Skip to main content
Genome Announcements logoLink to Genome Announcements
. 2017 Oct 26;5(43):e01227-17. doi: 10.1128/genomeA.01227-17

Draft Genome Sequence of the Fruiting Myxobacterium Nannocystis exedens DSM 71

Anke Treuner-Lange a, Marc Bruckskotten a, Oliver Rupp b, Alexander Goesmann b, Lotte Søgaard-Andersen a,
PMCID: PMC5658511  PMID: 29074673

ABSTRACT

In response to starvation, members of the order Myxococcales form morphologically very different fruiting bodies. To determine whether fruiting myxobacteria share a common genetic program that leads to fruiting body formation, we sequenced and assembled the genome of Nannocystis exedens DSM 71 as two contigs with a total GC content of 72%.

GENOME ANNOUNCEMENT

Most members of the order Myxococcales initiate a developmental program in response to starvation that results in the formation of a multicellular fruiting body, inside which the rod-shaped cells differentiate to spores (1, 2). Based on phylogenetic analyses using 16S rRNA sequences, a deep trifurcation of members of the order Myxococcales has repeatedly been observed (35). Accordingly, this order is divided into three suborders, i.e., Cystobacterineae, Sorangineae, and Nannocystineae. Currently, the order includes 28 genera and 55 species (6).

While fruiting body formation in the model organism Myxococcus xanthus, a member of the suborder Cystobacterineae, is relatively well understood (7, 8), much less is known about the genetic basis underlying fruiting body formation in the remaining suborders. Of the 20 complete (926) and 36 draft Myxococcales genomes (2734), only 4 are from members of the suborder Nannocystineae. Members of this suborder form fruiting bodies that are either solitary or aggregated sporangioles. To generate an additional resource for accurate genome comparisons, we sequenced and annotated the complete genome of Nannocystis exedens strain DSM 71, which was obtained from the Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH.

After verifying the ability of N. exedens DSM 71 to form irregularly shaped sporangia containing myxospores as described previously (35), we collected genomic DNA (36) from liquid cultures and sequenced it using PacBio single-molecule real-time (SMRT) sequencing (37) on the PacBio RSII platform at the Max Planck-Genome-Centre, Cologne, Germany. Eight SMRT cells were used. Additionally, 11,834,547 100-bp paired-end Illumina reads were obtained using the HiSeq2000 platform. After quality evaluation and filtering of 282,467 PacBio subreads, assembly using the Hierarchical Genome Assembly Process (38) resulted in two contigs with a 94-fold coverage. These two contigs cover approximately 12.1 Mb (11.3 Mb and 0.8 Mb) with a similar GC content of 72%. Additionally, the Illumina reads were applied to correct the assembled contigs using the Pilon tool (39). Due to complex and large repetitive regions in at least two areas of the genome, as well as missing coverage in these regions, we were unable to fully close the genome. The genome annotation was prepared using Prokka (40). A total of 9,278 protein-coding sequences were identified, together with 107 tRNAs and 9 rRNA operons. BLASTp searches against the RefSeq database were used to assign functional annotation and identify possible frameshifts in genes. The corresponding genes were removed from the annotation.

Alignment of the N. exedens DSM 71 genome with other genomes from the order Myxococcales using NUCmer (41) revealed overall synteny to the N. exedens ATCC 25963 genome, with 97% of the sequences aligning. The remaining three Nannocystineae genomes did not match significantly.

The N. exedens DSM 71 genome sequence offers valuable data for studying the evolution of the genetic programs leading to fruiting body formation and also provides a resource for identifying the novel genetic determinants that are important for fruiting body formation and morphology.

Accession number(s).

This whole-genome shotgun project has been deposited at DDBJ/ENA/GenBank under the accession number NETK00000000. The version described in this paper is the first version, NETK01000000.

ACKNOWLEDGMENTS

The Max Planck Society supported this work. Bioinformatics support by the BMBF-funded project “Bielefeld-Gießen Center for Microbial Bioinformatics–BiGi” (grant number 031A533) within the German Network for Bioinformatics Infrastructure (de.NBI) is gratefully acknowledged.

Footnotes

Citation Treuner-Lange A, Bruckskotten M, Rupp O, Goesmann A, Søgaard-Andersen L. 2017. Draft genome sequence of the fruiting myxobacterium Nannocystis exedens DSM 71. Genome Announc 5:e01227-17. https://doi.org/10.1128/genomeA.01227-17.

REFERENCES

  • 1.Dawid W. 2000. Biology and global distribution of myxobacteria in soils. FEMS Microbiol Rev 24:403–427. doi: 10.1111/j.1574-6976.2000.tb00548.x. [DOI] [PubMed] [Google Scholar]
  • 2.Reichenbach H. 1999. The ecology of the myxobacteria. Environ Microbiol 1:15–21. doi: 10.1046/j.1462-2920.1999.00016.x. [DOI] [PubMed] [Google Scholar]
  • 3.Garcia R, Gerth K, Stadler M, Dogma IJ Jr, Müller R. 2010. Expanded phylogeny of myxobacteria and evidence for cultivation of the ‘unculturables’. Mol Phylogenet Evol 57:878–887. doi: 10.1016/j.ympev.2010.08.028. [DOI] [PubMed] [Google Scholar]
  • 4.Shimkets L, Woese CR. 1992. A phylogenetic analysis of the myxobacteria: basis for their classification. Proc Natl Acad Sci U S A 89:9459–9463. doi: 10.1073/pnas.89.20.9459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Spröer C, Reichenbach H, Stackebrandt E. 1999. The correlation between morphological and phylogenetic classification of myxobacteria. Int J Syst Bacteriol 49:1255–1262. doi: 10.1099/00207713-49-3-1255. [DOI] [PubMed] [Google Scholar]
  • 6.Landwehr W, Wolf C, Wink J. 2016. Actinobacteria and myxobacteria—two of the most important bacterial resources for novel antibiotics. Curr Top Microbiol Immunol 398:273–302. doi: 10.1007/82_2016_503. [DOI] [PubMed] [Google Scholar]
  • 7.Konovalova A, Petters T, Søgaard-Andersen L. 2010. Extracellular biology of Myxococcus xanthus. FEMS Microbiol Rev 34:89–106. doi: 10.1111/j.1574-6976.2009.00194.x. [DOI] [PubMed] [Google Scholar]
  • 8.Kroos L. 2017. Highly signal-responsive gene regulatory network governing Myxococcus development. Trends Genet 33:3–15. doi: 10.1016/j.tig.2016.10.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Hwang C, Copeland A, Lucas S, Lapidus A, Barry K, Glavina Del Rio T, Dalin E, Tice H, Pitluck S, Sims D, Brettin T, Bruce DC, Detter JC, Han CS, Schmutz J, Larimer FW, Land ML, Hauser LJ, Kyrpides N, Lykidis A, Richardson P, Belieav A, Sanford RA, Löeffler FE, Fields MW. 2015. Complete genome sequence of Anaeromyxobacter sp. Fw109-5, an anaerobic, metal-reducing bacterium isolated from a contaminated subsurface environment. Genome Announc 3(1):e01449-14. doi: 10.1128/genomeA.01449-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Goldman BS, Nierman WC, Kaiser D, Slater SC, Durkin AS, Eisen JA, Eisen J, Ronning CM, Barbazuk WB, Blanchard M, Field C, Halling C, Hinkle G, Iartchuk O, Kim HS, Mackenzie C, Madupu R, Miller N, Shvartsbeyn A, Sullivan SA, Vaudin M, Wiegand R, Kaplan HB. 2006. Evolution of sensory complexity recorded in a myxobacterial genome. Proc Natl Acad Sci U S A 103:15200–15205. doi: 10.1073/pnas.0607335103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Schneiker S, Perlova O, Kaiser O, Gerth K, Alici A, Altmeyer MO, Bartels D, Bekel T, Beyer S, Bode E, Bode HB, Bolten CJ, Choudhuri JV, Doss S, Elnakady YA, Frank B, Gaigalat L, Goesmann A, Groeger C, Gross F, Jelsbak L, Jelsbak L, Kalinowski J, Kegler C, Knauber T, Konietzny S, Kopp M, Krause L, Krug D, Linke B, Mahmud T, Martinez-Arias R, McHardy AC, Merai M, Meyer F, Mormann S, Muñoz-Dorado J, Perez J, Pradella S, Rachid S, Raddatz G, Rosenau F, Ruckert C, Sasse F, Scharfe M, Schuster SC, Suen G, Treuner-Lange A, Velicer GJ, Vorholter FJ, Weissman KJ, Welch RD, Wenzel SC, Whitworth DE, Wilhelm S, Wittmann C, Blocker H, Puhler A, Muller R. 2007. Complete genome sequence of the myxobacterium Sorangium cellulosum. Nat Biotechnol 25:1281–1289. doi: 10.1038/nbt1354. [DOI] [PubMed] [Google Scholar]
  • 12.Han K, Li ZF, Peng R, Zhu LP, Zhou T, Wang LG, Li SG, Zhang XB, Hu W, Wu ZH, Qin N, Li YZ. 2013. Extraordinary expansion of a Sorangium cellulosum genome from an alkaline milieu. Sci Rep 3:2101. doi: 10.1038/srep02101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Li ZF, Li X, Liu H, Liu X, Han K, Wu ZH, Hu W, Li FF, Li YZ. 2011. Genome sequence of the halotolerant marine bacterium Myxococcus fulvus HW-1. J Bacteriol 193:5015–5016. doi: 10.1128/JB.05516-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Sanford RA, Cole JR, Tiedje JM. 2002. Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an aryl-halorespiring facultative anaerobic myxobacterium. Appl Environ Microbiol 68:893–900. doi: 10.1128/AEM.68.2.893-900.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Huntley S, Zhang Y, Treuner-Lange A, Kneip S, Sensen CW, Søgaard-Andersen L. 2012. Complete genome sequence of the fruiting myxobacterium Corallococcus coralloides DSM 2259. J Bacteriol 194:3012–3013. doi: 10.1128/JB.00397-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Ivanova N, Daum C, Lang E, Abt B, Kopitz M, Saunders E, Lapidus A, Lucas S, Glavina Del Rio T, Nolan M, Tice H, Copeland A, Cheng JF, Chen F, Bruce D, Goodwin L, Pitluck S, Mavromatis K, Pati A, Mikhailova N, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Detter JC, Brettin T, Rohde M, Göker M, Bristow J, Markowitz V, Eisen JA, Hugenholtz P, Kyrpides NC, Klenk HP. 2010. Complete genome sequence of Haliangium ochraceum type strain (SMP-2T). Stand Genomic Sci 2:96–106. doi: 10.4056/sigs.69.1277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Huntley S, Hamann N, Wegener-Feldbrügge S, Treuner-Lange A, Kube M, Reinhardt R, Klages S, Müller R, Ronning CM, Nierman WC, Søgaard-Andersen L. 2011. Comparative genomic analysis of fruiting body formation in Myxococcales. Mol Biol Evol 28:1083–1097. doi: 10.1093/molbev/msq292. [DOI] [PubMed] [Google Scholar]
  • 18.Huntley S, Kneip S, Treuner-Lange A, Søgaard-Andersen L. 2013. Complete genome sequence of Myxococcus stipitatus strain DSM 14675, a fruiting myxobacterium. Genome Announc 1(2):e0010013. doi: 10.1128/genomeA.00100-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Thomas SH, Wagner RD, Arakaki AK, Skolnick J, Kirby JR, Shimkets LJ, Sanford RA, Löffler FE. 2008. The mosaic genome of Anaeromyxobacter dehalogenans strain 2CP-C suggests an aerobic common ancestor to the delta-proteobacteria. PLoS One 3:e2103. doi: 10.1371/journal.pone.0002103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Chen XJ, Han K, Feng J, Zhuo L, Li YJ, Li YZ. 2016. The complete genome sequence and analysis of a plasmid-bearing myxobacterial strain Myxococcus fulvus 124B02 ( M 206081 ). Stand Genomic Sci 11:1. doi: 10.1186/s40793-015-0121-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Garcia R, Gemperlein K, Müller R. 2014. Minicystis rosea gen. nov., sp. nov., a polyunsaturated fatty acid-rich and steroid-producing soil myxobacterium. Int J Syst Evol Microbiol 64:3733–3742. doi: 10.1099/ijs.0.068270-0. [DOI] [PubMed] [Google Scholar]
  • 22.Yamamoto E, Muramatsu H, Nagai K. 2014. Vulgatibacter incomptus gen. nov., sp. nov. and Labilithrix luteola gen. nov., sp. nov., two myxobacteria isolated from soil in Yakushima Island, and the description of Vulgatibacteraceae fam. nov., Labilitrichaceae fam. nov. and Anaeromyxobacteraceae fam. nov. Int J Syst Evol Microbiol 64:3360–3368. doi: 10.1099/ijs.0.063198-0. [DOI] [PubMed] [Google Scholar]
  • 23.Sharma G, Subramanian S. 2017. Unravelling the complete genome of Archangium gephyra DSM 2261T and evolutionary insights into myxobacterial chitinases. Genome Biol Evol 9:1304–1311. doi: 10.1093/gbe/evx066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Sharma G, Khatri I, Subramanian S. 2016. Complete genome of the starch-degrading myxobacteria Sandaracinus amylolyticus DSM 53668T. Genome Biol Evol 8:2520–2529. doi: 10.1093/gbe/evw151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Sharma G, Narwani T, Subramanian S. 2016. Complete genome sequence and comparative genomics of a novel myxobacterium Myxococcus hansupus. PLoS One 11:e0148593. doi: 10.1371/journal.pone.0148593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Zaburannyi N, Bunk B, Maier J, Overmann J, Müller R. 2016. Genome analysis of the fruiting body-forming myxobacterium Chondromyces crocatus reveals high potential for natural product biosynthesis. Appl Environ Microbiol 82:1945–1957. doi: 10.1128/AEM.03011-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Tonomura M, Ehara A, Suzuki H, Amachi S. 2015. Draft genome sequence of Anaeromyxobacter sp. strain PSR-1, an arsenate-respiring bacterium isolated from arsenic-contaminated soil. Genome Announc 3(3):00472-15. doi: 10.1128/genomeA.00472-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Kudo K, Yamaguchi N, Makino T, Ohtsuka T, Kimura K, Dong DT, Amachi S. 2013. Release of arsenic from soil by a novel dissimilatory arsenate-reducing bacterium, Anaeromyxobacter sp. strain PSR-1. Appl Environ Microbiol 79:4635–4642. doi: 10.1128/AEM.00693-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Müller S, Willett JW, Bahr SM, Scott JC, Wilson JM, Darnell CL, Vlamakis HC, Kirby JR. 2013. Draft genome of a type 4 pilus defective Myxococcus xanthus strain, DZF1. Genome Announc 1(3):e00392-13. doi: 10.1128/genomeA.00392-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Müller S, Willett JW, Bahr SM, Darnell CL, Hummels KR, Dong CK, Vlamakis HC, Kirby JR. 2013. Draft genome sequence of Myxococcus xanthus wild-type strain DZ2, a model organism for predation and development. Genome Announc 1(3):e00217-13. doi: 10.1128/genomeA.00217-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Stevens DC, Young J, Carmichael R, Tan J, Taylor RE. 2014. Draft genome sequence of gephyronic acid producer Cystobacter violaceus strain Cb vi76. Genome Announc 2(6):e01299-14. doi: 10.1128/genomeA.01299-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Tatusova T, Ciufo S, Fedorov B, O’Neill K, Tolstoy I. 2014. RefSeq microbial genomes database: new representation and annotation strategy. Nucleic Acids Res 42:D553–D559. doi: 10.1093/nar/gkt1274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B, Robbertse B, Smith-White B, Ako-Adjei D, Astashyn A, Badretdin A, Bao Y, Blinkova O, Brover V, Chetvernin V, Choi J, Cox E, Ermolaeva O, Farrell CM, Goldfarb T, Gupta T, Haft D, Hatcher E, Hlavina W, Joardar VS, Kodali VK, Li W, Maglott D, Masterson P, McGarvey KM, Murphy MR, O’Neill K, Pujar S, Rangwala SH, Rausch D, Riddick LD, Schoch C, Shkeda A, Storz SS, Sun H, Thibaud-Nissen F, Tolstoy I, Tully RE, Vatsan AR, Wallin C, Webb D, Wu W, Landrum MJ, Kimchi A, Tatusova T, DiCuccio M, Kitts P, Murphy TD, Pruitt KD. 2016. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 44:D733–D745. doi: 10.1093/nar/gkv1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Adaikpoh BI, Dowd SE, Stevens DC. 2017. Draft genome sequence of Archangium sp. strain Cb G35. Genome Announc 5(8):e01678-16. doi: 10.1128/genomeA.01678-16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Reichenbach H. 2005. Order VIII. Myxococcales Tchan, Pochon and Prévot 1948, vol 398AL, p 1059–1144. In Brenner DJ, Krieg NR, Staley JT (ed), Bergey’s manual of systematic bacteriology, vol. 2 Springer-Verlag, New York, NY. [Google Scholar]
  • 36.Wilson K. 2001. Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol Chapter 2:Unit 2.4. doi: 10.1002/0471142727.mb0204s56. [DOI] [PubMed] [Google Scholar]
  • 37.Au KF, Underwood JG, Lee L, Wong WH. 2012. Improving PacBio long read accuracy by short read alignment. PLoS One 7:e46679. doi: 10.1371/journal.pone.0046679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10:563–569. doi: 10.1038/nmeth.2474. [DOI] [PubMed] [Google Scholar]
  • 39.Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, Earl AM. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9:e112963. doi: 10.1371/journal.pone.0112963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. doi: 10.1093/bioinformatics/btu153. [DOI] [PubMed] [Google Scholar]
  • 41.Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL. 2004. Versatile and open software for comparing large genomes. Genome Biol 5:R12. doi: 10.1186/gb-2004-5-2-r12. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genome Announcements are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES