Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Oct 20;73(Pt 11):1692–1695. doi: 10.1107/S2056989017014943

Crystal structure of the co-crystalline adduct 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane (TATD)–4-iodo­phenol (1/2): supra­molecular assembly mediated by halogen and hydrogen bonding

Augusto Rivera a,*, Jicli José Rojas a, Jaime Ríos-Motta a, Michael Bolte b
PMCID: PMC5683492  PMID: 29152352

In the crystal of the ternary co-crystalline adduct, the components inter­act through two inter­molecular O—H⋯N hydrogen bonds. The supra­molecular adducts are inter­linked through of halogen bonds and weak non-conventional hydrogen bonds.

Keywords: crystal structure, co-crystalline adduct, hydrogen bonding, halogen bonding, TATD

Abstract

The asymmetric unit of the title co-crystalline adduct, 1,3,6,8-tetra­aza­tri­cyclo[4.4.1.13,8]dodecane (TATD)–4-iodo­phenol (1/2), C8H16N4·2C6H5IO, comprises a half mol­ecule of the aminal cage polyamine plus a 4-iodo­phenol mol­ecule. A twofold rotation axis generates the other half of the adduct. The components are linked by two inter­molecular O—H⋯N hydrogen bonds. The adducts are further linked into a three-dimensional framework structure by a combination of N⋯I halogen bonds and weak non-conventional C—H⋯O and C—H⋯I hydrogen bonds.

Chemical context  

Halogenoorganic compounds are able to play a role in organic supra­molecular assemblies as electrophilic species, and have been used as models in the construction of self-assembled architectures. Non-covalent bonds such as hydrogen bonds (HB) and halogen bonds (XB) attract inter­est in crystal engineering because they have clear directional properties (Umezono & Okuno, 2017). Hydrogen bonds have been used successfully to construct supra­molecular architectures as a result of their high directionality, which also results in high selectivity. Halogen bonds exhibit similar directionality and strength to hydrogen bonds and can offer a new approach to the control of supra­molecular assemblies (Jin et al., 2014). XB also play important roles in natural systems, and have been effectively applied in various fields including crystal engineering, solid-state mol­ecular recognition, materials with optical properties and supra­molecular liquid crystals (Li et al., 2017). The strength of the inter­actions involving halogens increases on going from chlorine to bromine to iodine. Although hydrogen bonds are likely to be more effective, XB also are also important in crystal packing (Aakeröy et al., 2015; Geboes et al., 2017). In view of the analogies between halogen and hydrogen bonding, we think that the 4-iodo­phenol mol­ecule offers inter­esting possibilities for exploring the effect of halogen-bonding inter­actions on supra­molecular assemblies of phenols with polyamines. Following our previous work on acid–base adducts based on macrocyclic aminals and phenols, we report herein the synthesis and crystal structure of the title compound, a supra­molecular complex assembled through non-covalent HB and XB inter­actions between 4-iodo­phenol and 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane (TATD).graphic file with name e-73-01692-scheme1.jpg

Structural commentary  

The title compound is isostructural with 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane (TATD)–4-bromo­phenol (Rivera, Uribe et al., 2015): both crystallize in the space group Fdd2, and the differences between the unit-cell parameters (a, b, c) are < 7%. The asymmetric unit comprises one half of a 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane (TATD) mol­ecule and one iodo­phenol mol­ecule held together by inter­molecular O—H⋯N hydrogen bonds [O⋯N 2.741 (6) Å; O—H⋯N 154 (7)°; Table 1]. The complete adduct is generated by a crystallographic twofold rotation axis, (Fig. 1).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.84 (1) 1.96 (4) 2.741 (6) 154 (7)
C5—H5B⋯I1i 0.99 3.03 3.961 (7) 158
C13—H13⋯O1ii 0.95 2.53 3.455 (6) 165

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 1.

Figure 1

A view of the mol­ecular structure of the title compound, showing the atom-labelling scheme, with displacement ellipsoids drawn at the 50% probability. H atoms bonded to C atoms are omitted for clarity. Hydrogen bonds are drawn as dashed lines. Atoms labelled with the suffix A are generated using the symmetry operator (−x + 1, −y + 1, z).

Apart from the C—I/Br bond-length differences and some of the bond angles in the benzene ring, the mol­ecules have similar geometric data (bond lengths and angles). The C14—I1 bond length [2.106 (5) Å] is in good agreement with the value reported for 4-iodo­phenol itself [2.104 (5) Å; Merz, 2006]. The overall mol­ecular conformation of TATD observed here is very close to that of TATD in the related bromo­phenol adduct (Rivera, Uribe et al., 2015).

Supra­molecular features  

In the crystal, the three independent mol­ecules are linked via two inter­molecular O1—H1⋯N1 hydrogen bonds (Table 1 and Fig. 1). These supra­molecular units are then linked by direction-specific inter­molecular inter­actions, including both non-conventional hydrogen bonds and halogen bonds, C—H⋯O and C—H⋯I hydrogen bonds, forming slabs lying parallel to the bc plane (Table 1 and Fig. 2). However, considering the donor–acceptor bond lengths of 3.961 (7) Å [C5—H5B⋯I1] and 3.455 (6) Å [C13—H13⋯O1], which exceed the sum of the corresponding van der Waals radii (0.281 and 0.255 Å, respectively), the strength of the these non-conventional hydrogen bonds can be classified as very weak (Steiner, 2003).

Figure 2.

Figure 2

A view of the crystal packing of the title compound, showing the O—H⋯N hydrogen bonds; and C—H⋯O and C—H⋯hydrogen bonds (dashed lines).

In addition, as indicated by a PLATON analysis (Spek, 2009), the iodine atom is involved, as an electron-density acceptor, in two short contacts with N2 and C3, seemingly forming a bifurcated halogen bond, where the I⋯N [3.351 (5) Å] and I⋯C distances [3.519 (5) Å] are 0.18 and 0.16 Å, respectively, less than the sum of the corresponding van der Waals radii (Alvarez, 2013). The I⋯N distance corresponds to 90% of the sum of the van der Waals radii (3.70 Å) and the C14—I1⋯N2iii angle of 173.11 (2)° is close to being linear [symmetry code: (iii) x + Inline graphic, −y + Inline graphic, z + Inline graphic]. Taking into account these geometrical parameters, the I1⋯N2 contacts can formally be considered as halogen bonds. It appears that this contact imposes the relatively close, but significantly longer I⋯C contact. Unsurprisingly, this pattern is repeated with the isostructural bromo analogue (Rivera, Uribe et al., 2015) with Br⋯N = 3.292 (4) and C⋯Br = 3.477 (4) Å. There is also a Cl⋯N halogen bond in the related 4-chloro-3,5-di­methyl­phenol analogue (Rivera, Rojas, et al., 2015) with Cl⋯N = 3.1680 (16); the C⋯Cl contact has extended to 3.5828 (19) Å and can be disregarded.

Database survey  

The structure of 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane has already been determined (Murray-Rust, 1974; Rivera et al., 2014). Since the mol­ecule is rigid, it is not surprising that it compares very closely with the TATD mol­ecule in the title compound. The structure of 1,3,6,8-tetra­aza­tri­cyclo[4.4.1.13,8]dodecane hydro­quinone (Rivera et al., 2007) shows two O—H⋯N hydrogen bonds of similar geometry to that of the title compound. Inter­estingly, this pattern is repeated with 4-bromo­phenol 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane (Rivera, Uribe et al., 2015), which is isostructural with the title compound. In contrast, 4-chloro-3,5-di­methyl­phenol 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane (Rivera, Rojas et al., 2015) only forms one O—H⋯N hydrogen bond, nonetheless with similar geometric parameters to those in the title compound. Similarly, in the supra­molecular complex with a 2:1 ratio of 4-iodo­phenol to the aza-donor 1,4-di­aza­bicyclo[2.2.2]octane (Nayak & Pedireddi, 2017), the mol­ecules are again connected through O—H⋯N hydrogen bonds but with no halogen-bond inter­action involving the iodo substituent.

Synthesis and crystallization  

A mixture of 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane (TATD) (0.168g, 1 mmol) and 4-iodo­phenol (0.440g, 2 mmol) was ground at room temperature with a pestle in a mortar for 15 min., as required to complete the reaction (TLC). The mixture was recrystallized from a mixture of n-hexane with a few drops of ethanol to obtain crystals suitable for X-ray analysis, m.p. = 391 K. (yield: 56%).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were located in a difference electron-density map. The hydroxyl H atom was refined freely, while C-bound H atoms were fixed geometrically (C—H = 0.95 or 0.99 Å) and refined using a riding-model approximation, with U iso(H) set to 1.2U eq of the parent atom

Table 2. Experimental details.

Crystal data
Chemical formula C8H16N4·2C6H5IO
M r 608.25
Crystal system, space group Orthorhombic, F d d2
Temperature (K) 173
a, b, c (Å) 20.8869 (16), 22.4197 (13), 9.6352 (6)
V3) 4512.0 (5)
Z 8
Radiation type Mo Kα
μ (mm−1) 2.81
Crystal size (mm) 0.24 × 0.23 × 0.23
 
Data collection
Diffractometer Stoe IPDS II two-circle
Absorption correction Multi-scan (X-AREA; Stoe & Cie, 2001)
T min, T max 0.548, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7213, 2102, 2079
R int 0.029
(sin θ/λ)max−1) 0.606
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.025, 0.065, 1.06
No. of reflections 2102
No. of parameters 132
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.67
Absolute structure Classical Flack (1983) method preferred over Parsons because s.u. lower
Absolute structure parameter −0.03 (4)

Computer programs: X-AREA (Stoe & Cie, 2001), XP in SHELXTL-Plus and SHELXS2016 (Sheldrick, 2008) and SHELXL2016 (Sheldrick, 2015).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017014943/sj5537sup1.cif

e-73-01692-sup1.cif (262.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017014943/sj5537Isup2.hkl

e-73-01692-Isup2.hkl (169.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017014943/sj5537Isup3.cml

CCDC reference: 1580038

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C8H16N4·2C6H5IO Dx = 1.791 Mg m3
Mr = 608.25 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Fdd2 Cell parameters from 15571 reflections
a = 20.8869 (16) Å θ = 3.6–25.9°
b = 22.4197 (13) Å µ = 2.81 mm1
c = 9.6352 (6) Å T = 173 K
V = 4512.0 (5) Å3 Block, yellow
Z = 8 0.24 × 0.23 × 0.23 mm
F(000) = 2368

Data collection

Stoe IPDS II two-circle diffractometer 2079 reflections with I > 2σ(I)
Radiation source: Genix 3D IµS microfocus X-ray source Rint = 0.029
ω scans θmax = 25.5°, θmin = 3.6°
Absorption correction: multi-scan (X-AREA; Stoe & Cie, 2001) h = −24→25
Tmin = 0.548, Tmax = 1.000 k = −26→27
7213 measured reflections l = −11→11
2102 independent reflections

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0495P)2 + 5.1297P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.065 (Δ/σ)max = 0.002
S = 1.06 Δρmax = 0.25 e Å3
2102 reflections Δρmin = −0.67 e Å3
132 parameters Absolute structure: Classical Flack (1983) method preferred over Parsons because s.u. lower
2 restraints Absolute structure parameter: −0.03 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1 0.5189 (2) 0.55327 (17) 0.2785 (4) 0.0293 (9)
N2 0.4501 (2) 0.5309 (2) 0.0695 (5) 0.0335 (9)
C1 0.500000 0.500000 0.3551 (8) 0.0350 (16)
H1A 0.463825 0.511142 0.416230 0.042* 0.5
H1B 0.536176 0.488858 0.416229 0.042* 0.5
C2 0.4734 (3) 0.5730 (3) 0.1705 (6) 0.0413 (13)
H2A 0.435585 0.589927 0.218543 0.050*
H2B 0.493847 0.606119 0.119081 0.050*
C3 0.500000 0.500000 −0.0073 (9) 0.0383 (16)
H3A 0.521109 0.529565 −0.068331 0.046* 0.5
H3B 0.478891 0.470437 −0.068336 0.046* 0.5
C4 0.3977 (3) 0.4922 (3) 0.1176 (7) 0.0439 (13)
H4A 0.381691 0.469170 0.037109 0.053*
H4B 0.362214 0.517973 0.149924 0.053*
C5 0.4138 (3) 0.4485 (3) 0.2331 (7) 0.0456 (14)
H5A 0.386853 0.458252 0.314539 0.055*
H5B 0.401546 0.407971 0.201822 0.055*
I1 0.63999 (2) 0.68958 (2) 1.00445 (6) 0.03902 (14)
O1 0.5030 (2) 0.65445 (17) 0.4344 (4) 0.0364 (8)
H1 0.518 (3) 0.623 (2) 0.402 (7) 0.05 (2)*
C11 0.5320 (2) 0.6593 (2) 0.5604 (6) 0.0293 (10)
C12 0.5220 (3) 0.7116 (2) 0.6361 (6) 0.0352 (11)
H12 0.494289 0.741464 0.600328 0.042*
C13 0.5518 (2) 0.72031 (19) 0.7624 (7) 0.0330 (10)
H13 0.544963 0.756109 0.813067 0.040*
C14 0.5920 (2) 0.6759 (2) 0.8149 (6) 0.0293 (10)
C15 0.6015 (2) 0.6234 (2) 0.7428 (7) 0.0312 (9)
H15 0.628314 0.593158 0.780345 0.037*
C16 0.5715 (2) 0.6147 (2) 0.6143 (6) 0.0309 (10)
H16 0.578032 0.578773 0.564169 0.037*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.038 (2) 0.028 (2) 0.022 (2) −0.0009 (16) −0.0024 (17) 0.0024 (16)
N2 0.031 (2) 0.045 (2) 0.025 (2) 0.0090 (19) 0.0002 (17) 0.0008 (18)
C1 0.047 (4) 0.035 (4) 0.023 (3) −0.008 (3) 0.000 0.000
C2 0.050 (3) 0.038 (3) 0.036 (3) 0.015 (3) −0.006 (2) 0.004 (2)
C3 0.032 (3) 0.061 (4) 0.022 (3) 0.011 (3) 0.000 0.000
C4 0.026 (2) 0.067 (4) 0.038 (3) 0.007 (2) −0.003 (2) 0.002 (3)
C5 0.039 (3) 0.050 (3) 0.048 (4) −0.007 (2) −0.001 (3) 0.002 (3)
I1 0.0425 (2) 0.03403 (19) 0.0405 (2) −0.00169 (13) −0.00853 (15) −0.00435 (16)
O1 0.044 (2) 0.0297 (18) 0.0355 (19) 0.0035 (16) −0.0077 (17) −0.0043 (16)
C11 0.024 (2) 0.030 (2) 0.034 (2) −0.0028 (18) 0.0035 (19) 0.0018 (19)
C12 0.035 (3) 0.029 (2) 0.041 (3) 0.005 (2) 0.001 (2) 0.000 (2)
C13 0.037 (2) 0.0255 (19) 0.036 (3) 0.0028 (18) 0.007 (2) −0.005 (3)
C14 0.027 (2) 0.032 (2) 0.030 (2) −0.0029 (19) 0.003 (2) 0.000 (2)
C15 0.030 (2) 0.027 (2) 0.036 (3) 0.0023 (16) 0.001 (2) 0.001 (2)
C16 0.033 (2) 0.024 (2) 0.036 (2) −0.0012 (18) 0.002 (2) −0.002 (2)

Geometric parameters (Å, º)

N1—C1 1.458 (5) C5—H5A 0.9900
N1—C5i 1.474 (7) C5—H5B 0.9900
N1—C2 1.478 (7) I1—C14 2.106 (5)
N2—C2 1.440 (8) O1—C11 1.361 (6)
N2—C3 1.453 (6) O1—H1 0.838 (14)
N2—C4 1.472 (8) C11—C16 1.395 (7)
C1—H1A 0.9900 C11—C12 1.397 (8)
C1—H1B 0.9900 C12—C13 1.381 (9)
C2—H2A 0.9900 C12—H12 0.9500
C2—H2B 0.9900 C13—C14 1.398 (8)
C3—H3A 0.9900 C13—H13 0.9500
C3—H3B 0.9900 C14—C15 1.382 (7)
C4—C5 1.520 (9) C15—C16 1.401 (8)
C4—H4A 0.9900 C15—H15 0.9500
C4—H4B 0.9900 C16—H16 0.9500
C1—N1—C5i 112.8 (4) C5—C4—H4B 108.2
C1—N1—C2 115.3 (4) H4A—C4—H4B 107.3
C5i—N1—C2 114.4 (5) N1i—C5—C4 116.4 (5)
C2—N2—C3 114.5 (4) N1i—C5—H5A 108.2
C2—N2—C4 115.1 (5) C4—C5—H5A 108.2
C3—N2—C4 114.4 (4) N1i—C5—H5B 108.2
N1—C1—N1i 119.2 (6) C4—C5—H5B 108.2
N1—C1—H1A 107.5 H5A—C5—H5B 107.3
N1i—C1—H1A 107.5 C11—O1—H1 103 (5)
N1—C1—H1B 107.5 O1—C11—C16 122.6 (5)
N1i—C1—H1B 107.5 O1—C11—C12 117.7 (5)
H1A—C1—H1B 107.0 C16—C11—C12 119.6 (5)
N2—C2—N1 119.8 (4) C13—C12—C11 120.8 (5)
N2—C2—H2A 107.4 C13—C12—H12 119.6
N1—C2—H2A 107.4 C11—C12—H12 119.6
N2—C2—H2B 107.4 C12—C13—C14 119.3 (5)
N1—C2—H2B 107.4 C12—C13—H13 120.4
H2A—C2—H2B 106.9 C14—C13—H13 120.4
N2—C3—N2i 118.8 (7) C15—C14—C13 120.8 (5)
N2—C3—H3A 107.6 C15—C14—I1 119.5 (4)
N2i—C3—H3A 107.6 C13—C14—I1 119.8 (4)
N2—C3—H3B 107.6 C14—C15—C16 119.8 (5)
N2i—C3—H3B 107.6 C14—C15—H15 120.1
H3A—C3—H3B 107.0 C16—C15—H15 120.1
N2—C4—C5 116.5 (5) C11—C16—C15 119.7 (5)
N2—C4—H4A 108.2 C11—C16—H16 120.2
C5—C4—H4A 108.2 C15—C16—H16 120.2
N2—C4—H4B 108.2
C5i—N1—C1—N1i −82.7 (4) O1—C11—C12—C13 −177.7 (5)
C2—N1—C1—N1i 51.3 (3) C16—C11—C12—C13 1.5 (8)
C3—N2—C2—N1 −55.1 (7) C11—C12—C13—C14 −0.5 (8)
C4—N2—C2—N1 80.5 (7) C12—C13—C14—C15 −0.9 (8)
C1—N1—C2—N2 −50.6 (7) C12—C13—C14—I1 178.2 (4)
C5i—N1—C2—N2 82.6 (7) C13—C14—C15—C16 1.3 (8)
C2—N2—C3—N2i 53.6 (4) I1—C14—C15—C16 −177.8 (4)
C4—N2—C3—N2i −82.3 (4) O1—C11—C16—C15 178.1 (5)
C2—N2—C4—C5 −65.6 (7) C12—C11—C16—C15 −1.1 (8)
C3—N2—C4—C5 70.1 (7) C14—C15—C16—C11 −0.3 (8)
N2—C4—C5—N1i −3.8 (8)

Symmetry code: (i) −x+1, −y+1, z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.84 (1) 1.96 (4) 2.741 (6) 154 (7)
C5—H5B···I1ii 0.99 3.03 3.961 (7) 158
C13—H13···O1iii 0.95 2.53 3.455 (6) 165

Symmetry codes: (ii) −x+1, −y+1, z−1; (iii) −x+1, −y+3/2, z+1/2.

Funding Statement

This work was funded by Dirección de Investigación, Universidad Nacional de Colombia grant 35816. Departamento Administrativo de Ciencia, Tecnología e Innovación grant to Jicli José Rojas.

References

  1. Aakeröy, C. B., Spartz, C. L., Dembowski, S., Dwyre, S. & Desper, J. (2015). IUCrJ, 2, 498–510. [DOI] [PMC free article] [PubMed]
  2. Alvarez, S. (2013). Dalton Trans. 42, 8617–8636. [DOI] [PubMed]
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Geboes, Y., De Proft, F. & Herrebout, W. A. (2017). Acta Cryst. B73, 168–178. [DOI] [PubMed]
  5. Jin, S., Liu, H., Gao, X. J., Lin, Z., Chen, G. & Wang, D. (2014). J. Mol. Struct. 1075, 124–138.
  6. Li, J., Hu, Y.-H., Ge, C.-W., Gong, H.-G. & Gao, H.-K. (2017). Chinese Chem. Lett. http://dx.doi.org/10.1016/j.cclet.2017.06.008
  7. Merz, K. (2006). Cryst. Growth Des. 6, 1615–1619.
  8. Murray-Rust, P. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 1136.
  9. Nayak, A. & Pedireddi, V. R. (2017). J. Mol. Struct. 1130, 251–263.
  10. Rivera, A., Ríos-Motta, J. & Bolte, M. (2014). Acta Cryst. E70, o266. [DOI] [PMC free article] [PubMed]
  11. Rivera, A., Ríos-Motta, J., Hernández-Barragán, A. & Joseph-Nathan, P. (2007). J. Mol. Struct. 831, 180–186.
  12. Rivera, A., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2015). Acta Cryst. E71, 737–740. [DOI] [PMC free article] [PubMed]
  13. Rivera, A., Uribe, J. M., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2015). Acta Cryst. E71, 463–465. [DOI] [PMC free article] [PubMed]
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  16. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  17. Steiner, T. (2003). Crystallogr. Rev. 9, 177–228.
  18. Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.
  19. Umezono, S. & Okuno, T. (2017). J. Mol. Struct. 1147, 636–642.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017014943/sj5537sup1.cif

e-73-01692-sup1.cif (262.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017014943/sj5537Isup2.hkl

e-73-01692-Isup2.hkl (169.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017014943/sj5537Isup3.cml

CCDC reference: 1580038

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES