman J, Lovestone S, Powell J, Proitsi P, Lupton MK, Brayne C, Rubinsztein DC, Gill M, Lawlor B, Lynch A, Brown KS, Passmore PA, Craig D, McGuinness B, Todd S, Holmes C, Mann D, Smith AD, Beaumont H, Warden D, Wilcock G, Love S, Kehoe PG, Hooper NM, Vardy ER, Hardy J, Mead S, Fox NC, Rossor M, Collinge J, Maier W, Jessen F, Ruther E, Schurmann B, Heun R, Kolsch H, van den Bussche H, Heuser I, Kornhuber J, Wiltfang J, Dichgans M, Frolich L, Hampel H, Gallacher J, Hull M, Rujescu D, Giegling I, Goate AM, Kauwe JS, Cruchaga C, Nowotny P, Morris JC, Mayo K, Sleegers K, Bettens K, Engelborghs S, De Deyn PP, Van Broeckhoven C, Livingston G, Bass NJ, Gurling H, McQuillin A, Gwilliam R, Deloukas P, Al-Chalabi A, Shaw CE, Tsolaki M, Singleton AB, Guerreiro R, Muhleisen TW, Nothen MM, Moebus S, Jockel KH, Klopp N, Wichmann HE, Pankratz VS, Sando SB, Aasly JO, Barcikowska M, Wszolek ZK, Dickson DW, Graff-Radford NR, Petersen RC, van Duijn CM, Breteler MM, Ikram MA, DeStefano AL, Fitzpatrick AL, Lopez O, Launer LJ, Seshadri S, Berr C, Campion D, Epelbaum J, Dartigues JF, Tzourio C, Alperovitch A, Lathrop M, Feulner TM, Friedrich P, Riehle C, Krawczak M, Schreiber S, Mayhaus M, Nicolhaus S, Wagenpfeil S, Steinberg S, Stefansson H, Stefansson K, Snaedal J, Bjornsson S, Jonsson PV, Chouraki V, Genier-Boley B, Hiltunen M, Soininen H, Combarros O, Zelenika D, Delepine M, Bullido MJ, Pasquier F, Mateo I, Frank-Garcia A, Porcellini E, Hanon O, Coto E, Alvarez V, Bosco P, Siciliano G, Mancuso M, Panza F, Solfrizzi V, Nacmias B, Sorbi S, Bossu P, Piccardi P, Arosio B, Annoni G, Seripa D, Pilotto A, Scarpini E, Galimberti D, Brice A, Hannequin D, Licastro F, Jones L, Holmans PA, Jonsson T, Riemenschneider M, Morgan K, Younkin SG, Owen MJ, O’Donovan M, Amouyel P, Williams J consortium E, consortium C, Alzheimer’s Disease Neuroimaging I. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet. 2011;43:429–435. doi: 10.1038/ng.803. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Antunez C, Boada M, Gonzalez-Perez A, Gayan J, Ramirez-Lorca R, Marin J, Hernandez I, Moreno-Rey C, Moron FJ, Lopez-Arrieta J, Mauleon A, Rosende-Roca M, Noguera-Perea F, Legaz-Garcia A, Vivancos-Moreau L, Velasco J, Carrasco JM, Alegret M, Antequera-Torres M, Manzanares S, Romo A, Blanca I, Ruiz S, Espinosa A, Castano S, Garcia B, Martinez-Herrada B, Vinyes G, Lafuente A, Becker JT, Galan JJ, Serrano-Rios M, Vazquez E, Tarraga L, Saez ME, Lopez OL, Real LM, Ruiz A Alzheimer’s Disease Neuroimaging I. The membrane-spanning 4-domains, subfamily A (MS4A) gene cluster contains a common variant associated with Alzheimer’s disease. Genome Med. 2011;3:33. doi: 10.1186/gm249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Hu X, Pickering E, Liu YC, Hall S, Fournier H, Katz E, Dechairo B, John S, Van Eerdewegh P, Soares H Alzheimer’s Disease Neuroimaging I. Meta-analysis for genome-wide association study identifies multiple variants at the BIN1 locus associated with late-onset Alzheimer’s disease. PLoS One. 2011;6:e16616. doi: 10.1371/journal.pone.0016616. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Miyashita A, Koike A, Jun G, Wang LS, Takahashi S, Matsubara E, Kawarabayashi T, Shoji M, Tomita N, Arai H, Asada T, Harigaya Y, Ikeda M, Amari M, Hanyu H, Higuchi S, Ikeuchi T, Nishizawa M, Suga M, Kawase Y, Akatsu H, Kosaka K, Yamamoto T, Imagawa M, Hamaguchi T, Yamada M, Morihara T, Takeda M, Takao T, Nakata K, Fujisawa Y, Sasaki K, Watanabe K, Nakashima K, Urakami K, Ooya T, Takahashi M, Yuzuriha T, Serikawa K, Yoshimoto S, Nakagawa R, Kim JW, Ki CS, Won HH, Na DL, Seo SW, Mook-Jung I, St George-Hyslop P, Mayeux R, Haines JL, Pericak-Vance MA, Yoshida M, Nishida N, Tokunaga K, Yamamoto K, Tsuji S, Kanazawa I, Ihara Y, Schellenberg GD, Farrer LA, Kuwano R Alzheimer Disease Genetics C. SORL1 is genetically associated with late-onset Alzheimer’s disease in Japanese, Koreans and Caucasians. PLoS One. 2013;8:e58618. doi: 10.1371/journal.pone.0058618. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Williams A, Jones N, Thomas C, Stretton A, Morgan AR, Lovestone S, Powell J, Proitsi P, Lupton MK, Brayne C, Rubinsztein DC, Gill M, Lawlor B, Lynch A, Morgan K, Brown KS, Passmore PA, Craig D, McGuinness B, Todd S, Holmes C, Mann D, Smith AD, Love S, Kehoe PG, Hardy J, Mead S, Fox N, Rossor M, Collinge J, Maier W, Jessen F, Schurmann B, van den Bussche H, Heuser I, Kornhuber J, Wiltfang J, Dichgans M, Frolich L, Hampel H, Hull M, Rujescu D, Goate AM, Kauwe JS, Cruchaga C, Nowotny P, Morris JC, Mayo K, Sleegers K, Bettens K, Engelborghs S, De Deyn PP, Van Broeckhoven C, Livingston G, Bass NJ, Gurling H, McQuillin A, Gwilliam R, Deloukas P, Al-Chalabi A, Shaw CE, Tsolaki M, Singleton AB, Guerreiro R, Muhleisen TW, Nothen MM, Moebus S, Jockel KH, Klopp N, Wichmann HE, Carrasquillo MM, Pankratz VS, Younkin SG, Holmans PA, O’Donovan M, Owen MJ, Williams J. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet. 2009;41:1088–1093. doi: 10.1038/ng.440. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Abraham R, Moskvina V, Sims R, Hollingworth P, Morgan A, Georgieva L, Dowzell K, Cichon S, Hillmer AM, O’Donovan MC, Williams J, Owen MJ, Kirov G. A genome-wide association study for late-onset Alzheimer’s disease using DNA pooling. BMC Med Genomics. 2008;1:44. doi: 10.1186/1755-8794-1-44. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Logue MW, Schu M, Vardarajan BN, Buros J, Green RC, Go RC, Griffith P, Obisesan TO, Shatz R, Borenstein A, Cupples LA, Lunetta KL, Fallin MD, Baldwin CT, Farrer LA Multi-Institutional Research on Alzheimer Genetic Epidemiology Study G. A comprehensive genetic association study of Alzheimer disease in African Americans. Arch Neurol. 2011;68:1569–1579. doi: 10.1001/archneurol.2011.646. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Naj AC, Beecham GW, Martin ER, Gallins PJ, Powell EH, Konidari I, Whitehead PL, Cai G, Haroutunian V, Scott WK, Vance JM, Slifer MA, Gwirtsman HE, Gilbert JR, Haines JL, Buxbaum JD, Pericak-Vance MA. Dementia revealed: novel chromosome 6 locus for late-onset Alzheimer disease provides genetic evidence for folate-pathway abnormalities. PLoS Genet. 2010;6:e1001130. doi: 10.1371/journal.pgen.1001130. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Feulner TM, Laws SM, Friedrich P, Wagenpfeil S, Wurst SH, Riehle C, Kuhn KA, Krawczak M, Schreiber S, Nikolaus S, Forstl H, Kurz A, Riemenschneider M. Examination of the current top candidate genes for AD in a genome-wide association study. Mol Psychiatry. 2010;15:756–766. doi: 10.1038/mp.2008.141. [DOI] [PubMed] [Google Scholar]
- 15.Kim S, Swaminathan S, Shen L, Risacher SL, Nho K, Foroud T, Shaw LM, Trojanowski JQ, Potkin SG, Huentelman MJ, Craig DW, DeChairo BM, Aisen PS, Petersen RC, Weiner MW, Saykin AJ Alzheimer’s Disease Neuroimaging I. Genome-wide association study of CSF biomarkers Abeta1-42, t-tau, and p-tau181p in the ADNI cohort. Neurology. 2011;76:69–79. doi: 10.1212/WNL.0b013e318204a397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Nelson PT, Estus S, Abner EL, Parikh I, Malik M, Neltner JH, Ighodaro E, Wang WX, Wilfred BR, Wang LS, Kukull WA, Nandakumar K, Farman ML, Poon WW, Corrada MM, Kawas CH, Cribbs DH, Bennett DA, Schneider JA, Larson EB, Crane PK, Valladares O, Schmitt FA, Kryscio RJ, Jicha GA, Smith CD, Scheff SW, Sonnen JA, Haines JL, Pericak-Vance MA, Mayeux R, Farrer LA, Van Eldik LJ, Horbinski C, Green RC, Gearing M, Poon LW, Kramer PL, Woltjer RL, Montine TJ, Partch AB, Rajic AJ, Richmire K, Monsell SE, Schellenberg GD, Fardo DW Alzheimer’ Disease Genetic C. ABCC9 gene polymorphism is associated with hippocampal sclerosis of aging pathology. Acta Neuropathol. 2014;127:825–843. doi: 10.1007/s00401-014-1282-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Heinzen EL, Need AC, Hayden KM, Chiba-Falek O, Roses AD, Strittmatter WJ, Burke JR, Hulette CM, Welsh-Bohmer KA, Goldstein DB. Genome-wide scan of copy number variation in late-onset Alzheimer’s disease. J Alzheimers Dis. 2010;19:69–77. doi: 10.3233/JAD-2010-1212. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Seshadri S, Fitzpatrick AL, Ikram MA, DeStefano AL, Gudnason V, Boada M, Bis JC, Smith AV, Carassquillo MM, Lambert JC, Harold D, Schrijvers EM, Ramirez-Lorca R, Debette S, Longstreth WT, Jr, Janssens AC, Pankratz VS, Dartigues JF, Hollingworth P, Aspelund T, Hernandez I, Beiser A, Kuller LH, Koudstaal PJ, Dickson DW, Tzourio C, Abraham R, Antunez C, Du Y, Rotter JI, Aulchenko YS, Harris TB, Petersen RC, Berr C, Owen MJ, Lopez-Arrieta J, Varadarajan BN, Becker JT, Rivadeneira F, Nalls MA, Graff-Radford NR, Campion D, Auerbach S, Rice K, Hofman A, Jonsson PV, Schmidt H, Lathrop M, Mosley TH, Au R, Psaty BM, Uitterlinden AG, Farrer LA, Lumley T, Ruiz A, Williams J, Amouyel P, Younkin SG, Wolf PA, Launer LJ, Lopez OL, van Duijn CM, Breteler MM Consortium C, Consortium G, Consortium E. Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA. 2010;303:1832–1840. doi: 10.1001/jama.2010.574. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Perez-Palma E, Bustos BI, Villaman CF, Alarcon MA, Avila ME, Ugarte GD, Reyes AE, Opazo C, De Ferrari GV Alzheimer’s Disease Neuroimaging I, Group N-LNFS. Overrepresentation of glutamate signaling in Alzheimer’s disease: network-based pathway enrichment using meta-analysis of genome-wide association studies. PLoS One. 2014;9:e95413. doi: 10.1371/journal.pone.0095413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Shen L, Kim S, Risacher SL, Nho K, Swaminathan S, West JD, Foroud T, Pankratz N, Moore JH, Sloan CD, Huentelman MJ, Craig DW, Dechairo BM, Potkin SG, Jack CR, Jr, Weiner MW, Saykin AJ Alzheimer’s Disease Neuroimaging I. Whole genome association study of brain-wide imaging phenotypes for identifying quantitative trait loci in MCI and AD: A study of the ADNI cohort. Neuroimage. 2010;53:1051–1063. doi: 10.1016/j.neuroimage.2010.01.042. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Meda SA, Narayanan B, Liu J, Perrone-Bizzozero NI, Stevens MC, Calhoun VD, Glahn DC, Shen L, Risacher SL, Saykin AJ, Pearlson GD. A large scale multivariate parallel ICA method reveals novel imaging-genetic relationships for Alzheimer’s disease in the ADNI cohort. Neuroimage. 2012;60:1608–1621. doi: 10.1016/j.neuroimage.2011.12.076. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Ramirez A, van der Flier WM, Herold C, Ramonet D, Heilmann S, Lewczuk P, Popp J, Lacour A, Drichel D, Louwersheimer E, Kummer MP, Cruchaga C, Hoffmann P, Teunissen C, Holstege H, Kornhuber J, Peters O, Naj AC, Chouraki V, Bellenguez C, Gerrish A, Heun R, Frolich L, Hull M, Buscemi L, Herms S, Kolsch H, Scheltens P, Breteler MM, Ruther E, Wiltfang J, Goate A, Jessen F, Maier W, Heneka MT, Becker T, Nothen MM International Genomics of Alzheimer’s P, Alzheimer’s Disease Neuroimaging I. SUCLG2 identified as both a determinator of CSF Abeta1–42 levels and an attenuator of cognitive decline in Alzheimer’s disease. Hum Mol Genet. 2014;23:6644–6658. doi: 10.1093/hmg/ddu372. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Ramanan VK, Risacher SL, Nho K, Kim S, Swaminathan S, Shen L, Foroud TM, Hakonarson H, Huentelman MJ, Aisen PS, Petersen RC, Green RC, Jack CR, Koeppe RA, Jagust WJ, Weiner MW, Saykin AJ Alzheimer’s Disease Neuroimaging I. APOE and BCHE as modulators of cerebral amyloid deposition: a florbetapir PET genome-wide association study. Mol Psychiatry. 2014;19:351–357. doi: 10.1038/mp.2013.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Melville SA, Buros J, Parrado AR, Vardarajan B, Logue MW, Shen L, Risacher SL, Kim S, Jun G, DeCarli C, Lunetta KL, Baldwin CT, Saykin AJ, Farrer LA Alzheimer’s Disease Neuroimaging I. Multiple loci influencing hippocampal degeneration identified by genome scan. Ann Neurol. 2012;72:65–75. doi: 10.1002/ana.23644. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Li H, Wetten S, Li L, St Jean PL, Upmanyu R, Surh L, Hosford D, Barnes MR, Briley JD, Borrie M, Coletta N, Delisle R, Dhalla D, Ehm MG, Feldman HH, Fornazzari L, Gauthier S, Goodgame N, Guzman D, Hammond S, Hollingworth P, Hsiung GY, Johnson J, Kelly DD, Keren R, Kertesz A, King KS, Lovestone S, Loy-English I, Matthews PM, Owen MJ, Plumpton M, Pryse-Phillips W, Prinjha RK, Richardson JC, Saunders A, Slater AJ, St George-Hyslop PH, Stinnett SW, Swartz JE, Taylor RL, Wherrett J, Williams J, Yarnall DP, Gibson RA, Irizarry MC, Middleton LT, Roses AD. Candidate single-nucleotide polymorphisms from a genomewide association study of Alzheimer disease. Arch Neurol. 2008;65:45–53. doi: 10.1001/archneurol.2007.3. [DOI] [PubMed] [Google Scholar]
- 26.Webster JA, Myers AJ, Pearson JV, Craig DW, Hu-Lince D, Coon KD, Zismann VL, Beach T, Leung D, Bryden L, Halperin RF, Marlowe L, Kaleem M, Huentelman MJ, Joshipura K, Walker D, Heward CB, Ravid R, Rogers J, Papassotiropoulos A, Hardy J, Reiman EM, Stephan DA. Sorl1 as an Alzheimer’s disease predisposition gene? Neurodegener Dis. 2008;5:60–64. doi: 10.1159/000110789. [DOI] [PubMed] [Google Scholar]
- 27.Coon KD, Myers AJ, Craig DW, Webster JA, Pearson JV, Lince DH, Zismann VL, Beach TG, Leung D, Bryden L, Halperin RF, Marlowe L, Kaleem M, Walker DG, Ravid R, Heward CB, Rogers J, Papassotiropoulos A, Reiman EM, Hardy J, Stephan DA. A high-density whole-genome association study reveals that APOE is the major susceptibility gene for sporadic late-onset Alzheimer’s disease. J Clin Psychiatry. 2007;68:613–618. doi: 10.4088/jcp.v68n0419. [DOI] [PubMed] [Google Scholar]
- 28.Kamboh MI, Barmada MM, Demirci FY, Minster RL, Carrasquillo MM, Pankratz VS, Younkin SG, Saykin AJ, Sweet RA, Feingold E, DeKosky ST, Lopez OL Alzheimer’s Disease Neuroimaging I. Genome-wide association analysis of age-at-onset in Alzheimer’s disease. Mol Psychiatry. 2012;17:1340–1346. doi: 10.1038/mp.2011.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Supplementary Table S1. Biological functions of the risk genes/RNAs


