Skip to main content
Springer logoLink to Springer
. 2017 Nov 14;2017(1):284. doi: 10.1186/s13660-017-1559-9

Bivariate tensor product (p,q)-analogue of Kantorovich-type Bernstein-Stancu-Schurer operators

Qing-Bo Cai 1, Xiao-Wei Xu 2,3, Guorong Zhou 4,
PMCID: PMC5686288  PMID: 29213195

Abstract

In this paper, we construct a bivariate tensor product generalization of Kantorovich-type Bernstein-Stancu-Schurer operators based on the concept of (p,q)-integers. We obtain moments and central moments of these operators, give the rate of convergence by using the complete modulus of continuity for the bivariate case and estimate a convergence theorem for the Lipschitz continuous functions. We also give some graphs and numerical examples to illustrate the convergence properties of these operators to certain functions.

Keywords: (p,q)-integers; Bernstein-Stancu-Schurer operators; modulus of continuity; Lipschitz continuous functions; bivariate tensor product

Introduction

In recent years, (p,q)-integers have been introduced to linear positive operators to construct new approximation processes. A sequence of (p,q)-analogue of Bernstein operators was first introduced by Mursaleen [1, 2]. Besides, (p,q)-analogues of Szász-Mirakyan operators [3], Baskakov-Kantorovich operators [4], Bleimann-Butzer-Hahn operators [5] and Kantorovich-type Bernstein-Stancu-Schurer operators [6] were also considered. For further developments, one can also refer to [712]. These operators are double parameters corresponding to p and q versus single parameter q-type operators [1316]. The aim of these generalizations is to provide appropriate and powerful tools to application areas such as numerical analysis, CAGD and solutions of differential equations (see, e.g., [17]).

Motivated by all the above results, in 2016, Cai et al. [6] introduced a new kind of Kantorovich-type Bernstein-Stancu-Schurer operators based on (p,q)-integers as follows:

Kn,p,qα,β,l(f;x)=([n+1]p,q+β)k=0n+lbn+l,k(p,q;x)[k+1]p,q[k]p,q[k]p,q+α[n+1]p,q+β[k+1]p,q+α[n+1]p,q+βf(t)dp,qt, 1

where bn+l,k(p,q;x)=[n+lk]p,qxk(1x)p,qn+lk for fC(I), I=[0,1+l], lN, 0αβ, 0<q<p1 and nN. They got some approximation properties, since convergence properties of bivariate operators are important in approximation theory, and it seems there has been no papers mentioning the bivariate forms of above operators (1). Hence, we will propose the bivariate case in the following. Before doing this, in [6] (Lemma 2.1), they got Kn,p,qα,β,l(1;x)=1, that is, the operators reproduce constant functions. However, this conclusion is incorrect. In fact, k=0n+lbn+l,k(p,q;x)1. Hence, we re-introduce the revised operators as

Kn,p,qα,β,l(f;x)=([n+1]p,q+β)k=0n+lbn+l,k˜(p,q;x)[k+1]p,q[k]p,q[k]p,q+α[n+1]p,q+β[k+1]p,q+α[n+1]p,q+βf(t)dp,qt, 2

where

bn+l,k˜(p,q;x)=1p(n+l)(n+l1)2[n+lk]p,qpk(k1)2xk(1x)p,qn+lk. 3

From [2], we know k=0n+lbn+l,k˜(p,q;x)=1, and this ensures the operators reproduce constant functions.

On this basis, let C(I2) denote the space of all real-valued continuous functions on I2 endowed with the norm fI2=sup(x,y)I2|f(x,y)|. For fC(I2), I2=I×I=[0,1+l]×[0,1+l], lN, 0αβ, 0<qn1,qn2<pn1,pn21 and n1,n2N. We propose the bivariate tensor product (p,q)-analogue of Kantorovich-type Bernstein-Stancu-Schurer operators as follows:

Kpn1,qn1,pn2,qn2n1,n2,α,β,l(f;x,y)=([n1+1]pn1,qn1+β)([n2+1]pn2,qn2+β)×k1=0n1+lk2=0n2+lbn1+l,n2+l,k1,k2pn1,qn1,pn2,qn2(x,y)([k1+1]pn1,qn1[k1]pn1,qn1)([k2+1]pn2,qn2[k2]pn2,qn2)×[k1]pn1,qn1+α[n1+1]pn1,qn1+β[k1+1]pn1,qn1+α[n1+1]pn1,qn1+β[k2]pn2,qn2+α[n2+1]pn2,qn2+β[k2+1]pn2,qn2+α[n2+1]pn2,qn2+βf(t,s)dpn1,qn1tdpn2,qn2s, 4

where

bn1+l,n2+l,k1,k2pn1,qn1,pn2,qn2(x,y)=1pn1(n1+l)(n1+l1)2pn2(n2+l)(n2+l1)2[n1+lk1]pn1,qn1[n2+lk2]pn2,qn2×pn1k1(k11)2pn2k2(k21)2xk1yk2(1x)pn1,qn1n1+lk1(1y)pn2,qn2n2+lk2 5

for x,y[0,1].

The paper is organized as follows. The following section contains some basic definitions regarding (p,q)-integers and (p,q)-calculus. In Section 3, we estimate the moments and central moments of the revised operators (2) and then deduce the corresponding results of a bivariate case. In Section 4, we give the rate of convergence by using the modulus of continuity and estimate a convergent theorem for the Lipschitz continuous functions. In Section 5, we give some graphs and numerical examples to illustrate the convergence properties of operators (4) to certain functions.

Some notations

We mention some definitions based on (p,q)-integers, details can be found in [1822]. For any fixed real number 0<q<p1 and each nonnegative integer k, we denote (p,q)-integers by [k]p,q, where

[k]p,q=pkqkpq.

Also (p,q)-factorial and (p,q)-binomial coefficients are defined as follows:

[k]p,q!={[k]p,q[k1]p,q[1]p,q,k=1,2,,1,k=0,[nk]p,q=[n]p,q![k]p,q![nk]p,q!(nk0).

The (p,q)-Binomial expansion is defined by

(x+y)p,qn={1,n=0,(x+y)(px+qy)(pn1x+qn1y),n=1,2,.

The definite (p,q)-integrals are defined by

0af(x)dp,qx=(pq)ak=0qkpk+1f(qkpk+1a)and0a10a2f(x,y)dpn1,qn1xdpn2,qn2y=(pn1qn1)(pn2qn2)a1a2k1=0k2=0qn1k1pn1k1+1qn2k2pn2k2+1f(qn1k1pn1k1+1a1,qn2k2pn2k2+1a2).

When p=1, all the definitions of (p,q)-calculus above are reduced to q-calculus.

Auxiliary results

In order to obtain the convergence properties, we need the following lemmas.

Lemma 3.1

For the (p,q)-analogue of Kantorovich-type Bernstein-Stancu-Schurer operators (2), we have

Kn,p,qα,β,l(1;x)=1, 6
Kn,p,qα,β,l(t;x)=(1+q)[n+l]p,q(px+1x)p,qn+l1[2]p,q([n+1]p,q+β)pn+l1x+(px+1x)p,qn+l+2α[2]p,q([n+1]p,q+β), 7
Kn,p,qα,β,l(t2;x)=(q+q2+q3)[n+l]p,q[n+l1]p,q(p2x+1x)p,qn+l2[3]p,q([n+1]p,q+β)2p2n+2l4x2+(1+q+q2+p+2pq)[n+l]p,q(p2x+1x)p,qn+l1x[3]p,q([n+1]p,q+β)2pn+l2+3α(1+q)[n+l]p,q(px+1x)p,qn+l1x[3]p,q([n+1]p,q+β)2pn+l1+(p2x+1x)p,qn+l[3]p,q([n+1]p,q+β)2+3α(px+1x)p,qn+l+3α2[3]p,q([n+1]p,q+β)2. 8

Proof

Since k=0n+lbn+l,k(p,q;x)=1, (6) is easily obtained. Using (2) and [k+1]p,q=pk+q[k]p,q, we have

Kn,p,qα,β,l(t;x)=([n+1]p,q+β)k=0n+lbn+l,k(p,q;x)[k+1]p,q[k]p,q[k]p,q+α[n+1]p,q+β[k+1]p,q+α[n+1]p,q+βtdp,qt=([n+1]p,q+β)k=0n+lbn+l,k(p,q;x)[k+1]p,q[k]p,q([k+1]p,q+α)2([k]p,q+α)2[2]p,q([n+1]p,q+β)2=1[2]p,q([n+1]p,q+β)k=0n+lbn+l,k(p,q;x)([k+1]p,q+[k]p,q+2α)=(1+q)[n+l]p,qx[2]p,q([n+1]p,q+β)pn+l1p(n+l1)(n+l2)2k=0n+l1[n+l1k]p,qpk(k1)2×(px)k(1x)p,qn+lk1+(px+1x)p,qn+l+2α[2]p,q([n+1]p,q+β)=(1+q)[n+l]p,q(px+1x)p,qn+l1[2]p,q([n+1]p,q+β)pn+l1x+(px+1x)p,qn+l+2α[2]p,q([n+1]p,q+β).

Thus, (7) is proved. Finally, from (2), we get

Kn,p,qα,β(t2;x)=([n+1]p,q+β)k=0n+lbn+l,k(p,q;x)[k+1]p,q[k]p,q[k]p,q+α[n+1]p,q+β[k+1]p,q+α[n+1]p,q+βt2dp,qt=([n+1]p,q+β)[3]p,qk=0n+lbn+l,k(p,q;x)[k+1]p,q[k]p,q([k+1]p,q+α)3([k]p,q+α)3([n+1]p,q+β)3=1[3]p,q([n+1]p,q+β)2k=0n+l([k+1]p,q2+[k]p,q2+[k+1]p,q[k]p,q+3α[k+1]p,q+3α[k]p,q+3α2)bn+l,k(p,q;x).

Since [k+1]p,q=pk+q[k]p,q, by some computations, we get

[k+1]p,q2+[k]p,q2+[k+1]p,q[k]p,q+3α[k+1]p,q+3α[k]p,q+3α2=(q+q2+q3)[k]p,q[k1]p,q+(1+2q+1+q+q2p)pk[k]p,q+3α(1+q)[k]p,q+p2k+3αpk+3α2.

So, we can obtain

Kn,p,qα,β,l(t2;x)=(q+q2+q3)[n+l]p,q[n+l1]p,q(p2x+1x)p,qn+l2[3]p,q([n+1]p,q+β)2p2n+2l4x2+(1+q+q2+p+2pq)[n+l]p,q(p2x+1x)p,qn+l1x[3]p,q([n+1]p,q+β)2pn+l2+3α(1+q)[n+l]p,q(px+1x)p,qn+l1x[3]p,q([n+1]p,q+β)2pn+l1+(p2x+1x)p,qn+l[3]p,q([n+1]p,q+β)2+3α(px+1x)p,qn+l+3α2[3]p,q([n+1]p,q+β)2.

Thus, (8) is proved. □

Lemma 3.2

Using Lemma 3.1 and easy computations, we have

Kn,p,qα,β,l(tx;x)=((1+q)[n+l]p,q(px+1x)p,qn+l1[2]p,q([n+1]p,q+β)pn+l11)x+(px+1x)p,qn+l+2α[2]p,q([n+1]p,q+β), 9
Kn,p,qα,β,l((tx)2;x)=((q+q2+q3)[n+l]p,q[n+l1]p,q(p2x+1x)p,qn+l2[3]p,q([n+1]p,q+β)2p2n+2l4+12(1+q)[n+l]p,q(px+1x)p,qn+l1[2]p,q([n+l]p,q+β)pn+l1)x2+(p2x+1x)p,qn+l[3]p,q([n+1]p,q+β)2+(1+q+q2+p+2pq)[n+l]p,q(p2x+1x)p,qn+l1x[3]p,q([n+1]p,q+β)2pn+l2+3α(1+q)[n+l]p,q(px+1x)p,qn+l1x[3]p,q([n+1]p,q+β)2pn+l1+3α(px+1x)p,qn+l+3α2[3]p,q([n+1]p,q+β)22(px+1x)p,qn+lx+4αx[2]p,q([n+1]p,q+β). 10

Lemma 3.3

Let ei,j(x,y)=xiyj, i,jN, i+j2, (x,y)I2 be the two-dimensional test functions. Using Lemma 3.1, the bivariate (p,q)-analogue of Kantorovich-type Bernstein-Stancu-Schurer operators defined in (4) satisfies the following equalities:

Kpn1,qn1,pn2,qn2n1,n2,α,β,l(e0,0;x,y)=1, 11
Kpn1,qn1,pn2,qn2n1,n2,α,β,l(e1,0;x,y)=(pn1x+1x)pn1,qn1n1+l+2α[2]pn1,qn1([n1+1]pn1,qn1+β)+(1+qn1)[n1+l]pn1,qn1(pn1x+1x)pn1,qn1n1+l1[2]pn1,qn1([n1+1]pn1,qn1+β)pn1n1+l1x, 12
Kpn1,qn1,pn2,qn2n1,n2,α,β,l(e0,1;x,y)=(pn2y+1y)pn2,qn2n2+l+2α[2]pn2,qn2([n2+1]pn2,qn2+β)+(1+qn2)[n2+l]pn2,qn2(pn2y+1y)pn2,qn2n2+l1[2]pn2,qn2([n2+1]pn2,qn2+β)pn2n2+l1y, 13
Kpn1,qn1,pn2,qn2n1,n2,α,β,l(e1,1;x,y)=((pn1x+1x)pn1,qn1n1+l+2α[2]pn1,qn1([n1+1]pn1,qn1+β)+(1+qn1)[n1+l]pn1,qn1(pn1x+1x)pn1,qn1n1+l1[2]pn1,qn1([n1+1]pn1,qn1+β)pn1n1+l1x)×((1+qn2)[n2+l]pn2,qn2(pn2y+1y)pn2,qn2n2+l1[2]pn2,qn2([n2+1]pn2,qn2+β)pn2n2+l1y+(pn2y+1y)pn2,qn2n2+l+2α[2]pn2,qn2([n2+1]pn2,qn2+β)), 14
Kpn1,qn1,pn2,qn2n1,n2,α,β,l(e2,0;x,y)=(qn1+qn12+qn13)[n1+l]pn1,qn1[n1+l1]pn1,qn1(pn12x+1x)pn1,qn1n1+l2[3]pn1,qn1([n1+1]pn1,qn1+β)2pn12n1+2l4x2+(1+qn1+qn12+pn1+2pn1qn1)[n1+l]pn1,qn1(pn12x+1x)pn1,qn1n1+l1x[3]pn1,qn1([n1+1]pn1,qn1+β)2pn1n1+l2+3α(1+qn1)[n1+l]pn1,qn1(pn1x+1x)pn1,qn1n1+l1x[3]pn1,qn1([n1+1]pn1,qn1+β)2pn1n1+l1+(pn12x+1x)pn1,qn1n1+l[3]pn1,qn1([n1+1]pn1,qn1+β)2+3α(pn1x+1x)pn1,qn1n1+l+3α2[3]pn1,qn1([n1+1]pn1,qn1+β)2, 15
Kpn1,qn1,pn2,qn2n1,n2,α,β,l(e0,2;x,y)=(qn2+qn22+qn23)[n2+l]pn2,qn2[n2+l1]pn2,qn2(pn22y+1y)pn2,qn2n2+l2[3]pn2,qn2([n2+1]pn2,qn2+β)2pn22n2+2l4y2+(1+qn2+qn22+pn2+2pn2qn2)[n2+l]pn2,qn2(pn22y+1y)pn2,qn2n2+l1y[3]pn2,qn2([n2+1]pn2,qn2+β)2pn2n2+l2+3α(1+qn2)[n2+l]pn2,qn2(pn2y+1y)pn2,qn2n2+l1y[3]pn2,qn2([n2+1]pn2,qn2+β)2pn2n2+l1+(pn22y+1y)pn2,qn2n2+l[3]pn2,qn2([n2+1]pn2,qn2+β)2+3α(pn2y+1y)pn2,qn2n2+l+3α2[3]pn2,qn2([n2+1]pn2,qn2+β)2. 16

Lemma 3.4

Using Lemmas 3.2 and 3.3, the following equalities hold:

Kpn1,qn1,pn2,qn2n1,n2,α,β,l(tx;x,y)=((1+qn1)[n1+l]pn1,qn1(pn1x+1x)pn1,qn1n1+l1[2]pn1,qn1([n1+1]pn1,qn1+β)pn1n1+l11)x+(pn1x+1x)pn1,qn1n1+l+2α[2]pn1,qn1([n1+1]pn1,qn1+β):=An1,pn1,qn1α,β,l(x), 17
Kpn1,qn1,pn2,qn2n1,n2,α,β,l(sy;x,y)=An2,pn2,qn2α,β,l(y), 18
Kpn1,qn1,pn2,qn2n1,n2,α,β,l((tx)2;x,y)=((qn1+qn12+qn13)[n1+l]pn1,qn1[n1+l1]pn1,qn1(pn12x+1x)pn1,qn1n1+l2[3]pn1,qn1([n1+1]pn1,qn1+β)2pn12n1+2l4+12(1+qn1)[n1+l]pn1,qn1(pn1x+1x)pn1,qn1n1+l1[2]pn1,qn1([n1+l]pn1,qn1+β)pn1n1+l1)x2+(1+qn1+qn12+pn1+2pn1qn1)[n1+l]pn1,qn1(pn12x+1x)pn1,qn1n1+l1x[3]pn1,qn1([n1+1]pn1,qn1+β)2pn1n1+l2+3α(1+qn1)[n1+l]pn1,qn1(pn1x+1x)pn1,qn1n1+l1x[3]pn1,qn1([n1+1]pn1,qn1+β)2pn1n1+l1+(pn12x+1x)pn1,qn1n1+l[3]pn1,qn1([n1+1]pn1,qn1+β)2+3α(pn1x+1x)pn1,qn1n1+l+3α2[3]pn1,qn1([n1+1]pn1,qn1+β)22(pn1x+1x)pn1,qn1n1+lx+4αx[2]pn1,qn1([n1+1]pn1,qn1+β):=Bn1,pn1,qn1α,β,l(x), 19
Kpn1,qn1,pn2,qn2n1,n2,α,β,l((sy)2;x,y)=Bn2,pn2,qn2α,β,l(y). 20

Lemma 3.5

(see Theorem 2.1 of [23])

For 0<qn<pn1, set qn:=1αn, pn:=1βn such that 0βn<αn<1, αn0, βn0 as n. The following statements are true:

  • (A)

    If limnen(βnαn)=1 and enβn/n0, then [n]pn,qn.

  • (B)

    If limnen(βnαn)<1 and enβn(αnβn)0, then [n]pn,qn.

  • (C)

    If lim_nen(βnαn)<1, limnen(βnαn)=1 and max{enβn/n,enβn(αnβn)}0, then [n]pn,qn.

Remark 3.6

Let sequences {pn1}, {qn1}, {pn2}, {qn2} (0<qn1,qn2<pn1,pn21) satisfy the conditions of Lemma 3.5(A), (B) or (C). We have [n1]pn1,qn1, [n2]pn2,qn2. From Lemmas 3.3 and 3.4, the following statements are true.

limn1,n2Kpn1,qn1,pn2,qn2n1,n2,α,β,l(e1,0;x,y)=x,limn1,n2Kpn1,qn1,pn2,qn2n1,n2,α,β,l(e0,1;x,y)=y,limn1,n2Kpn1,qn1,pn2,qn2n1,n2,α,β,l(e2,0+e0,2;x,y)=x2+y2,limn1,n2Kpn1,qn1,pn2,qn2n1,n2,α,β,l((tx)2;x,y)=limn1Bn1,pn1,qn1α,β,l(x)=0,limn1,n2Kpn1,qn1,pn2,qn2n1,n2,α,β,l((sy)2;x,y)=limn2Bn2,pn2,qn2α,β,l(y)=0.

Convergence properties

In order to ensure the convergence of operators defined in (4), in the sequel, let {pn1}, {qn1}, {pn2}, {qn2}, 0<qn1,qn2<pn1,pn21 be sequences satisfying Lemma 3.5(A), (B) or (C).

Theorem 4.1

For fC(I2), we have

limn1,n2Kpn1,qn1,pn2,qn2n1,n2,α,β,l(f;,)fI2=0.

Proof

Using (6), Remark 3.6 and a bivariate-type Korovkin theorem (see [24]), we obtain Theorem 4.1 easily. □

For fC(I2), the complete modulus of continuity for the bivariate case is defined as

ω(f;δ1,δ2)=sup{|f(t,s)f(x,y)|:(t,s),(x,y)I2,|tx|δ1,|sy|δ2},

where δ1,δ2>0. Furthermore, ω(f;δ1,δ2) satisfies the following properties:

(i)ω(f;δ1,δ2)0,if δ1,δ20;(ii)|f(t,s)f(x,y)|ω(f;δ1,δ)(1+|tx|δ1)(|sy|δ2).

The partial modulus of continuity with respect to x and y is defined as

ω(1)(f;δ)=sup{|f(x1,y)f(x2,y)|:yI and |x1x2|δ},ω(2)(f;δ)=sup{|f(x,y1)f(x,y2)|:xI and |y1y2|δ}.

Details of the modulus of continuity for the bivariate case can be found in [25]. We also use the notation

C1(I2)={fC(I2):fx,fyC(I2)}.

Now, we give the estimate of the rate of convergence of operators defined in (4).

Theorem 4.2

For fC(I2), we have

|Kpn1,qn1,pn2,qn2n1,n2,α,β,l(f;x,y)f(x,y)|4ω(f;Bn1,pn1,qn1α,β,l(x),Bn2,pn2,qn2α,β,l(y)), 21

where Bn1,pn1,qn1α,β,l(x) and Bn2,pn2,qn2α,β,l(y) are defined in (19) and (20).

Proof

From Lemmas 3.3 and 3.4, using the property (ii) of the complete modulus of continuity for the bivariate case above and the Cauchy-Schwarz inequality, we get

|Kpn1,qn1,pn2,qn2n1,n2,α,β,l(f;x,y)f(x,y)|Kpn1,qn1,pn2,qn2n1,n2,α,β,l(|f(t,s)f(x,y)|;x,y)ω(f;Bn1,pn1,qn1α,β,l(x),Bn2,pn2,qn2α,β,l(y))×(1+Kpn1,qn1,pn2,qn2n1,n2,α,β,l((tx)2;x,y)Bn1,pn1,qn1α,β,l(x))×(1+Kpn1,qn1,pn2,qn2n1,n2,α,β,l((sy)2;x,y)Bn2,pn2,qn2α,β,l(y)).

Theorem 4.2 is proved. □

Theorem 4.3

For fC(I2), under the conditions of Lemma 3.4, we have

|Kpn1,qn1,pn2,qn2n1,n2,α,β,l(f;x,y)f(x,y)|2(f;ω(1)(f;Bn1,pn1,qn1α,β,l(x))+ω(2)(f;Bn2,pn2,qn2α,β,l(y))),

where Bn1,pn1,qn1α,β,l(x) and Bn2,pn2,qn2α,β,l(y) are defined in (19) and (20).

Proof

Using the definition of partial modulus of continuity above and the Cauchy-Schwarz inequality, we have

|Kpn1,qn1,pn2,qn2n1,n2,α,β,l(f;x,y)f(x,y)|Kpn1,qn1,pn2,qn2n1,n2,α,β,l(|f(t,s)f(x,y)|;x,y)Kpn1,qn1,pn2,qn2n1,n2,α,β,l(|f(t,s)f(t,y)|;x,y)+Kpn1,qn1,pn2,qn2n1,n2,α,β,l(|f(t,y)f(x,y)|;x,y)Kpn1,qn1,pn2,qn2n1,n2,α,β,l(ω(2)(f;|sy|);x,y)+Kpn1,qn1,pn2,qn2n1,n2,α,β,l(ω(1)(f;|tx|);x,y)ω(2)(f;Bn2,pn2,qn2α,β,l(y))(1+Kpn1,qn1,pn2,qn2n1,n2,α,β,l((sy)2;x,y)Bn2,pn2,qn2α,β,l(y))+ω(1)(f;Bn1,pn1,qn1α,β,l(x))(1+Kpn1,qn1,pn2,qn2n1,n2,α,β,l((tx)2;x,y)Bn1,pn1,qn1α,β,l(x)).

Theorem 4.3 is proved. □

Theorem 4.4

For fC1(I2), using Lemma 3.4, we have

|Kpn1,qn1,pn2,qn2n1,n2,α,β,l(f;x,y)f(x,y)|fxIBn1,pn1,qn1α,β,l(x)+fyIBn2,pn2,qn2α,β,l(y),

where Bn1,pn1,qn1α,β,l(x) and Bn2,pn2,qn2α,β,l(y) are defined in (19) and (20).

Proof

Since f(t,s)f(x,y)=xtfu(u,s)du+ysfv(x,v)dv. Applying the operators defined in (4) on both sides above, we have

|Kpn1,qn1,pn2,qn2n1,n2,α,β,l(f;x,y)f(x,y)|Kpn1,qn1,pn2,qn2n1,n2,α,β,l(|xtfu(u,s)du|;x,y)+Kpn1,qn1,pn2,qn2n1,n2,α,β,l(|ysfv(x,v)dv|;x,y).

Due to |xtfu(u,s)du|fxI|tx| and |ysfv(x,v)dv|fyI|sy|, we have

|Kpn1,qn1,pn2,qn2n1,n2,α,β,l(f;x,y)f(x,y)|fxIKpn1,qn1,pn2,qn2n1,n2,α,β,l(|tx|;x,y)+fyIKpn1,qn1,pn2,qn2n1,n2,α,β,l(|sy|;x,y).

Using the Cauchy-Schwarz inequality and Lemma 3.3, we obtain

|Kpn1,qn1,pn2,qn2n1,n2,α,β,l(f;x,y)f(x,y)|fxIKpn1,qn1,pn2,qn2n1,n2,α,β,l((tx)2;x,y)Kpn1,qn1,pn2,qn2n1,n2,α,β,l(1;x,y)+fyIKpn1,qn1,pn2,qn2n1,n2,α,β,l((sy)2;x,y)Kpn1,qn1,pn2,qn2n1,n2,α,β,l(1;x,y)fxIBn1,pn1,qn1α,β,l(x)+fyIBn2,pn2,qn2α,β,l(y).

Theorem 4.4 is proved. □

Finally, we study the rate of convergence of Kpn1,qn1,pn2,qn2n1,n2,α,β,l(f;x,y) by means of functions of Lipschitz class LipM(θ1,θ2) if

|f(t,s)f(x,y)|M|tx|θ1|sy|θ2,(t,s),(x,y)I2.

Theorem 4.5

Let fLipM(θ1,θ2), under the conditions of Lemma 3.4, we have

|Kpn1,qn1,pn2,qn2n1,n2,α,β,l(f;x,y)f(x,y)|M(Bn1,pn1,qn1α,β,l(x))θ12(Bn2,pn2,qn2α,β,l(y))θ22,

where Bn1,pn1,qn1α,β,l(x) and Bn2,pn2,qn2α,β,l(y) are defined in (19) and (20).

Proof

Since fLipM(θ1,θ2), we have

|Kpn1,qn1,pn2,qn2n1,n2,α,β,l(f;x,y)f(x,y)|Kpn1,qn1,pn2,qn2n1,n2,α,β,l(|f(t,s)f(x,y)|;x,y)MKpn1,qn1,pn2,qn2n1,n2,α,β,l(|tx|θ1;x,y)Kpn1,qn1,pn2,qn2n1,n2,α,β,l(|sy|θ2;x,y).

Using Hölder’s inequality for the last formula, respectively, we get

|Kpn1,qn1,pn2,qn2n1,n2,α,β,l(f;x,y)f(x,y)|M(Kpn1,qn1,pn2,qn2n1,n2,α,β,l((tx)2;x,y))θ12(Kpn1,qn1,pn2,qn2n1,n2,α,β,l(1;x,y))2θ12×(Kpn1,qn1,pn2,qn2n1,n2,α,β,l((sy)2;x,y))θ22(Kpn1,qn1,pn2,qn2n1,n2,α,β,l(1;x,y))2θ22=M(Bn1,pn1,qn1α,β,l(x))θ12(Bn2,pn2,qn2α,β,l(y))θ22.

Theorem 4.5 is proved. □

Graphical and numerical examples analysis

In this section, we give several graphs and numerical examples to show the convergence of Kpn1,qn1,pn2,qn2n1,n2,α,β,l(f;x,y) to f(x,y) with different values of parameters which satisfy the conclusions of Lemma 3.5.

Let f(x,y)=x2y2, the graphs of Kpn1,qn1,pn2,qn2n1,n2,α,β,l(f;x,y) with different values of qn1, qn2, pn1, pn2 and n1, n2 are shown in Figures 1, 2 and 3. In Tables 1, 2 and 3, we give the errors of the approximation of Kpn1,qn1,pn2,qn2n1,n2,α,β,l(f;x,y) to f(x,y) with different parameters.

Figure 1.

Figure 1

The figures of Kpn1,qn1,pn2,qn2n1,n2,α,β,l(f;x,y) (the upper one) for n1=n2=20 , pn1=pn2=11/108 , qn1=qn2=0.999 , l=1 , α=3 , β=2 and f(x,y)=x2y2 (the below one).

Figure 2.

Figure 2

The figures of Kpn1,qn1,pn2,qn2n1,n2,α,β,l(f;x,y) (the upper one) for n1=n2=20 , pn1=pn2=11/1014 , qn1=qn2=0.9999 , l=1 , α=3 , β=2 and f(x,y)=x2y2 (the below one).

Figure 3.

Figure 3

The figures of Kpn1,qn1,pn2,qn2n1,n2,α,β,l(f;x,y) (the upper one) for n1=n2=50 , pn1=pn2=11/1014 , qn1=qn2=0.9999 , l=1 , α=3 , β=2 and f(x,y)=x2y2 (the below one).

Table 1.

The errors of the approximation of Kpn1,qn1,pn2,qn2n1,n2,α,β,l(f;x,y) for pn1=pn2=11/1015 , qn1=qn2=0.9999 , l=1 , α=3 , β=2 and different values of n1 , n2

n1=n2 f(x,y)Kpn1,qn1,pn2,qn2n1,n2,α,β,l(f;x,y)
5 0.801911
10 0.406691
15 0.259663
20 0.188202
30 0.150588
35 0.131835

Table 2.

The errors of the approximation of Kpn1,qn1,pn2,qn2n1,n2,α,β,l(f;x,y) for n1=n2=10 , pn1=pn2=11/1015 , l=1 , α=3 , β=2 and different values of qn1 , qn2

qn1=qn2 f(x,y)Kpn1,qn1,pn2,qn2n1,n2,α,β,l(f;x,y)
0.99 2.923910
0.995 1.194710
0.999 0.643543
0.9995 0.594722
0.9999 0.406691
0.99995 0.130489

Table 3.

The errors of the approximation of Kpn1,qn1,pn2,qn2n1,n2,α,β,l(f;x,y) for qn1=qn2=0.9999 , l=1 , α=3 , β=2 and different values of pn1 , pn2 and n1 , n2

n1=n2 pn1=pn2 f(x,y)Kpn1,qn1,pn2,qn2n1,n2,α,β,l(f;x,y)
10 1 − 1/1010 0.406691
15 1 − 1/1011 0.259663
20 1 − 1/1012 0.188202
25 1 − 1/1013 0.150589
30 1 − 1/1014 0.131836
35 1 − 1/1015 0.125673

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11601266 and 11626201), the Natural Science Foundation of Fujian Province of China (Grant No. 2016J05017) and the Program for New Century Excellent Talents in Fujian Province University. We also thank Fujian Provincial Key Laboratory of Data Intensive Computing and Key Laboratory of Intelligent Computing and Information Processing of Fujian Province University.

Authors’ contributions

QBC, XWX and GZ carried out the molecular genetic studies, participated in the sequence alignment and drafted the manuscript. QBC, XWX and GZ carried out the immunoassays. QBC, XWX and GZ participated in the sequence alignment. QBC, XWX and GZ participated in the design of the study and performed the statistical analysis. QBC, XWX and GZ conceived of the study and participated in its design and coordination and helped to draft the manuscript. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Footnotes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contributor Information

Qing-Bo Cai, Email: qbcai@126.com.

Xiao-Wei Xu, Email: lampminket@263.net.

Guorong Zhou, Email: goonchow@xmut.edu.cn.

References

  • 1.Mursaleen M, Ansari KJ, Khan A. On (p,q)-analogue of Bernstein operators. Appl. Math. Comput. 2015;266:874–882. [Google Scholar]
  • 2.Mursaleen M, Ansari KJ, Khan A. Erratum to ‘On (p,q)-analogue of Bernstein operators [Appl. Math. Comput. 266 (2015) 874-882]’. Appl. Math. Comput. 2016;278:70–71. [Google Scholar]
  • 3.Acar T. (p,q)-Generalization of Szász-Mirakyan operators. Math. Methods Appl. Sci. 2016;39(10):2685–2695. doi: 10.1002/mma.3721. [DOI] [Google Scholar]
  • 4.Acar T, Aral A, Mohiuddine SA. On Kantorovich modification of (p,q)-Baskakov operators. J. Inequal. Appl. 2016 [Google Scholar]
  • 5.Mursaleen M, Nasiruzzaman M, Khan A, Ansari KJ. Some approximation results on Bleimann-Butzer-Hahn operators defined by (p,q)-integers. Filomat. 2016;30(3):639–648. doi: 10.2298/FIL1603639M. [DOI] [Google Scholar]
  • 6.Cai QB, Zhou GR. On (p,q)-analogue of Kantorovich type Bernstein-Stancu-Schurer operators. Appl. Math. Comput. 2016;276:12–20. doi: 10.1186/s13660-017-1559-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Mursaleen M, Ansari KJ, Khan A. Some approximation results by (p,q)-analogue of Bernstein-Stancu operators. Appl. Math. Comput. 2015;264:392–402. [Google Scholar]
  • 8.Mursaleen M, Alotaibi A, Ansari KJ. On a Kantorovich variant of (p,q)-Szász-Mirakjan operators. J. Funct. Spaces. 2016;2016:1035253. [Google Scholar]
  • 9.Mursaleen M. Some approximation results on Bleimann-Butzer-Hahn operators defined by (p,q)-integers. Filomat. 2016;30(3):639–648. doi: 10.2298/FIL1603639M. [DOI] [Google Scholar]
  • 10.Mursaleen M, Ansari KJ, Khan A. Some approximation results for Bernstein-Kantorovich operators based on (p,q)-calculus. UPB Sci. Bull., Ser. A. 2016;78(4):129–142. [Google Scholar]
  • 11.Acar T, Agrawal P, Kumar A. On a modification of (p,q)-Szász-Mirakyan operators. Complex Anal. Oper. Theory. 2016 [Google Scholar]
  • 12.Ilarslan H, Acar T. Approximation by bivariate (p,q)-Baskakov-Kantorovich operators. Georgian Math. J. 2016 [Google Scholar]
  • 13.Phillips GM. Bernstein polynomials based on the q-integers. Ann. Numer. Math. 1997;4:511–518. [Google Scholar]
  • 14.Gupta V, Kim T. On the rate of approximation by q modified beta operators. J. Math. Anal. Appl. 2011;377:471–480. doi: 10.1016/j.jmaa.2010.11.021. [DOI] [Google Scholar]
  • 15.Gupta V, Aral A. Convergence of the q analogue of Szász-beta operators. Appl. Math. Comput. 2010;216:374–380. [Google Scholar]
  • 16.Acar T, Aral A. On pointwise convergence of q-Bernstein operators and their q-derivatives. Numer. Funct. Anal. Optim. 2015;36(3):287–304. doi: 10.1080/01630563.2014.970646. [DOI] [Google Scholar]
  • 17.Khan K, Lobiyal DK. Bézier curves based on Lupas (p,q)-analogue of Bernstein functions in CAGD. J. Comput. Appl. Math. 2017;317:458–477. doi: 10.1016/j.cam.2016.12.016. [DOI] [Google Scholar]
  • 18.Hounkonnou MN, Désiré J, Kyemba B. R(p,q)-Calculus: differentiation and integration. SUT J. Math. 2013;49:145–167. [Google Scholar]
  • 19.Jagannathan R, Rao KS. Proceedings of the International Conference on Number Theory and Mathematical Physics. 2005. Two-parameter quantum algebras, twin-basic numbers, and associated generalized hypergeometric series; pp. 20–21. [Google Scholar]
  • 20.Katriel J, Kibler M. Normal ordering for deformed boson operators and operator-valued deformed Stirling numbers. J. Phys. A, Math. Gen. 1992;24:2683–2691. doi: 10.1088/0305-4470/25/9/036. [DOI] [Google Scholar]
  • 21. Sadjang, PN: On the fundamental theorem of (p,q)-calculus and some (p,q)-Taylor formulas. arXiv:1309.3934v1 (2015)
  • 22.Sahai V, Yadav S. Representations of two parameter quantum algebras and p,q-special functions. J. Math. Anal. Appl. 2007;335:268–279. doi: 10.1016/j.jmaa.2007.01.072. [DOI] [Google Scholar]
  • 23.Cai QB, Xu XW. A basic problem of (p,q)-Bernstein operators. J. Inequal. Appl. 2017;2017:140. doi: 10.1186/s13660-017-1413-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Altomare F, Campiti M. Korovkin-Type Approximation Theory and Its Applications. Berlin: de Gruyter; 1994. [Google Scholar]
  • 25.Anastassiou GA, Gal SG. Approximation Theory: Moduli of Continuity and Global Smoothness Preservation. Boston: Birkhäuser; 2000. [Google Scholar]

Articles from Journal of Inequalities and Applications are provided here courtesy of Springer

RESOURCES