Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Oct 31;73(Pt 11):1790–1792. doi: 10.1107/S2056989017015523

Crystal structure of diethyl 3,3′-[(2-fluoro­phen­yl)methyl­idene]bis­(1H-indole-2-carboxyl­ate)

Xin-Hua Lu a, Hong-Shun Sun a,*, Yuan Cai a, Lu-Lu Chen a, Yang-Feng Chen a
PMCID: PMC5683515  PMID: 29152375

In the title compound, the two indole ring systems are approximately perpendicular to one another, subtending a dihedral angle of 86.0 (5)°. In the crystal, pairs of N—H⋯O hydrogen bonds link the mol­ecules into the inversion dimers, which are further linked by N—H⋯O hydrogen bonds into supra­molecular chains propagated along the b-axis direction.

Keywords: crystal structure, bis­indole, MRI, contrast agent

Abstract

In the title compound, C29H25FN2O4, the mean planes of the two indole ring systems (r.m.s. deviations = 0.1392 and 0.0115 Å) are approximately perpendicular to one another, subtending a dihedral angle of 86.0 (5)°; the benzene ring is twisted with respect to the mean planes of the two indole ring systems by 83.3 (2) and 88.1 (4)°, respectively. In the crystal, pairs of N—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers, which are further linked by N—H⋯O hydrogen bonds into supra­molecular chains propagating along the [101] direction.

Chemical context  

Bis(indol­yl)methane derivatives are abundantly present in various terrestrial and marine natural resources (Poter et al., 1977; Sundberg, 1996). They are important anti­biotics in the field of pharmaceuticals with diverse activities, such as anti­cancer, anti­leishmanial and anti­hyperlipidemic (Chang et al., 1999; Ge et al., 1999). On the other hand, bis­(indoly)methane derivatives can also be used as precursors for MRI necrosis avid contrast agents (Ni, 2008). In recent years, we have reported the synthesis and crystal structures of some similar bis­(indoly)methane compounds (Sun et al., 2012, 2015; Li et al., 2014; Lu et al., 2014). Now we report herein another bis­(indoly)methane compound.graphic file with name e-73-01790-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound is shown in Fig. 1. The two indole ring systems are nearly perpendicular to each other [dihedral angle = 86.0 (5)°] while the benzene ring (C24–C29) is tilted with respect to the N1/C2–C9 and N2/C13–C20 indole ring systems, making dihedral angles of 83.3 (2) and 88.1 (4)°, respectively. The carboxyl groups are approximately co-planar with the attached indole moieties, the dihedral angles between the carboxyl groups and the mean plane of the attached indole ring system being 9.5 (2) and 7.2 (3)°.

Figure 1.

Figure 1

The mol­ecular structure of the title mol­ecule with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Supra­molecular features  

In the crystal, pairs of N1—H1A⋯O1 hydrogen bonds link the mol­ecules into centrosymmetric dimers, which are further connected by N2—H2A⋯O3 hydrogen bonds into supra­molecular zigzag chains propagating along the [101] direction (Table 1 and Fig. 2).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.10 2.881 (4) 151
N2—H2A⋯O3ii 0.86 2.07 2.874 (3) 157

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Database survey  

Several similar structures have been reported previously, i.e. diethyl 3,3′-(phenyl­methyl­ene)bis­(1H-indole-2-carboxyl­ate) (Sun et al., 2012), dimethyl 3,3′-[(4-fluoro­phen­yl)methyl­ene]bis­(1H-indole-2-carboxyl­ate) (Sun et al., 2015), dimethyl 3,3′-[(4-chloro­phen­yl) methyl­ene]bis­(1H-indole-2-carboxyl­ate) (Li et al., 2014) and 3,3′-[(3-fluoro­phen­yl)methyl­ene]bis­(1H-indole-2-carboxyl­ate) (Lu et al., 2014).

Synthesis and crystallization  

Ethyl indole-2-carboxyl­ate (1.88 g, 10 mmol) was dissolved in 20 ml ethanol; commercially available 2-fluoro­benzaldehyde (0.62 g, 5 mmol) was added and the mixture was heated to reflux temperature. Concentrated HCl (0.5 ml) was added and the reaction was left for 1 h. After cooling, the white product was filtered off and washed thoroughly with ethanol. The reaction was monitored by TLC (AcOEt:hexane = 1:3). Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution, yield 90%.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were positioned geometrically with N—H = 0.86 Å and C—H = 0.93–0.98 Å, and constrained to ride on their parent atoms with U iso(H) = xU eq(C,N), where x = 1.5 for methyl H atoms and 1.2 for all others.

Table 2. Experimental details.

Crystal data
Chemical formula C29H25FN2O4
M r 484.51
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 293
a, b, c (Å) 8.8000 (18), 9.6610 (19), 15.369 (3)
α, β, γ (°) 75.68 (3), 85.44 (3), 83.68 (3)
V3) 1256.5 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.30 × 0.20 × 0.10
 
Data collection
Diffractometer Nonius CAD-4
Absorption correction ψ scan (North et al., 1968)
T min, T max 0.973, 0.991
No. of measured, independent and observed [I > 2σ(I)] reflections 4947, 4621, 2648
R int 0.037
(sin θ/λ)max−1) 0.603
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.069, 0.186, 1.00
No. of reflections 4621
No. of parameters 325
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.29

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995) and SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989017015523/xu5908sup1.cif

e-73-01790-sup1.cif (25.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017015523/xu5908Isup2.hkl

e-73-01790-Isup2.hkl (226.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017015523/xu5908Isup3.cml

CCDC reference: 1581855

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Crystal data

C29H25FN2O4 Z = 2
Mr = 484.51 F(000) = 508
Triclinic, P1 Dx = 1.281 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.8000 (18) Å Cell parameters from 25 reflections
b = 9.6610 (19) Å θ = 9–12°
c = 15.369 (3) Å µ = 0.09 mm1
α = 75.68 (3)° T = 293 K
β = 85.44 (3)° Block, colorless
γ = 83.68 (3)° 0.30 × 0.20 × 0.10 mm
V = 1256.5 (4) Å3

Data collection

Nonius CAD-4 diffractometer 2648 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.037
Graphite monochromator θmax = 25.4°, θmin = 1.4°
ω/2θ scans h = 0→10
Absorption correction: ψ scan (North et al., 1968) k = −11→11
Tmin = 0.973, Tmax = 0.991 l = −18→18
4947 measured reflections 3 standard reflections every 200 reflections
4621 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.186 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.090P)2] where P = (Fo2 + 2Fc2)/3
4621 reflections (Δ/σ)max < 0.001
325 parameters Δρmax = 0.37 e Å3
2 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F 0.1008 (3) 1.1359 (3) 0.64799 (15) 0.0892 (8)
N1 −0.4074 (3) 1.1149 (3) 0.58021 (16) 0.0475 (7)
H1A −0.4582 1.1074 0.5363 0.057*
O1 −0.3400 (3) 0.8585 (3) 0.53292 (16) 0.0649 (7)
C1 −0.1205 (3) 0.9767 (3) 0.75362 (18) 0.0355 (7)
H1B −0.0473 0.9276 0.7172 0.043*
N2 −0.1865 (3) 0.6560 (3) 0.93763 (16) 0.0444 (7)
H2A −0.1563 0.5744 0.9718 0.053*
O2 −0.1486 (3) 0.7970 (3) 0.62507 (17) 0.0638 (7)
C2 −0.2422 (3) 1.0600 (3) 0.69080 (18) 0.0380 (7)
O3 0.1216 (3) 0.5759 (2) 0.90831 (16) 0.0634 (7)
C3 −0.3183 (4) 1.1998 (3) 0.68783 (19) 0.0417 (8)
O4 0.1394 (2) 0.7613 (2) 0.79087 (14) 0.0507 (6)
C4 −0.3137 (4) 1.3049 (3) 0.7359 (2) 0.0529 (9)
H4A −0.2488 1.2893 0.7830 0.064*
C5 −0.4062 (4) 1.4314 (4) 0.7129 (2) 0.0606 (10)
H5A −0.4018 1.5015 0.7443 0.073*
C6 −0.5063 (4) 1.4570 (4) 0.6435 (2) 0.0605 (10)
H6A −0.5680 1.5433 0.6299 0.073*
C7 −0.5152 (4) 1.3575 (4) 0.5952 (2) 0.0551 (9)
H7A −0.5813 1.3751 0.5486 0.066*
C8 −0.4223 (4) 1.2284 (4) 0.6177 (2) 0.0467 (8)
C9 −0.2988 (3) 1.0132 (3) 0.62295 (19) 0.0393 (7)
C10 −0.2664 (4) 0.8840 (4) 0.5891 (2) 0.0467 (8)
C11 −0.1055 (5) 0.6707 (4) 0.5897 (3) 0.0861 (14)
H11A −0.1634 0.5930 0.6234 0.103*
H11B −0.1327 0.6921 0.5275 0.103*
C12 0.0510 (7) 0.6258 (8) 0.5943 (5) 0.178 (3)
H12A 0.0736 0.5438 0.5691 0.267*
H12B 0.0778 0.6005 0.6559 0.267*
H12C 0.1089 0.7021 0.5609 0.267*
C13 −0.1830 (3) 0.8604 (3) 0.82871 (18) 0.0353 (7)
C14 −0.3323 (3) 0.8555 (3) 0.8754 (2) 0.0405 (8)
C15 −0.4693 (4) 0.9485 (4) 0.8693 (2) 0.0479 (8)
H15A −0.4763 1.0351 0.8261 0.057*
C16 −0.5897 (4) 0.9099 (4) 0.9272 (2) 0.0622 (10)
H16A −0.6795 0.9711 0.9231 0.075*
C17 −0.5836 (4) 0.7812 (4) 0.9929 (2) 0.0620 (10)
H17A −0.6685 0.7585 1.0318 0.074*
C18 −0.4548 (4) 0.6886 (4) 1.0008 (2) 0.0528 (9)
H18A −0.4508 0.6023 1.0442 0.063*
C19 −0.3295 (4) 0.7259 (3) 0.9426 (2) 0.0422 (8)
C20 −0.0989 (3) 0.7352 (3) 0.87031 (19) 0.0376 (7)
C21 0.0629 (4) 0.6816 (3) 0.8594 (2) 0.0418 (8)
C22 0.2998 (4) 0.7133 (4) 0.7765 (2) 0.0571 (10)
H22A 0.3098 0.6184 0.7649 0.069*
H22B 0.3553 0.7094 0.8293 0.069*
C23 0.3614 (5) 0.8187 (5) 0.6976 (3) 0.0827 (13)
H23A 0.4676 0.7904 0.6858 0.124*
H23B 0.3513 0.9120 0.7100 0.124*
H23C 0.3053 0.8218 0.6460 0.124*
C24 −0.0307 (3) 1.0737 (3) 0.7890 (2) 0.0382 (7)
C25 −0.0470 (4) 1.0918 (3) 0.8758 (2) 0.0465 (8)
H25A −0.1161 1.0400 0.9167 0.056*
C26 0.0363 (5) 1.1848 (4) 0.9036 (3) 0.0654 (11)
H26A 0.0206 1.1967 0.9620 0.078*
C27 0.1401 (5) 1.2582 (4) 0.8465 (3) 0.0695 (11)
H27A 0.1957 1.3209 0.8654 0.083*
C28 0.1636 (5) 1.2406 (4) 0.7610 (3) 0.0780 (12)
H28A 0.2370 1.2889 0.7216 0.094*
C29 0.0772 (4) 1.1507 (4) 0.7339 (2) 0.0564 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F 0.111 (2) 0.0973 (18) 0.0577 (14) −0.0417 (15) 0.0308 (13) −0.0126 (13)
N1 0.0534 (18) 0.0491 (17) 0.0401 (15) −0.0023 (14) −0.0122 (13) −0.0089 (13)
O1 0.0653 (16) 0.0822 (19) 0.0573 (15) 0.0048 (14) −0.0190 (13) −0.0360 (14)
C1 0.0391 (17) 0.0353 (16) 0.0296 (15) 0.0022 (14) −0.0054 (13) −0.0046 (13)
N2 0.0459 (16) 0.0382 (15) 0.0412 (15) 0.0039 (13) −0.0051 (13) 0.0028 (12)
O2 0.0672 (17) 0.0560 (15) 0.0732 (17) 0.0115 (13) −0.0284 (14) −0.0253 (13)
C2 0.0433 (18) 0.0373 (17) 0.0297 (16) −0.0008 (14) −0.0064 (14) −0.0011 (13)
O3 0.0520 (15) 0.0496 (14) 0.0694 (16) 0.0128 (12) −0.0009 (13) 0.0132 (12)
C3 0.0471 (19) 0.0410 (18) 0.0325 (16) 0.0018 (15) −0.0026 (14) −0.0030 (14)
O4 0.0452 (14) 0.0510 (14) 0.0462 (13) 0.0065 (11) 0.0017 (11) 0.0003 (11)
C4 0.063 (2) 0.047 (2) 0.0464 (19) 0.0075 (18) −0.0100 (17) −0.0090 (16)
C5 0.075 (3) 0.044 (2) 0.060 (2) 0.0071 (19) −0.009 (2) −0.0092 (17)
C6 0.062 (3) 0.049 (2) 0.060 (2) 0.0139 (18) −0.001 (2) −0.0031 (19)
C7 0.049 (2) 0.057 (2) 0.048 (2) 0.0079 (18) −0.0100 (17) 0.0050 (18)
C8 0.047 (2) 0.047 (2) 0.0386 (18) 0.0018 (16) −0.0059 (15) 0.0017 (15)
C9 0.0410 (18) 0.0382 (17) 0.0355 (17) 0.0015 (14) −0.0061 (14) −0.0039 (14)
C10 0.047 (2) 0.055 (2) 0.0384 (18) −0.0085 (17) −0.0013 (16) −0.0107 (16)
C11 0.098 (4) 0.056 (3) 0.116 (4) 0.008 (2) −0.022 (3) −0.044 (3)
C12 0.137 (6) 0.164 (7) 0.272 (10) 0.044 (5) −0.060 (6) −0.135 (7)
C13 0.0357 (17) 0.0361 (17) 0.0333 (16) −0.0020 (13) −0.0032 (13) −0.0072 (13)
C14 0.0410 (19) 0.0422 (18) 0.0381 (17) −0.0016 (15) −0.0077 (15) −0.0082 (14)
C15 0.0401 (19) 0.047 (2) 0.051 (2) 0.0038 (16) −0.0063 (16) −0.0036 (16)
C16 0.043 (2) 0.068 (3) 0.070 (3) 0.0091 (19) 0.0035 (19) −0.014 (2)
C17 0.050 (2) 0.075 (3) 0.057 (2) −0.009 (2) 0.0058 (18) −0.010 (2)
C18 0.048 (2) 0.053 (2) 0.053 (2) −0.0056 (18) −0.0059 (17) −0.0028 (17)
C19 0.0422 (19) 0.0435 (19) 0.0398 (18) −0.0041 (15) −0.0044 (15) −0.0071 (15)
C20 0.0380 (18) 0.0335 (17) 0.0381 (17) −0.0039 (14) −0.0022 (14) −0.0024 (14)
C21 0.046 (2) 0.0375 (18) 0.0383 (18) 0.0026 (15) −0.0074 (15) −0.0039 (15)
C22 0.044 (2) 0.060 (2) 0.063 (2) 0.0032 (18) 0.0058 (18) −0.0133 (19)
C23 0.065 (3) 0.091 (3) 0.084 (3) −0.011 (2) 0.020 (2) −0.013 (3)
C24 0.0384 (18) 0.0332 (16) 0.0377 (17) 0.0026 (14) −0.0060 (14) 0.0000 (13)
C25 0.048 (2) 0.046 (2) 0.0441 (19) −0.0018 (16) −0.0078 (16) −0.0071 (15)
C26 0.077 (3) 0.055 (2) 0.069 (3) 0.000 (2) −0.025 (2) −0.022 (2)
C27 0.066 (3) 0.062 (3) 0.082 (3) −0.014 (2) −0.016 (2) −0.014 (2)
C28 0.066 (3) 0.064 (3) 0.097 (3) −0.023 (2) 0.001 (3) 0.000 (2)
C29 0.062 (2) 0.057 (2) 0.049 (2) −0.0120 (19) −0.0008 (18) −0.0093 (18)

Geometric parameters (Å, º)

F—C29 1.360 (4) C12—H12A 0.9600
N1—C8 1.349 (4) C12—H12B 0.9600
N1—C9 1.372 (4) C12—H12C 0.9600
N1—H1A 0.8600 C13—C20 1.384 (4)
O1—C10 1.205 (4) C13—C14 1.446 (4)
C1—C24 1.511 (4) C14—C19 1.412 (4)
C1—C13 1.513 (4) C14—C15 1.417 (4)
C1—C2 1.522 (4) C15—C16 1.351 (4)
C1—H1B 0.9800 C15—H15A 0.9300
N2—C20 1.365 (4) C16—C17 1.393 (5)
N2—C19 1.367 (4) C16—H16A 0.9300
N2—H2A 0.8600 C17—C18 1.358 (5)
O2—C10 1.326 (4) C17—H17A 0.9300
O2—C11 1.456 (4) C18—C19 1.384 (4)
C2—C9 1.380 (4) C18—H18A 0.9300
C2—C3 1.432 (4) C20—C21 1.472 (4)
O3—C21 1.200 (3) C22—C23 1.486 (5)
C3—C4 1.402 (4) C22—H22A 0.9700
C3—C8 1.424 (4) C22—H22B 0.9700
O4—C21 1.325 (4) C23—H23A 0.9600
O4—C22 1.453 (4) C23—H23B 0.9600
C4—C5 1.376 (4) C23—H23C 0.9600
C4—H4A 0.9300 C24—C29 1.374 (4)
C5—C6 1.395 (5) C24—C25 1.382 (4)
C5—H5A 0.9300 C25—C26 1.383 (5)
C6—C7 1.364 (5) C25—H25A 0.9300
C6—H6A 0.9300 C26—C27 1.347 (5)
C7—C8 1.396 (4) C26—H26A 0.9300
C7—H7A 0.9300 C27—C28 1.363 (6)
C9—C10 1.460 (4) C27—H27A 0.9300
C11—C12 1.400 (6) C28—C29 1.372 (5)
C11—H11A 0.9700 C28—H28A 0.9300
C11—H11B 0.9700
C8—N1—C9 109.5 (3) C14—C13—C1 129.9 (3)
C8—N1—H1A 125.2 C19—C14—C15 117.5 (3)
C9—N1—H1A 125.2 C19—C14—C13 107.3 (3)
C24—C1—C13 111.8 (2) C15—C14—C13 135.1 (3)
C24—C1—C2 112.5 (2) C16—C15—C14 119.2 (3)
C13—C1—C2 113.1 (2) C16—C15—H15A 120.4
C24—C1—H1B 106.3 C14—C15—H15A 120.4
C13—C1—H1B 106.3 C15—C16—C17 122.1 (3)
C2—C1—H1B 106.3 C15—C16—H16A 119.0
C20—N2—C19 109.8 (2) C17—C16—H16A 119.0
C20—N2—H2A 125.1 C18—C17—C16 120.7 (3)
C19—N2—H2A 125.1 C18—C17—H17A 119.7
C10—O2—C11 116.5 (3) C16—C17—H17A 119.7
C9—C2—C3 106.3 (3) C17—C18—C19 118.4 (3)
C9—C2—C1 125.3 (3) C17—C18—H18A 120.8
C3—C2—C1 128.4 (3) C19—C18—H18A 120.8
C4—C3—C8 117.8 (3) N2—C19—C18 130.4 (3)
C4—C3—C2 135.7 (3) N2—C19—C14 107.4 (3)
C8—C3—C2 106.4 (3) C18—C19—C14 122.2 (3)
C21—O4—C22 116.5 (2) N2—C20—C13 110.1 (3)
C5—C4—C3 119.3 (3) N2—C20—C21 117.4 (3)
C5—C4—H4A 120.3 C13—C20—C21 132.3 (3)
C3—C4—H4A 120.3 O3—C21—O4 122.5 (3)
C4—C5—C6 121.6 (4) O3—C21—C20 123.4 (3)
C4—C5—H5A 119.2 O4—C21—C20 114.0 (3)
C6—C5—H5A 119.2 O4—C22—C23 107.0 (3)
C7—C6—C5 121.0 (3) O4—C22—H22A 110.3
C7—C6—H6A 119.5 C23—C22—H22A 110.3
C5—C6—H6A 119.5 O4—C22—H22B 110.3
C6—C7—C8 118.2 (3) C23—C22—H22B 110.3
C6—C7—H7A 120.9 H22A—C22—H22B 108.6
C8—C7—H7A 120.9 C22—C23—H23A 109.5
N1—C8—C7 129.9 (3) C22—C23—H23B 109.5
N1—C8—C3 108.1 (3) H23A—C23—H23B 109.5
C7—C8—C3 122.0 (3) C22—C23—H23C 109.5
N1—C9—C2 109.7 (3) H23A—C23—H23C 109.5
N1—C9—C10 116.5 (3) H23B—C23—H23C 109.5
C2—C9—C10 133.9 (3) C29—C24—C25 115.3 (3)
O1—C10—O2 122.7 (3) C29—C24—C1 120.1 (3)
O1—C10—C9 123.0 (3) C25—C24—C1 124.6 (3)
O2—C10—C9 114.3 (3) C24—C25—C26 121.9 (3)
C12—C11—O2 112.8 (4) C24—C25—H25A 119.1
C12—C11—H11A 109.0 C26—C25—H25A 119.1
O2—C11—H11A 109.0 C27—C26—C25 120.3 (4)
C12—C11—H11B 109.0 C27—C26—H26A 119.8
O2—C11—H11B 109.0 C25—C26—H26A 119.8
H11A—C11—H11B 107.8 C26—C27—C28 120.0 (4)
C11—C12—H12A 109.5 C26—C27—H27A 120.0
C11—C12—H12B 109.5 C28—C27—H27A 120.0
H12A—C12—H12B 109.5 C27—C28—C29 118.9 (4)
C11—C12—H12C 109.5 C27—C28—H28A 120.5
H12A—C12—H12C 109.5 C29—C28—H28A 120.5
H12B—C12—H12C 109.5 F—C29—C28 118.1 (4)
C20—C13—C14 105.4 (2) F—C29—C24 118.3 (3)
C20—C13—C1 124.6 (3) C28—C29—C24 123.6 (4)
C24—C1—C2—C9 153.2 (3) C19—C14—C15—C16 0.0 (5)
C13—C1—C2—C9 −79.0 (4) C13—C14—C15—C16 −178.2 (3)
C24—C1—C2—C3 −25.5 (4) C14—C15—C16—C17 0.0 (6)
C13—C1—C2—C3 102.3 (3) C15—C16—C17—C18 −0.3 (6)
C9—C2—C3—C4 −179.3 (4) C16—C17—C18—C19 0.6 (5)
C1—C2—C3—C4 −0.4 (6) C20—N2—C19—C18 −178.6 (3)
C9—C2—C3—C8 1.5 (3) C20—N2—C19—C14 −0.1 (3)
C1—C2—C3—C8 −179.6 (3) C17—C18—C19—N2 177.7 (3)
C8—C3—C4—C5 −1.3 (5) C17—C18—C19—C14 −0.6 (5)
C2—C3—C4—C5 179.5 (3) C15—C14—C19—N2 −178.3 (3)
C3—C4—C5—C6 0.9 (5) C13—C14—C19—N2 0.3 (3)
C4—C5—C6—C7 −0.6 (6) C15—C14—C19—C18 0.3 (5)
C5—C6—C7—C8 0.6 (5) C13—C14—C19—C18 178.9 (3)
C9—N1—C8—C7 178.2 (3) C19—N2—C20—C13 −0.1 (4)
C9—N1—C8—C3 0.2 (4) C19—N2—C20—C21 175.6 (3)
C6—C7—C8—N1 −178.8 (3) C14—C13—C20—N2 0.3 (3)
C6—C7—C8—C3 −1.1 (5) C1—C13—C20—N2 177.5 (3)
C4—C3—C8—N1 179.6 (3) C14—C13—C20—C21 −174.5 (3)
C2—C3—C8—N1 −1.1 (4) C1—C13—C20—C21 2.7 (5)
C4—C3—C8—C7 1.4 (5) C22—O4—C21—O3 0.8 (5)
C2—C3—C8—C7 −179.2 (3) C22—O4—C21—C20 −179.8 (3)
C8—N1—C9—C2 0.7 (4) N2—C20—C21—O3 −2.8 (5)
C8—N1—C9—C10 −178.8 (3) C13—C20—C21—O3 171.7 (3)
C3—C2—C9—N1 −1.4 (3) N2—C20—C21—O4 177.8 (3)
C1—C2—C9—N1 179.7 (3) C13—C20—C21—O4 −7.8 (5)
C3—C2—C9—C10 178.0 (3) C21—O4—C22—C23 −179.5 (3)
C1—C2—C9—C10 −0.9 (5) C13—C1—C24—C29 157.1 (3)
C11—O2—C10—O1 3.4 (5) C2—C1—C24—C29 −74.4 (4)
C11—O2—C10—C9 −176.4 (3) C13—C1—C24—C25 −22.3 (4)
N1—C9—C10—O1 −7.4 (5) C2—C1—C24—C25 106.2 (3)
C2—C9—C10—O1 173.2 (3) C29—C24—C25—C26 2.0 (5)
N1—C9—C10—O2 172.4 (3) C1—C24—C25—C26 −178.5 (3)
C2—C9—C10—O2 −7.0 (5) C24—C25—C26—C27 −1.8 (5)
C10—O2—C11—C12 150.0 (5) C25—C26—C27—C28 −0.2 (6)
C24—C1—C13—C20 −80.3 (4) C26—C27—C28—C29 1.8 (6)
C2—C1—C13—C20 151.4 (3) C27—C28—C29—F 179.1 (3)
C24—C1—C13—C14 96.1 (3) C27—C28—C29—C24 −1.5 (6)
C2—C1—C13—C14 −32.1 (4) C25—C24—C29—F 179.0 (3)
C20—C13—C14—C19 −0.4 (3) C1—C24—C29—F −0.5 (5)
C1—C13—C14—C19 −177.3 (3) C25—C24—C29—C28 −0.4 (5)
C20—C13—C14—C15 177.9 (3) C1—C24—C29—C28 −179.8 (3)
C1—C13—C14—C15 1.0 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O1i 0.86 2.10 2.881 (4) 151
N2—H2A···O3ii 0.86 2.07 2.874 (3) 157

Symmetry codes: (i) −x−1, −y+2, −z+1; (ii) −x, −y+1, −z+2.

Funding Statement

This work was funded by University of Natural Science Foundation in Jiangsu Province grant 17KJB320001. training program of Students innovation and entrepreneurship in Jiangsu Province grant 201612920001Y, 201712920001Y. Top-notch Academic Programs Project of Jiangsu Higher Education Institutions grant PPZY2015B179. Qing Lan Project of Jiangsu Province grant .

References

  1. Chang, Y.-C., Riby, J., Chang, G. H., Peng, G.-F., Firestone, G. & Bjeldanes, L. F. (1999). Biochem. Pharmacol. 58, 825–834. [DOI] [PubMed]
  2. Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.
  3. Ge, X., Fares, F. A. & Yannai, S. (1999). Anticancer Res. 19, 3199–3203. [PubMed]
  4. Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
  5. Li, Y., Sun, H., Jiang, H., Xu, N. & Xu, H. (2014). Acta Cryst. E70, 259–261. [DOI] [PMC free article] [PubMed]
  6. Lu, X.-H., Sun, H.-S. & Hu, J. (2014). Acta Cryst. E70, 593–595. [DOI] [PMC free article] [PubMed]
  7. Ni, Y.-C. (2008). Curr. Med. Imaging Rev. 4, 96–112.
  8. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  9. Porter, J. K., Bacon, C. W., Robbins, J. D., Himmelsbach, D. S. & Higman, H. C. (1977). J. Agric. Food Chem. 25, 88–93. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Sun, H.-S., Li, Y., Jiang, H., Xu, N. & Xu, H. (2015). Acta Cryst. E71, 1140–1142. [DOI] [PMC free article] [PubMed]
  12. Sun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2012). Acta Cryst. E68, o2764. [DOI] [PMC free article] [PubMed]
  13. Sundberg, R. J. (1996). The Chemistry of Indoles, p. 113. New York: Academic Press.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989017015523/xu5908sup1.cif

e-73-01790-sup1.cif (25.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017015523/xu5908Isup2.hkl

e-73-01790-Isup2.hkl (226.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017015523/xu5908Isup3.cml

CCDC reference: 1581855

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES