Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Oct 6;73(Pt 11):1622–1625. doi: 10.1107/S2056989017014165

Crystal structure and features of 3′,8-di­benzyl­idene-4a,5,6,7,8,8a-hexa­hydro-2′H-spiro­[chromene-2,1′-cyclo­hexa­n]-2′-one

Alexander Anis’kov a,*, Vyacheslav Grinev a, Irina Klochkova a
PMCID: PMC5683477  PMID: 29152337

In the title compound, the C=C—C—C torsion angles in the phenyl­methyl­idene units are 166.6 (3) and −48.0 (4)°. In the crystal, mol­ecules form a three-dimensional network by means of weak C—H⋯O hydrogen bonds. The most important contributions to the crystal structure are the H⋯H inter­actions (68.8%).

Keywords: X-ray structural analysis, crystal structure, non-covalent inter­actions, spiro heterocycle

Abstract

The synthesis and crystal structure of the title compound, C28H28O2, are reported. The C=C—C—C torsion angles in the phenyl­methyl­idene units are 166.6 (3) and −48.0 (4)°. In the crystal, mol­ecules form a three-dimensional network by means of weak C—H⋯O hydrogen bonds. The most important contributions to the crystal structure are the H⋯H inter­actions (68.8%), while the H⋯O contacts account for 4.5%.

Chemical context  

Spiro heterocycles are of great inter­est for the creation of new promising biologically active compounds. The spiro center causes a rigid, spatially oriented configuration, which makes the compounds containing them potentially more complementary to binding sites for biological targets (Mirzabekova et al., 2008; Abou-Elmagd & Hashem, 2016; Saraswat et al., 2016). A convenient way obtain heterocyclic compounds, including those with the spiro chromane moiety, is dimerization of Mannich ketones (Shchekina et al., 2017).graphic file with name e-73-01622-scheme1.jpg

Structural commentary  

The structure of the title compound is shown in Fig. 1. The pyran, cyclo­hexa­none and methyl­ene­cyclo­hexene units are each non-planar structures with the following puckering parameters: Q = 0.447 Å, θ = 128.1°, φ = 249.3°; Q = 0.517 Å, θ = 167.2°, φ = 12.9°; and Q = 0.460 Å, θ = 130.0°, φ = 39.9°, respectively. In the two phenyl­methyl­idene moieties, the corresponding σ-bonds are shortened [C6—C7 = 1.475 (4) and C23—C22 = 1.471 (4) Å], which allows us to speak of incomplete π–π conjugation of aromatic rings and double bonds. These values are slightly longer than the bond lengths characteristic for complete conjugation in similarly constructed moieties (Golikov et al., 2006); in particular, for di­benzyl­idene­cyclo­hexa­none it is 1.341 Å. The torsion angles C8=C7—C6—C5 and C18=C22—C23—C28 are similar [−38.5 (5) and −36.3 (5)°, respectively], and reflect the non-coplanarity of the phenyl­methyl­idene moiety, and therefore confirms incomplete conjugation of the phenyl and yl­idene moieties (Kriven’ko et al., 2005). The values noted above significantly exceed the corresponding ones for torsion angles in analogous moieties in di­benzyl­idene cyclo­hexa­nones (−28.70°; Jia et al., 1989). Such a significant deviation of the torsion angle from the expected value is probably due to van der Waals repulsion of hydrogen atoms on the cyclo­hexene atoms C9 and C19 and hydrogen atoms of the aromatic rings. Thus, the inter­atomic distance between the hydrogen atoms of the aromatic substituent at C5 and the methyl­ene group at C9 is 2.27 Å, close to the sum of the van der Waals radii for hydrogen atoms (2.2 Å). The C7=C8 bond is a little shorter than the C18=C22 bond [1.337 (4) and 1.346 (4) Å, respectively]. We believe that this is due to better conditions for π–π conjugation of the Ph–C22=C18—C17=C16 unit compared to the Ph—C7=C8—C12=O1 unit. So, the value of the C22=C18—C17=C16 torsion angle is 166.6 (3)° in comparison with 135.0 (3)° for C7=C8—C12=O1, allowing us to conclude a more pronounced flat structure for the former unit. The O2—C17 bond is noticeably shorter [1.391 (3) Å] than O2—C13 [1.446 (3) Å] due to conjugation of the endocyclic oxygen atom and a multiple bond. The bond lengths of the spiro center are within expected values, and are typical of those in similar moieties (Clark et al., 2005; Kia et al., 2012).

Figure 1.

Figure 1

The mol­ecular structure of the title compound with atom-labeling scheme, with displacement ellipsoids drawn at the 50% probability level.

Supra­molecular features  

In the crystal, the mol­ecules are linked into a complex three-dimensional network by means of weak C20—H20B⋯O1i and C11—H11B⋯O1i hydrogen bonds between (Figs. 2–4 and Table 1).

Figure 2.

Figure 2

Graphical representation of the hydrogen bonds (dashed lines) along the a axis.

Figure 3.

Figure 3

Graphical representation of the hydrogen bonds (dashed lines) along the c axis.

Figure 4.

Figure 4

Graphical representation of the hydrogen bonds.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20B⋯O1i 0.99 2.64 3.630 175
C11—H11B⋯O1i 0.99 2.61 3.521 153

Symmetry code: (i) Inline graphic.

Analysis of the Hirshfeld Surfaces  

The C11—H11B⋯O1i and C20—H20B⋯O1i inter­actions are visualized as bright-red spots between the corresponding donor and acceptor atoms on the Hirshfeld surfaces, mapped by d norm (Fig. 5). This is confirmed by the Hirshfeld surfaces, displayed as the electrostatic potential (Fig. 6), showing a negative potential around the oxygen atoms in the form of light-red clouds and a positive potential around the H atoms in the form of bluish clouds. The H⋯O contacts account for about 4.5% of the Hirshfeld surface displayed on the fingerprint plots with a curved surface with de + di ∼2.2 Å (Fig. 7). The largest proportion, 68.8%, is for H⋯H contacts, with a bright splash on the fingerprint plot corresponding to de + di ∼2.2 Å. The C⋯H inter­action corresponds to 12.2% de + di ∼2.4 Å with peaks in the region of the aromatic rings (Fig. 7). The presence of π–π stacking reflects the presence of C⋯C contacts, which account for only 1.0% of the Hirschfield surface with de + di ∼2.2 Å.

Figure 5.

Figure 5

Graphical representation of the Hirshfeld surface mapped over d norm. The highlighted red spots on the top face of the surfaces indicate contact points with the atoms participating in the C—H⋯O inter­molecular inter­actions.

Figure 6.

Figure 6

Graphical representation of the electrostatic potential surfaces.

Figure 7.

Figure 7

Graphical representation of the Hirshfeld surface two-dimensional fingerprint plot for the title compound (a) showing the: (b) H⋯O, (c) C⋯H, (d) H⋯H, (e) C⋯C inter­actions.

Database survey  

The structure and configuration of the mol­ecule is complex and includes a spiro node and aryl­methyl­idene moieties. A similar spiro ring based on the Mannich ketone was described earlier (Siaka et al., 2012). The tetra­hydro­pyridine ring is in an unsymmetrical half-chair conformation, while the cyclo­hexa­diene and cyclo­hexene rings display semi-boat conformations.

Synthesis and crystallization  

A 5% solution of potassium tert-butoxide in i-iso­propanol (5 mL) was added to a 2-[(di­methyl­amino)­meth­yl)]-6-(phenyl­methyl­idene)cyclo­hexa­none solution (1.396 g, 5 mmol) in i-iso­propanol. The mixture was refluxed for two h, then cooled. The precipitated crystalline substance was washed with a 2% aqueous solution of acetic acid, recrystallized from i-iso­propanol, yielding colourless crystals (1.47 g, 74%), m.p. 413–414 K (i-PrOH). 1H NMR (CDCl3): δ 1.56–1.83 (m, 4H, CH2), 1.90–2.30 (m, 1H, CH2), 2.61 (tt, 2H, J = 15.4, 7.8 Hz, CH2), 2.76–2.88 (m, 1H, CH2), 2.91–3.01 (m,1H, CH2), 6.81 (s, 1H, =CH), 7.10–7.41 (m, 11H, Ar, =CH). 13C NMR (CDCl3): δ 19.6, 22.9 23.8, 27.4, 27.8, 28.7, 29.6, 34.8, 78.9 (spiro C), 111.7, 120.3, 125.8, 127.8, 128.3, 129.3, 129.9, 130.1, 132.7, 134.7, 135.8, 138.0, 138.2, 143.2, 201.2 (C=O). Analysis calculated for C28H28O2 (396.2): C 73.23; H 5.23; N 6.32. Found: C 73.68; H 5.09; N 6.27.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula C28H28O2
M r 396.50
Crystal system, space group Orthorhombic, P n a21
Temperature (K) 100
a, b, c (Å) 8.5797 (7), 14.7450 (13), 16.7720 (14)
V3) 2121.8 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.24 × 0.22 × 0.21
 
Data collection
Diffractometer Bruker SMART CCD 1K area detector
Absorption correction Multi-scan (SADABS; Bruker, 2008)
T min, T max 0.917, 0.984
No. of measured, independent and observed [I > 2σ(I)] reflections 23380, 6113, 4907
R int 0.050
(sin θ/λ)max−1) 0.703
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.056, 0.132, 1.05
No. of reflections 6113
No. of parameters 271
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.24

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009), publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017014165/rk2438sup1.cif

e-73-01622-sup1.cif (731.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017014165/rk2438Isup2.hkl

e-73-01622-Isup2.hkl (486KB, hkl)

CCDC reference: 1577738

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C28H28O2 Dx = 1.241 Mg m3
Mr = 396.50 Melting point = 413–414 K
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
a = 8.5797 (7) Å Cell parameters from 3830 reflections
b = 14.7450 (13) Å θ = 2.4–24.5°
c = 16.7720 (14) Å µ = 0.08 mm1
V = 2121.8 (3) Å3 T = 100 K
Z = 4 Prism, colourless
F(000) = 848 0.24 × 0.22 × 0.21 mm

Data collection

Bruker SMART CCD 1K area detector diffractometer 4907 reflections with I > 2σ(I)
Radiation source: sealed X-ray tube Rint = 0.050
ω scans θmax = 30.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −11→12
Tmin = 0.917, Tmax = 0.984 k = −20→20
23380 measured reflections l = −23→23
6113 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0522P)2 + 1.0029P] where P = (Fo2 + 2Fc2)/3
6113 reflections (Δ/σ)max < 0.001
271 parameters Δρmax = 0.33 e Å3
1 restraint Δρmin = −0.24 e Å3

Special details

Geometry. All s.u.'s (except the s.u.in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O2 0.1174 (2) 0.52918 (13) 0.16577 (13) 0.0218 (4)
O1 0.1183 (3) 0.75243 (15) 0.14425 (13) 0.0280 (5)
C18 −0.1447 (3) 0.48947 (19) 0.19621 (18) 0.0196 (5)
C6 −0.1400 (3) 0.65682 (19) −0.06165 (19) 0.0225 (6)
C15 0.1452 (3) 0.6535 (2) 0.29827 (19) 0.0244 (6)
H15A 0.1763 0.6416 0.3541 0.029*
H15B 0.1211 0.7189 0.2935 0.029*
C21 −0.1350 (4) 0.6132 (2) 0.33496 (19) 0.0255 (6)
H21A −0.1434 0.6782 0.3492 0.031*
H21B −0.1168 0.5787 0.3847 0.031*
C22 −0.1532 (3) 0.44888 (19) 0.12445 (18) 0.0214 (6)
H22 −0.0658 0.4572 0.0904 0.026*
C24 −0.3097 (4) 0.3970 (2) 0.01014 (18) 0.0232 (6)
H24 −0.2483 0.4358 −0.0224 0.028*
C12 0.1424 (3) 0.67807 (19) 0.11548 (18) 0.0202 (5)
C11 0.3598 (3) 0.5667 (2) 0.1080 (2) 0.0245 (6)
H11A 0.4135 0.5166 0.1360 0.029*
H11B 0.4368 0.6155 0.0985 0.029*
C28 −0.3708 (3) 0.3333 (2) 0.1377 (2) 0.0252 (6)
H28 −0.3509 0.3274 0.1932 0.030*
C9 0.2076 (4) 0.6050 (2) −0.01768 (19) 0.0245 (6)
H9A 0.2822 0.6499 −0.0395 0.029*
H9B 0.1535 0.5762 −0.0632 0.029*
C2 −0.3786 (4) 0.6144 (2) −0.1291 (2) 0.0300 (7)
H2 −0.4850 0.5966 −0.1267 0.036*
C19 −0.2720 (3) 0.4892 (2) 0.25860 (18) 0.0231 (6)
H19A −0.2474 0.4435 0.3000 0.028*
H19B −0.3722 0.4721 0.2335 0.028*
C10 0.2982 (4) 0.5323 (2) 0.02809 (19) 0.0252 (6)
H10A 0.2292 0.4796 0.0375 0.030*
H10B 0.3870 0.5116 −0.0049 0.030*
C23 −0.2807 (3) 0.39322 (19) 0.09204 (18) 0.0219 (6)
C13 0.2283 (3) 0.60278 (19) 0.16023 (18) 0.0212 (6)
C8 0.0891 (4) 0.65388 (19) 0.03317 (18) 0.0218 (6)
C17 −0.0070 (3) 0.54326 (19) 0.21749 (17) 0.0204 (6)
C1 −0.2972 (4) 0.6319 (2) −0.05929 (19) 0.0271 (6)
H1 −0.3487 0.6269 −0.0094 0.033*
C14 0.2827 (4) 0.6308 (2) 0.24302 (19) 0.0257 (6)
H14A 0.3514 0.6844 0.2385 0.031*
H14B 0.3442 0.5808 0.2668 0.031*
C25 −0.4265 (4) 0.3451 (2) −0.0247 (2) 0.0279 (7)
H25 −0.4440 0.3486 −0.0806 0.033*
C5 −0.0683 (4) 0.6665 (2) −0.1359 (2) 0.0264 (6)
H5 0.0374 0.6853 −0.1387 0.032*
C4 −0.1497 (4) 0.6491 (2) −0.2057 (2) 0.0286 (7)
H4 −0.0992 0.6553 −0.2558 0.034*
C3 −0.3049 (4) 0.6227 (2) −0.2025 (2) 0.0307 (7)
H3 −0.3604 0.6104 −0.2503 0.037*
C7 −0.0583 (4) 0.67387 (19) 0.01428 (18) 0.0232 (6)
H7 −0.1179 0.7026 0.0548 0.028*
C27 −0.4889 (4) 0.2823 (2) 0.1028 (2) 0.0316 (7)
H27 −0.5506 0.2431 0.1348 0.038*
C16 0.0016 (3) 0.6001 (2) 0.27985 (19) 0.0230 (6)
C20 −0.2876 (4) 0.5820 (2) 0.2972 (2) 0.0283 (7)
H20A −0.3696 0.5796 0.3387 0.034*
H20B −0.3203 0.6267 0.2564 0.034*
C26 −0.5171 (4) 0.2885 (2) 0.0216 (2) 0.0336 (7)
H26 −0.5984 0.2539 −0.0020 0.040*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O2 0.0196 (9) 0.0200 (10) 0.0259 (10) −0.0023 (8) 0.0012 (8) 0.0002 (8)
O1 0.0335 (12) 0.0230 (10) 0.0274 (12) 0.0018 (9) −0.0003 (9) −0.0023 (9)
C18 0.0196 (12) 0.0177 (12) 0.0215 (13) 0.0005 (10) −0.0010 (11) 0.0022 (10)
C6 0.0246 (14) 0.0194 (13) 0.0236 (14) 0.0048 (11) −0.0015 (12) −0.0011 (11)
C15 0.0267 (15) 0.0250 (14) 0.0214 (14) −0.0048 (11) −0.0046 (12) −0.0012 (11)
C21 0.0286 (16) 0.0253 (14) 0.0227 (14) −0.0022 (12) 0.0023 (12) −0.0006 (12)
C22 0.0202 (12) 0.0200 (13) 0.0239 (15) −0.0012 (11) 0.0012 (11) −0.0004 (11)
C24 0.0225 (14) 0.0208 (14) 0.0263 (15) 0.0005 (11) 0.0009 (12) −0.0011 (11)
C12 0.0188 (12) 0.0195 (13) 0.0222 (14) −0.0012 (10) 0.0022 (11) −0.0008 (11)
C11 0.0185 (13) 0.0235 (14) 0.0315 (16) 0.0011 (11) 0.0010 (12) 0.0008 (12)
C28 0.0253 (14) 0.0239 (14) 0.0264 (15) −0.0033 (11) −0.0012 (12) −0.0001 (12)
C9 0.0238 (14) 0.0231 (14) 0.0265 (15) 0.0022 (11) 0.0050 (12) −0.0028 (12)
C2 0.0276 (15) 0.0295 (16) 0.0328 (17) 0.0010 (12) −0.0025 (14) −0.0012 (13)
C19 0.0204 (13) 0.0266 (14) 0.0223 (15) −0.0027 (11) 0.0006 (11) 0.0001 (12)
C10 0.0212 (13) 0.0245 (14) 0.0300 (16) 0.0024 (11) 0.0051 (12) −0.0009 (12)
C23 0.0198 (13) 0.0197 (13) 0.0263 (15) 0.0012 (11) −0.0009 (12) −0.0025 (11)
C13 0.0172 (12) 0.0205 (13) 0.0258 (14) −0.0012 (10) −0.0009 (11) 0.0015 (11)
C8 0.0247 (14) 0.0172 (12) 0.0237 (15) −0.0010 (10) 0.0035 (12) −0.0007 (11)
C17 0.0211 (13) 0.0189 (13) 0.0212 (14) 0.0007 (11) 0.0002 (10) 0.0013 (10)
C1 0.0272 (15) 0.0285 (15) 0.0257 (16) 0.0037 (12) 0.0031 (13) −0.0001 (12)
C14 0.0239 (14) 0.0270 (15) 0.0261 (16) −0.0051 (12) −0.0067 (13) 0.0010 (12)
C25 0.0261 (15) 0.0297 (16) 0.0279 (16) 0.0045 (13) −0.0053 (13) −0.0045 (13)
C5 0.0290 (16) 0.0228 (14) 0.0275 (15) 0.0017 (11) 0.0023 (13) 0.0002 (12)
C4 0.0361 (17) 0.0271 (15) 0.0228 (15) 0.0056 (13) 0.0028 (13) 0.0018 (12)
C3 0.0377 (18) 0.0276 (16) 0.0267 (16) 0.0051 (13) −0.0065 (14) −0.0038 (13)
C7 0.0262 (14) 0.0201 (13) 0.0232 (14) 0.0028 (11) 0.0040 (12) −0.0018 (11)
C27 0.0294 (15) 0.0269 (15) 0.0386 (19) −0.0097 (13) −0.0001 (14) 0.0017 (14)
C16 0.0230 (13) 0.0236 (14) 0.0224 (14) −0.0011 (11) −0.0007 (11) 0.0018 (11)
C20 0.0243 (15) 0.0327 (16) 0.0280 (16) 0.0013 (13) 0.0021 (13) −0.0039 (13)
C26 0.0295 (16) 0.0311 (16) 0.0401 (18) −0.0068 (13) −0.0074 (15) −0.0060 (14)

Geometric parameters (Å, º)

O2—C17 1.391 (3) C9—C8 1.510 (4)
O2—C13 1.446 (3) C9—C10 1.531 (4)
O1—C12 1.216 (4) C9—H9A 0.9900
C18—C22 1.346 (4) C9—H9B 0.9900
C18—C17 1.467 (4) C2—C1 1.387 (5)
C18—C19 1.512 (4) C2—C3 1.390 (5)
C6—C5 1.396 (4) C2—H2 0.9500
C6—C1 1.398 (4) C19—C20 1.520 (4)
C6—C7 1.475 (4) C19—H19A 0.9900
C15—C16 1.494 (4) C19—H19B 0.9900
C15—C14 1.537 (4) C10—H10A 0.9900
C15—H15A 0.9900 C10—H10B 0.9900
C15—H15B 0.9900 C13—C14 1.522 (4)
C21—C16 1.505 (4) C8—C7 1.337 (4)
C21—C20 1.526 (4) C17—C16 1.342 (4)
C21—H21A 0.9900 C1—H1 0.9500
C21—H21B 0.9900 C14—H14A 0.9900
C22—C23 1.471 (4) C14—H14B 0.9900
C22—H22 0.9500 C25—C26 1.380 (5)
C24—C25 1.390 (4) C25—H25 0.9500
C24—C23 1.397 (4) C5—C4 1.387 (5)
C24—H24 0.9500 C5—H5 0.9500
C12—C8 1.497 (4) C4—C3 1.388 (5)
C12—C13 1.529 (4) C4—H4 0.9500
C11—C13 1.525 (4) C3—H3 0.9500
C11—C10 1.526 (4) C7—H7 0.9500
C11—H11A 0.9900 C27—C26 1.386 (5)
C11—H11B 0.9900 C27—H27 0.9500
C28—C27 1.391 (4) C20—H20A 0.9900
C28—C23 1.402 (4) C20—H20B 0.9900
C28—H28 0.9500 C26—H26 0.9500
C17—O2—C13 115.6 (2) C9—C10—H10B 109.1
C22—C18—C17 120.1 (3) H10A—C10—H10B 107.8
C22—C18—C19 125.3 (3) C24—C23—C28 117.6 (3)
C17—C18—C19 114.5 (3) C24—C23—C22 118.3 (3)
C5—C6—C1 118.5 (3) C28—C23—C22 124.0 (3)
C5—C6—C7 122.9 (3) O2—C13—C14 110.3 (2)
C1—C6—C7 118.6 (3) O2—C13—C11 105.2 (2)
C16—C15—C14 113.2 (3) C14—C13—C11 113.1 (2)
C16—C15—H15A 108.9 O2—C13—C12 105.0 (2)
C14—C15—H15A 108.9 C14—C13—C12 113.5 (2)
C16—C15—H15B 108.9 C11—C13—C12 109.1 (2)
C14—C15—H15B 108.9 C7—C8—C12 117.1 (3)
H15A—C15—H15B 107.8 C7—C8—C9 127.5 (3)
C16—C21—C20 112.0 (3) C12—C8—C9 115.4 (3)
C16—C21—H21A 109.2 C16—C17—O2 122.5 (3)
C20—C21—H21A 109.2 C16—C17—C18 124.8 (3)
C16—C21—H21B 109.2 O2—C17—C18 112.7 (2)
C20—C21—H21B 109.2 C2—C1—C6 120.7 (3)
H21A—C21—H21B 107.9 C2—C1—H1 119.6
C18—C22—C23 128.2 (3) C6—C1—H1 119.6
C18—C22—H22 115.9 C13—C14—C15 112.0 (2)
C23—C22—H22 115.9 C13—C14—H14A 109.2
C25—C24—C23 121.3 (3) C15—C14—H14A 109.2
C25—C24—H24 119.3 C13—C14—H14B 109.2
C23—C24—H24 119.3 C15—C14—H14B 109.2
O1—C12—C8 121.9 (3) H14A—C14—H14B 107.9
O1—C12—C13 122.8 (3) C26—C25—C24 120.2 (3)
C8—C12—C13 115.3 (2) C26—C25—H25 119.9
C13—C11—C10 111.3 (2) C24—C25—H25 119.9
C13—C11—H11A 109.4 C4—C5—C6 120.8 (3)
C10—C11—H11A 109.4 C4—C5—H5 119.6
C13—C11—H11B 109.4 C6—C5—H5 119.6
C10—C11—H11B 109.4 C5—C4—C3 120.2 (3)
H11A—C11—H11B 108.0 C5—C4—H4 119.9
C27—C28—C23 120.8 (3) C3—C4—H4 119.9
C27—C28—H28 119.6 C2—C3—C4 119.7 (3)
C23—C28—H28 119.6 C2—C3—H3 120.1
C8—C9—C10 113.1 (3) C4—C3—H3 120.1
C8—C9—H9A 109.0 C8—C7—C6 128.1 (3)
C10—C9—H9A 109.0 C8—C7—H7 116.0
C8—C9—H9B 109.0 C6—C7—H7 116.0
C10—C9—H9B 109.0 C26—C27—C28 120.4 (3)
H9A—C9—H9B 107.8 C26—C27—H27 119.8
C1—C2—C3 120.1 (3) C28—C27—H27 119.8
C1—C2—H2 120.0 C17—C16—C15 122.4 (3)
C3—C2—H2 120.0 C17—C16—C21 121.1 (3)
C18—C19—C20 110.8 (3) C15—C16—C21 116.6 (3)
C18—C19—H19A 109.5 C19—C20—C21 111.9 (3)
C20—C19—H19A 109.5 C19—C20—H20A 109.2
C18—C19—H19B 109.5 C21—C20—H20A 109.2
C20—C19—H19B 109.5 C19—C20—H20B 109.2
H19A—C19—H19B 108.1 C21—C20—H20B 109.2
C11—C10—C9 112.6 (2) H20A—C20—H20B 107.9
C11—C10—H10A 109.1 C25—C26—C27 119.6 (3)
C9—C10—H10A 109.1 C25—C26—H26 120.2
C11—C10—H10B 109.1 C27—C26—H26 120.2
C17—C18—C22—C23 −179.5 (3) C19—C18—C17—C16 −10.4 (4)
C19—C18—C22—C23 −2.9 (5) C22—C18—C17—O2 −13.6 (4)
C22—C18—C19—C20 −138.5 (3) C19—C18—C17—O2 169.4 (2)
C17—C18—C19—C20 38.4 (3) C3—C2—C1—C6 −0.9 (5)
C13—C11—C10—C9 56.7 (3) C5—C6—C1—C2 2.1 (5)
C8—C9—C10—C11 −47.7 (3) C7—C6—C1—C2 −179.4 (3)
C25—C24—C23—C28 1.7 (4) O2—C13—C14—C15 −54.1 (3)
C25—C24—C23—C22 178.9 (3) C11—C13—C14—C15 −171.6 (2)
C27—C28—C23—C24 −2.5 (4) C12—C13—C14—C15 63.4 (3)
C27—C28—C23—C22 −179.6 (3) C16—C15—C14—C13 31.0 (4)
C18—C22—C23—C24 146.7 (3) C23—C24—C25—C26 0.2 (5)
C18—C22—C23—C28 −36.3 (5) C1—C6—C5—C4 −2.0 (4)
C17—O2—C13—C14 51.7 (3) C7—C6—C5—C4 179.6 (3)
C17—O2—C13—C11 173.9 (2) C6—C5—C4—C3 0.8 (5)
C17—O2—C13—C12 −70.9 (3) C1—C2—C3—C4 −0.3 (5)
C10—C11—C13—O2 55.0 (3) C5—C4—C3—C2 0.4 (5)
C10—C11—C13—C14 175.4 (2) C12—C8—C7—C6 −179.4 (3)
C10—C11—C13—C12 −57.2 (3) C9—C8—C7—C6 −2.8 (5)
O1—C12—C13—O2 119.4 (3) C5—C6—C7—C8 −38.5 (5)
C8—C12—C13—O2 −60.5 (3) C1—C6—C7—C8 143.1 (3)
O1—C12—C13—C14 −1.1 (4) C23—C28—C27—C26 1.5 (5)
C8—C12—C13—C14 179.0 (3) O2—C17—C16—C15 0.6 (4)
O1—C12—C13—C11 −128.2 (3) C18—C17—C16—C15 −179.7 (3)
C8—C12—C13—C11 51.9 (3) O2—C17—C16—C21 −179.6 (3)
O1—C12—C8—C7 −48.0 (4) C18—C17—C16—C21 0.2 (5)
C13—C12—C8—C7 131.9 (3) C14—C15—C16—C17 −4.5 (4)
O1—C12—C8—C9 135.0 (3) C14—C15—C16—C21 175.6 (3)
C13—C12—C8—C9 −45.1 (3) C20—C21—C16—C17 −18.7 (4)
C10—C9—C8—C7 −134.9 (3) C20—C21—C16—C15 161.2 (3)
C10—C9—C8—C12 41.8 (3) C18—C19—C20—C21 −57.5 (3)
C13—O2—C17—C16 −25.4 (4) C16—C21—C20—C19 47.1 (4)
C13—O2—C17—C18 154.9 (2) C24—C25—C26—C27 −1.3 (5)
C22—C18—C17—C16 166.6 (3) C28—C27—C26—C25 0.4 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C20—H20B···O1i 0.99 2.64 3.630 175
C11—H11B···O1i 0.99 2.61 3.521 153

Symmetry code: (i) −x, −y, z+1/2.

Funding Statement

This work was funded by Russian Science Foundation grant Project 15-13-10007.

References

  1. Abou-Elmagd, W. S. I. & Hashem, A. I. (2016). J. Heterocycl. Chem. 53, 202–208.
  2. Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Clark, G. R., Tsang, K. Y. & Brimble, M. A. (2005). Acta Cryst. E61, o2748–o2749.
  6. Golikov, A. G., Kriven’ko, A. P., Bugaev, A. A. & Solodovnikov, S. F. (2006). J. Struct. Chem. 47, 102–105.
  7. Jia, Z., Quail, J. W., Arora, V. K. & Dimmock, J. R. (1989). Acta Cryst. C45, 285–289.
  8. Kia, Y., Osman, H., Murugaiyah, V., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o2493–o2494. [DOI] [PMC free article] [PubMed]
  9. Kriven’ko, A. P., Bugaev, A. A. & Golikov, A. G. (2005). Chem. Heterocycl. Compd. 41, 163–167.
  10. Mirzabekova, N. S., Kuzmina, N. E., Osipova, E. S. & Lukashov, O. I. (2008). J. Struct. Chem. 49, 644–649.
  11. Saraswat, P., Jeyabalan, G., Hassan, M. Z., Rahman, U. M. & Nyola, K. N. (2016). Synth. Commun. 46, 1643–1664.
  12. Shchekina, M. P., Tumskii, R. S., Klochkova, I. N. & Anis’kov, A. A. (2017). Russ. J. Org. Chem. 53, 263–269.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  15. Siaka, S., Soldatenkov, A. T., Malkova, A. V., Sorokina, E. A. & Khrustalev, V. N. (2012). Acta Cryst. E68, o3230. [DOI] [PMC free article] [PubMed]
  16. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  17. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017014165/rk2438sup1.cif

e-73-01622-sup1.cif (731.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017014165/rk2438Isup2.hkl

e-73-01622-Isup2.hkl (486KB, hkl)

CCDC reference: 1577738

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES