Skip to main content
Springer logoLink to Springer
. 2017 Nov 9;2017(1):278. doi: 10.1186/s13660-017-1556-z

Monotonicity, convexity, and inequalities for the generalized elliptic integrals

Tiren Huang 1,, Shenyang Tan 2, Xiaohui Zhang 1
PMCID: PMC5680400  PMID: 29170610

Abstract

We provide the monotonicity and convexity properties and sharp bounds for the generalized elliptic integrals Ka(r) and Ea(r) depending on a parameter a(0,1), which contains an earlier result in the particular case a=1/2.

Keywords: generalized elliptic integrals of the first and second kinds, Gaussian hypergeometric function, monotonicity, convexity, inequality

Introduction

For real numbers a, b, and c with c0,1,2, , the Gaussian hypergeometric function is defined by

F(a,b;c;x)=2F1(a,b;c;x)=n=0(a,n)(b,n)(c,n)xnn! 1.1

for x(1,1), where (a,n) denotes the shifted factorial function (a,n)a(a+1)(a+n1), n=1,2, , and (a,0)=1 for a0. It is well known that the function F(a,b;c;x) has many important applications in geometric function theory, theory of mean values, and several other contexts, and many classes of elementary functions and special functions in mathematical physics are particular or limiting cases of this function [110].

In what follows, we suppose r(0,1), a(0,1), and r=1r2. The generalized elliptic integrals of the first and second kinds are defined as

Ka(r)=π2F(a,1a;1;r2),Ka(r)=Ka(r), 1.2
Ea(r)=π2F(a1,1a;1;r2),Ea(r)=Ea(r). 1.3

In the particular case a=1/2, the generalized elliptic integrals Ka(r) and Ea(r) reduce to the complete elliptic integrals K(r) and E(r), respectively. Recently, the Gaussian hypergeometric function and generalized elliptic integrals have been the subject of intensive research [2, 3, 5, 8, 1130].

Anderson, Qiu, and Vamanamurthy [31] considered the monotonicity and convexity of the function

f(r)=E(r)r2K(r)r2r2E(r)r2K(r).

One of the main results of [31] is the following theorem.

Theorem 1.1

The function f(r) is increasing and convex from (0,1) onto (π/4,4/π). In particular,

π4<f(r)<π4+(4ππ4)r 1.4

for r(0,1). Both inequalities given in (1.4) are sharp as r0, whereas the second inequality is also sharp as r1.

Alzer and Richards [32] studied the corresponding properties of the additive counterpart

Δ(r)=E(r)r2K(r)r2E(r)r2K(r)r2

and obtained the following theorem.

Theorem 1.2

The function Δ(r) is strictly increasing and strictly convex from (0,1) onto (π/41,1π/4). Moreover, for all r(0,1), we have

π41+αr<Δ(r)<π41+βr 1.5

with the best constants α=0 and β=2π2.

It is natural to extend Theorems 1.1 and 1.2 to the generalized elliptic integrals Ka(r) and Ea(r). In this paper, we show the monotonicity and convexity of the functions

fa(r)=Ea(r)r2Ka(r)r2r2Ea(r)r2Ka(r) 1.6

and

ga(r)=Ea(r)r2Ka(r)r2Ea(r)r2Ka(r)r2. 1.7

Moreover, we obtain sharp inequalities for them. If a=1/2, then our results return to Theorems 1.1 and 1.2, which are contained in [31] and [32].

Preliminaries and lemmas

In this section, we give several formulas and lemmas to establish our main results stated in Section 1. First, let us recall some known results for F(a,b;c;x).

The following formulas for the hypergeometric function can be found in the literature [3335]:

F(a,b;a+b+1;x)=(1x)F(a+1,b+1;a+b+1;x), 2.1

the differential formula

dF(a,b;c;x)dx=abcF(a+1,b+1;c+1;x), 2.2

the asymptotic limit

limx1F(a,b;c;x)=Γ(c)Γ(cab)Γ(ca)Γ(cb),c>a+b, 2.3

and the contiguous relation

(σρ)F(α,ρ;σ+1;z)=σF(α,ρ;σ;z)ρF(α,ρ+1;σ+1;z), 2.4

where Γ(x) is the Euler gamma function.

Lemma 2.1

([2], Lemma 5.2)

Let a(0,1]. Then the function [Ea(r)r2Ka(r)]/r2 is increasing and convex from (0,1) onto (πa/2,[sin(πa)]/[2(1a)]).

The following formulas were presented in [2]:

dKa(r)dr=2(1a)(Ea(r)r2Ka(r))rr2,dEa(r)dr=2(1a)(Ka(r)Ea(r))r, 2.5
d(Ea(r)r2Ka(r))dr=2arKa(r),d(Ka(r)Ea(r))dr=2(1a)rEa(r)r2. 2.6

Lemma 2.2

([2], Lemma 2.3)

Let IR be an interval, and let f,g:I(0,). If both f, g are convex and increasing (decreasing), then the product fg is convex.

The following lemma follows from Theorem 1.7 in [1].

Lemma 2.3

For all a,b(0,), the function

I(x)=(1x)4F(a,b;a+b;x) 2.7

is a strictly decreasing automorphism of (0,1) if and only if 4aba+b.

Lemma 2.4

The function

J(r)=(1r2)(Ea(r)((4a1)r2+1)Ka(r))4a(1a)r3 2.8

is increasing from (0,1) onto (,0).

Proof

Let

f1(x)=(1x)(F(a1,1a;1;x)((4a1)x+1)F(a,1a;1;x)).

By the series expansion for F(a,b;c;x) we have

f1(x)=(1x)(n=0(a1,n)(1a,n)n!xnn!((4a1)x+1)n=0(a,n)(1a,n)n!xnn!)=(1x)(n=0((a1,n)(1a,n)n!(a,n)(1a,n)n!)xnn!n=0(4a1)(a,n)(1a,n)n!xn+1n!)=(1x)n=1(a,n1)(1a,n1)n!n!(4an2+an)xn=n=1(a,n1)(1a,n1)n!n!(4an2+an)xnn=1(a,n1)(1a,n1)n!n!(4an2+an)xn+1=3ax+n=2(a,n2)(1a,n2)n!n!an((4n+4a24a6)n+a+2a2)xn. 2.9

By the definition of the generalized elliptic integrals of the first and second kinds (1.2) we have

J(r)=π2f1(r2)4a(1a)r3=π8a(1a)(3ar+n=2(a,n2)(1a,n2)n!n!an((4n+4a24a6)n+a+2a2)r2n3).

Since 0<a<1, n2, we have (4n+4a24a6)n+a+2a2>0, and hence J(r) is an increasing function on (0,1). From this formula it is easy to see that limr0+J(r)=. By Lemma 2.3 we have that limr11J(r)=0. □

Lemma 2.5

([6], Lemma 2.1)

For <a<b<, let f,g:[a,b]R be continuous on [a,b] and differentiable on (a,b). Let g(x)0 on (a,b). If f(x)/g(x) is increasing (decreasing) on (a,b), then so are

f(x)f(a)g(x)g(a)andf(x)f(b)g(x)g(b).

If f(x)/g(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

Main results and proofs

In this section, we present and prove two main theorems.

Theorem 3.1

The function fa(r) in (1.6) is increasing and convex from (0,1) onto (πa(1a)sin(πa),sin(πa)πa(1a)). In particular,

πa(1a)sin(πa)+αr<fa(r)<πa(1a)sin(πa)+(sin(πa)πa(1a)πa(1a)sin(πa))r 3.1

for r(0,1) with the best constant α=0, β=sin(πa)πa(1a)πa(1a)sin(πa). These two inequalities are sharp as r0, whereas the second inequality is sharp as r1.

Proof

Let

fa1(r)=Ea(r)r2Ka(r)r2.

Then

fa(r)=Ea(r)r2Ka(r)r2r2Ea(r)r2Ka(r)=fa1(r)1fa1(r).

By Lemma 2.1, fa1(r), 1/fa1(r) are positive increasing functions on (0,1), and hence fa(r) is also an increasing function on (0,1). Since fa1(r) is a convex function by Lemma 2.1, the desired convexity of fa(r) will follow from Lemma 2.2 if we prove that 1/fa1(r) is a convex function on (0,1).

According to (2.6), we have

(1fa1(r))=(r2Ea(r)r2Ka(r))=g1(r)g2(r),

where

g1(r)=2(Ea(r)Ka(r)+(1a)r2Ka(r)),g2(r)=(Ea(r)r2Ka(r))2r.

Obviously, g1(0+)=0. By Lemma 2.1 we get g2(0+)=0. Moreover,

g1(r)g2(r)=4a(1a)r3(1r2)(Ea(r)((4a1)r2+1)Ka(r))=1J(r),

where J(r) is defined by (2.8). Hence, by Lemma 2.4 and Lemma 2.5, (1/fa1(r)) is decreasing, so that (1/fa1(r)) is increasing, and 1/fa1(r) is convex on (0,1). □

Theorem 3.2

The function ga(r) in (1.7) is strictly increasing and strictly convex from (0,1) onto (πa2sin(πa)2(1a),sin(πa)2(1a)πa2). Moreover, for all r(0,1), we have

πa2sin(πa)2(1a)+αr<ga(r)<πa2sin(πa)2(1a)+βr 3.2

with the best constants α=0 and β=sin(πa)1aπa. These two inequalities are sharp as r0, whereas the second inequality is sharp as r1.

Proof

Let

Ma(r)=π2r2(F(a1,1a;1;r2)r2F(a,1a;1;r2)).

By the series expansion for F(a,b;c;x) we obtain

Ma(r)=aπ2F(a,1a;2;r2). 3.3

Then

ga(r)=Ma(r)Ma(r)=aπ2(F(a,1a;2;r2)F(a,1a;2;1r2)). 3.4

Using the differentiation formula (2.2), we have

ga(r)=a2(1a)π2r(F(a+1,2a;3;r2)+F(a+1,2a;3;1r2)), 3.5
ga(r)=a2(1a)π2(F(a+1,2a;3;r2)+F(a+1,2a;3;1r2)+2(a+1)(2a)3r2(F(a+2,3a;4;r2)F(a+2,3a;4;1r2))). 3.6

By formula (2.1),we get

F(a+2,3a;4;1r2)=1r2F(a+1,2a;4;1r2). 3.7

Using the contiguous relation (2.4), we take α=a+1, ρ=2a, σ=3, and z=1r2 and obtain

(a+1)F(a+1,2a;4;1r2)=3F(a+1,2a;3;1r2)(2a)F(a+1,3a;4;1r2).

Hence, it follows from (3.6), (3.7), and the last formula that

2a2(1a)πga(r)=F(a+1,2a;3;r2)+F(a+1,2a;3;1r2)+2(a+1)(2a)3r2(F(a+2,3a;4;r2)F(a+2,3a;4;1r2)r2)=F(a+1,2a;3;r2)+2(a+1)(2a)r23F(a+2,3a;4;r2)+(2a3)F(a+1,2a;3;1r2)+2(2a)23F(a+1,3a;4;1r2)>1+(2a3)F(a+1,2a;3;1r2)+2(2a)23F(a+1,3a;4;1r2).

By the series expansion for F(a,b;c;x) we have

(2a3)F(a+1,2a;3;1r2)+2(2a)23F(a+1,3a;4;1r2)=n=0(2(a+1,n)(3a,n)(2a)2(3,n+1)+(a+1,n)(2a,n)(2a3)(3,n))(1r2)nn!=n=0(2a,n)(n+2a22a1)(a+1,n)(3,n+1)(1r2)nn!>2a22a13+a(2a)(a21)6(1r2). 3.8

Hence

2a2(1a)πga(r)>1+2a22a13+a(2a)(a21)6(1r2). 3.9

Through direct calculation we have

1+2a22a13+a(2a)(a21)6=a4+2a3+5a26a+46>0,a(0,1). 3.10

Then we get ga(r)>0. Thus ga(r) is strictly convex on (0,1). According to (3.3) and (2.3), we have

Ma(0)=aπ2,Ma(0)=0,limr1Ma(r)=sin(πa)2(1a). 3.11

Applying Lemma 2.3 and (2.6), we have

ga(0)=limr0Ma(r)Ma(0)rMa(r)Ma(1)r=limx1xx4((2x2)Ka(x)2Ea(x))=0.

Because of ga(r)>0, ga(r) is increasing on (0,1), and ga(0)=0. Then the monotonicity of ga(r) on (0,1) is obtained. It follows from the convexity of ga(r) that, for x(0,1),

πa2sin(πa)2(1a)<ga(r)<πa2sin(πa)2(1a)+(sin(πa)1aπa)r. 3.12

 □

Corollary 3.3

Let

La(p,q)=ga(pq)ga(p)ga(q). 3.13

Then we have

πa2sin(πa)2(1a)<La(p,q)<sin(πa)2(1a)aπ2 3.14

for all p,q(0,1).

Proof

By direct calculation we obtain

pLa(p,q)=sga(pq)ga(p),2pqLa(p,q)=ga(pq)+pqga(pq).

Considering the positivity of ga and ga on (0,1), we have

2pqLa(p,q)>0,

This means that pLa(p,q) is strictly increasing with respect to q. So we have

pLa(p,q)<pLa(p,q)|q=1=0. 3.15

Then the monotonicity of La(p,q) with respect to p is obtained, which leads to

πa2sin(πa)2(1a)<La(p,q)<sin(πa)2(1a)aπ2.

 □

Remark 3.4

Taking a=1/2 in Theorems 3.1 and 3.2, we get Theorems 1.1 and 1.2.

Acknowledgements

This work was completed with the support of National Natural Science Foundation of China (No. 11401531, No. 11601485), the Natural Science Foundation of Zhejiang Province (No. Q17A010038), the Science Foundation of Zhejiang Sci-Tech University (ZSTU) (No. 14062093-Y), and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 17KJD110004).

Authors’ contributions

All authors contributed equally to this work. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Footnotes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contributor Information

Tiren Huang, Email: huangtiren@163.com.

Shenyang Tan, Email: ystsy@163.com.

Xiaohui Zhang, Email: xiaohui.zhang@zstu.edu.cn.

References

  • 1.Anderson GD, Barnard RW, Richards KC, Vamanamurthy MK, Vuorinen M. Inequalities for zero-balanced hypergeometric functions. Trans. Am. Math. Soc. 1995;347:1713–1723. doi: 10.1090/S0002-9947-1995-1264800-3. [DOI] [Google Scholar]
  • 2.Anderson GD, Qiu SL, Vamanamurthy MK, Vuorinen M. Generalized elliptic integrals and modular equations. Pac. J. Math. 2000;192:1–37. doi: 10.2140/pjm.2000.192.1. [DOI] [Google Scholar]
  • 3.Baricz Á. Turán type inequalities for generalized complete elliptic integrals. Math. Z. 2007;256:895–911. doi: 10.1007/s00209-007-0111-x. [DOI] [Google Scholar]
  • 4.Barnard RW, Pearce K, Richards KC. An inequality involving the generalized hypergeometric function and the arc length of an ellipse. SIAM J. Math. Anal. 2000;31:693–699. doi: 10.1137/S0036141098341575. [DOI] [Google Scholar]
  • 5.Neuman E. Inequalities and bounds for generalized complete elliptic integrals. J. Math. Anal. Appl. 2011;373:203–213. doi: 10.1016/j.jmaa.2010.06.060. [DOI] [Google Scholar]
  • 6.Ponnusamy S, Vuorinen M. Asymptotic expansions and inequalities for hypergeometric functions. Mathematika. 1997;44:278–301. doi: 10.1112/S0025579300012602. [DOI] [Google Scholar]
  • 7.Ponnusamy S, Vuorinen M. Univalence and convexity properties for Gaussian hypergeometric functions. Rocky Mt. J. Math. 2001;31:327–353. doi: 10.1216/rmjm/1008959684. [DOI] [Google Scholar]
  • 8.Yang ZH, Chu YM, Wang M-K. Monotonicity criterion for the quotient of power series with applications. J. Math. Anal. Appl. 2015;428:587–604. doi: 10.1016/j.jmaa.2015.03.043. [DOI] [Google Scholar]
  • 9.Sun MB, Yang XP. Inequalities for the weighted mean of r-convex functions. Proc. Am. Math. Soc. 2005;133(6):1639–1646. doi: 10.1090/S0002-9939-05-07835-4. [DOI] [Google Scholar]
  • 10.Sun MB, Yang XP. Generalized Hadamard’s inequality and r-convex functions in Carnot groups. J. Math. Anal. Appl. 2004;294(2):387–398. doi: 10.1016/j.jmaa.2003.10.050. [DOI] [Google Scholar]
  • 11.Qiu SL, Vuorinen M. Duplication inequalities for the ratios of hypergeometric functions. Forum Math. 2000;12:109–133. [Google Scholar]
  • 12.Heikkala V, Linden H, Vamanamurthy MK, Vuorinen M. Generalized elliptic integrals and the Legendre M-function. J. Math. Anal. Appl. 2008;338(1):223–243. doi: 10.1016/j.jmaa.2007.05.020. [DOI] [Google Scholar]
  • 13.Wang MK, Chu YM, Qiu SL. Sharp bounds for generalized elliptic integrals of the first kind. J. Math. Anal. Appl. 2015;429:744–757. doi: 10.1016/j.jmaa.2015.04.035. [DOI] [Google Scholar]
  • 14.Chu YM, Wang MK, Qiu YF. On Alzer and Qiu’s conjecture for complete elliptic integral and inverse hyperbolic tangent function. Abstr. Appl. Anal. 2011;2011:697547. [Google Scholar]
  • 15.Chu YM, Wang MK, Qiu SL, Jiang YP. Bounds for complete elliptic integrals of the second kind with applications. Comput. Math. Appl. 2012;63(7):1177–1184. doi: 10.1016/j.camwa.2011.12.038. [DOI] [Google Scholar]
  • 16.Chu YM, Wang MK, Qiu YF. Hölder mean inequalities for the complete elliptic integrals. Integral Transforms Spec. Funct. 2012;23(7):521–527. doi: 10.1080/10652469.2011.609482. [DOI] [Google Scholar]
  • 17.Song YQ, Zhou PG, Chu YM. Inequalities for the Gaussian hypergeometric function. Sci. China Math. 2014;57(11):2369–2380. doi: 10.1007/s11425-014-4858-3. [DOI] [Google Scholar]
  • 18.Wang GD, Zhang XH, Chu YM. Inequalities for the generalized elliptic integrals and modular functions. J. Math. Anal. Appl. 2007;331(2):1275–1283. doi: 10.1016/j.jmaa.2006.09.070. [DOI] [Google Scholar]
  • 19.Wang GD, Zhang XH, Chu YM. A power mean inequality involving the complete elliptic integrals. Rocky Mt. J. Math. 2014;44(5):1661–1667. doi: 10.1216/RMJ-2014-44-5-1661. [DOI] [Google Scholar]
  • 20.Wang MK, Li YM, Chu YM. Inequalities and infinite product formula for Ramanujan generalized modular equation function. Ramanujan J. 2017 [Google Scholar]
  • 21.Wang MK, Chu YM. Asymptotical bounds for complete elliptic integrals of the second kind. J. Math. Anal. Appl. 2013;402(1):119–126. doi: 10.1016/j.jmaa.2013.01.016. [DOI] [Google Scholar]
  • 22.Wang MK, Chu YM, Qiu YF, Qiu SL. An optimal power mean inequality for the complete elliptic integrals. Appl. Math. Lett. 2011;24(6):887–890. doi: 10.1016/j.aml.2010.12.044. [DOI] [Google Scholar]
  • 23.Wang MK, Chu YM, Jiang YP. Ramanujan’s cubic transformation inequalities for zero-balanced hypergeometric functions. Rocky Mt. J. Math. 2016;46(2):679–691. doi: 10.1216/RMJ-2016-46-2-679. [DOI] [Google Scholar]
  • 24.Wang MK, Chu YM. Refinements of transformation inequalities for zero-balanced hypergeometric functions. Acta Math. Sci. 2017;37B(3):607–622. doi: 10.1016/S0252-9602(17)30026-7. [DOI] [Google Scholar]
  • 25.Wang MK, Chu YM, Song YQ. Asymptotical formulas for Gaussian and generalized hypergeometric functions. Appl. Math. Comput. 2016;276:44–60. [Google Scholar]
  • 26.Wang MK, Qiu SL, Chu YM, Jiang YP. Generalized Hersch-Pfluger distortion function and complete elliptic integrals. J. Math. Anal. Appl. 2012;385(1):221–229. doi: 10.1016/j.jmaa.2011.06.039. [DOI] [Google Scholar]
  • 27.Wang MK, Qiu SL, Chu YM, Jiang YP. Convexity of the complete elliptic integrals of the first kind with respect to Hölder means. J. Math. Anal. Appl. 2012;388(2):1141–1146. doi: 10.1016/j.jmaa.2011.10.063. [DOI] [Google Scholar]
  • 28.Yang ZH, Chu YM. A monotonicity property involving the generalized elliptic integral of the first kind. Math. Inequal. Appl. 2017;20(3):729–735. [Google Scholar]
  • 29.Zhang XH, Wang DG, Chu YM. Convexity with respect to Hölder mean involving zero-balanced hypergeometric functions. J. Math. Anal. Appl. 2009;353(1):256–259. doi: 10.1016/j.jmaa.2008.11.068. [DOI] [Google Scholar]
  • 30.Zhang XH, Wang DG, Chu YM. Remarks on generalized elliptic integrals. Proc. R. Soc. Edinb. A. 2009;139(2):417–426. doi: 10.1017/S0308210507000327. [DOI] [Google Scholar]
  • 31.Anderson GD, Qiu SL, Vamanamurthy MK. Elliptic integral inequalities, with applications. Constr. Approx. 1998;14:195–207. doi: 10.1007/s003659900070. [DOI] [Google Scholar]
  • 32.Alzer H, Richards K. A note on a function involving complete elliptic integrals: monotonicity, convexity, inequalities. Anal. Math. 2015;41(3):133–139. doi: 10.1007/s10476-015-0201-7. [DOI] [Google Scholar]
  • 33.Abramowitz M, Stegun IA. Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables. New York: Dover; 1966. [Google Scholar]
  • 34.Prudnikov AP, Brychkov YA, Marichev OI. Integrals and Series. Amsterdam: Gordon & Breach; 1990. [Google Scholar]
  • 35.Qiu SL, Vuorinen M. Special functions in geometric function theory. In: Kühnau R, editor. Handbook of Complex Analysis: Geometric Function Theory. Amsterdam: Elsevier; 2005. pp. 621–659. [Google Scholar]

Articles from Journal of Inequalities and Applications are provided here courtesy of Springer

RESOURCES