Skip to main content
Journal of Applied Clinical Medical Physics logoLink to Journal of Applied Clinical Medical Physics
. 2015 Jan 8;16(1):86–99. doi: 10.1120/jacmp.v16i1.4996

A comparison of the dose distributions from three proton treatment planning systems in the planning of meningioma patients with single‐field uniform dose pencil beam scanning

Paul J Doolan 1,, Jailan Alshaikhi 3,1,2, Ivan Rosenberg 3,2, Christopher G Ainsley 3,2, Adam Gibson 3,1, Derek D'Souza 3,2, El Hassane Bentefour 3,4, Gary Royle 3,1
PMCID: PMC5689989  PMID: 25679158

Abstract

With the number of new proton centers increasing rapidly, there is a need for an assessment of the available proton treatment planning systems (TPSs). This study compares the dose distributions of complex meningioma plans produced by three proton TPSs: Eclipse, Pinnacle3, and XiO. All three systems were commissioned with the same beam data and, as best as possible, matched configuration settings. Proton treatment plans for ten patients were produced on each system with a pencil beam scanning, single‐field uniform dose approach, using a fixed horizontal beamline. All 30 plans were subjected to identical dose constraints, both for the target coverage and organ at risk (OAR) sparing, with a consistent order of priority. Beam geometry, lateral field margins, and lateral spot resolutions were made consistent across all systems. Few statistically significant differences were found between the target coverage and OAR sparing of each system, with all optimizers managing to produce plans within clinical tolerances (D2<107% of prescribed dose, D5<105%, D95>95%, D99>90%, and OAR maximum doses) despite strict constraints and overlapping structures.

PACS number: 87.55.D‐

Keywords: proton therapy, particle therapy, treatment planning, planning comparison

Supporting information

Supplementary Material

REFERENCES

  • 1. Lee M, Wynne C, Webb S, Nahum A, Dearnaley D. A comparison of proton and megavoltage X‐ray treatment planning for prostate cancer. Radiother Oncol. 1994;33(3):239–53. [DOI] [PubMed] [Google Scholar]
  • 2. Isacsson U, Montelius A, Jung B, Glimelius B. Comparative treatment planning between proton and X‐ray therapy in locally advanced rectal cancer. Radiother Oncol. 1996;41(3):263–72. [DOI] [PubMed] [Google Scholar]
  • 3. Miralbell R, Lomax A, Bortfeld T, Rouzaud M, Carrie C. Potential role of proton therapy in the treatment of pediatric medulloblastoma/primitive neuro‐ectodermal tumors: reduction of the supratentorial target volume. Int J Radiat Oncol Biol Phys. 1997;38(3):477–84. [DOI] [PubMed] [Google Scholar]
  • 4. PTCOG . Proton therapy patient statistics (as of Dec 2013) [Internet]. 2013. Available from: http://www.ptcog.ch/index.php/ptcog‐patient‐statistics
  • 5. Hall E. Intensity‐modulated radiation therapy, protons, and the risk of second cancers. Int J Radiat Oncol Biol Phys. 2006;65(1):1–7. [DOI] [PubMed] [Google Scholar]
  • 6. Ion Beam Applications . IBA'S Proteus ONE manages to breach Japanese stronghold [IBA Website article]. 10 June, 2014. Available from: http://www.iba‐protontherapy.com/iba‐today/iba%E2%80%99s‐proteus‐one‐manages‐breach‐japanese‐stronghold
  • 7. Lomax A. Intensity modulation methods for proton radiotherapy. Phys Med Biol. 1999;44(1):185–205. [DOI] [PubMed] [Google Scholar]
  • 8. Schwarz M. Treatment planning in proton therapy. Eur Phys J Plus. 2011;126:67–76. [Google Scholar]
  • 9. Cozzi L, Fogliata A, Lomax A, Bolsi A. A treatment planning comparison of 3D conformal therapy, intensity modulated photon therapy and proton therapy for treatment of advanced head and neck tumours [Internet]. Radiother Oncol. 2001;61(3):287–97. [DOI] [PubMed] [Google Scholar]
  • 10. St Clair WH, Adams J, Bues M, et al. Advantage of protons compared to conventional X‐ray or IMRT in the treatment of a pediatric patient with medulloblastoma. Int J Radiat Oncol Biol Phys. 2004;58(3):727–34. [DOI] [PubMed] [Google Scholar]
  • 11. Trofimov A, Nguyen PL, Coen JJ, et al. Radiotherapy treatment of early‐stage prostate cancer with IMRT and protons: a treatment planning comparison. Int J Radiat Oncol Biol Phys. 2007;69(2):444–53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Yoon M, Shin DH, Kim J, et al. Craniospinal irradiation techniques: a dosimetric comparison of proton beams with standard and advanced photon radiotherapy. Int J Radiat Oncol Biol Phys. 2011;81(3):637–46. [DOI] [PubMed] [Google Scholar]
  • 13. Stuschke M, Kaiser A, Pöttgen C, Lübcke W, Farr J. Potentials of robust intensity modulated scanning proton plans for locally advanced lung cancer in comparison to intensity modulated photon plans. Radiother Oncol. 2012;104(1):45–51. [DOI] [PubMed] [Google Scholar]
  • 14. Arvold ND, Niemierko A, Broussard GP, et al. Projected second tumor risk and dose to neurocognitive structures after proton versus photon radiotherapy for benign meningioma. Int J Radiat Oncol Biol Phys. 2012;83(4):e495–e500. [DOI] [PubMed] [Google Scholar]
  • 15. Combs SE, Ganswindt U, Foote RL, Kondziolka D, Tonn J‐C. State‐of‐the‐art treatment alternatives for base of skull meningiomas: complementing and controversial indications for neurosurgery, stereotactic and robotic based radiosurgery or modern fractionated radiation techniques. Radiat Oncol. 2012;7(1):226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. Arjomandy B, Schultz T, Park S, Gayar H. A comparative study of single verses 2‐field daily fraction for treatment of prostate cancer using IMPT, double‐scattered, and SFUD delivery technique. Int J Radiat Oncol Biol Phys. 2012;84(3):S843. [DOI] [PubMed] [Google Scholar]
  • 17. Noa K, Dolney D, Baumann B, et al. Adjuvant radiation for bladder cancer: a dosimetry study. Int J Radiat Oncol Biol Phys. 2012;84(3):S420. [Google Scholar]
  • 18. Tang S, Deville C, McDonough J, et al. Effect of intrafraction prostate motion on proton pencil beam scanning delivery: a quantitative assessment. Int J Radiat Oncol Biol Phys. 2013;87(2):375–82. [DOI] [PubMed] [Google Scholar]
  • 19. Yeung D, McKenzie C, Indelicato DJ. A dosimetric comparison of intensity‐modulated proton therapy optimization techniques for pediatric craniopharyngiomas : a clinical case study. Paediatr Blood Cancer. 2014;61(1):89–94. [DOI] [PubMed] [Google Scholar]
  • 20. Schaffner B, Pedroni E, Lomax A. Dose calculation models for proton treatment planning using a dynamic beam delivery system: an attempt to include density heterogeneity effects in the analytical dose calculation. Phys Med Biol. 1999;44(1):27–41. [DOI] [PubMed] [Google Scholar]
  • 21. Schaffner B. Proton dose calculation based on in‐air fluence measurements. Phys Med Biol. 2008;53(6):1545–62. [DOI] [PubMed] [Google Scholar]
  • 22. Ulmer W and Schaffner B. Foundation of an analytical proton beamlet model for inclusion in a general proton dose calculation system. Radiat Phys Chem. 2011;80(3):378–89. [Google Scholar]
  • 23. Ulmer W and Matsinos E. Theoretical methods for the calculation of Bragg curves and 3D distributions of proton beams. Eur Phys J Spec Top. 2011;190(1):1–81. [Google Scholar]
  • 24. Zhu XR, Poenisch F, Lii M, et al. Commissioning dose computation models for spot scanning proton beams in water for a commercially available treatment planning system. Med Phys. 2013;40(4):041723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Soukup M, Fippel M, Alber M. A pencil beam algorithm for intensity modulated proton therapy derived from Monte Carlo simulations. Phys Med Biol. 2005;50(21):5089–104. [DOI] [PubMed] [Google Scholar]
  • 26. Rana S, Zeidan O, Ramirez E, Rains M, Gao J, Zheng Y. Measurements of lateral penumbra for uniform scanning proton beams under various beam delivery conditions and comparison to the XiO treatment planning system. Med Phys. 2013;40(9):091708. [DOI] [PubMed] [Google Scholar]
  • 27. Lynch G and Dahl O. Approximations to multiple Coulomb scattering. Nucl Instrum Meth Phys Res B. 1991;58(1):6–10. [Google Scholar]
  • 28. Gottschalk B, Koehler A, Schneider R, Sisterson J, Wagner M. Multiple Coulomb scattering of 160 MeV protons. Nucl Instrum Meth Phys Res B. 1993;74(4):467–90. [Google Scholar]
  • 29. Bortfeld T. An analytical approximation of the Bragg curve for therapeutic proton beams. Med Phys. 1997;24(12):2024–33. [DOI] [PubMed] [Google Scholar]
  • 30. Kooy HM, Clasie BM, Lu H‐M, et al. A case study in proton pencil‐beam scanning delivery. Int J Radiat Oncol Biol Phys. 2010;76(2):624–30. [DOI] [PubMed] [Google Scholar]
  • 31. Fogliata A, Bolsi A, Cozza L. Comparative analysis of intensity modulation inverse planning modules of three commercial treatment planning systems applied to head and neck tumour model. Radiother Oncol. 2003;66(1):29–40. [DOI] [PubMed] [Google Scholar]
  • 32. Ayyangar KM, Fung YC, Li S, et al. Dose volume histogram comparison between ADAC Pinnacle and Nomos Corvus systems for IMRT. Australas Phys Eng Sci Med. 2005;28(1):1–7. [DOI] [PubMed] [Google Scholar]
  • 33. Fogliata A, Nicolini G, Alber M, et al. IMRT for breast: a planning study. Radiother Oncol. 2005;76(3):300–10. [DOI] [PubMed] [Google Scholar]
  • 34. Fogliata A, Nicolini G, Alber M, et al. On the performances of different IMRT Treatment Planning Systems for selected paediatric cases. Radiat Oncol. 2007;2:7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35. Eldesoky I, Attalla E, Elshemey W, Zaghloul M. A comparison of three commercial IMRT treatment planning systems for selected paediatric cases. J Appl Clin Med Phys. 2012;13(2):124–35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Kleihues P, Louis D, Scheithauer B, et al. The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol. 2002;61(3):215–25. [DOI] [PubMed] [Google Scholar]
  • 37. Weber D, Lomax A, Rutz H, et al. Spot‐scanning proton radiation therapy for recurrent, residual or untreated intracranial meningiomas. Radiother Oncol. 2004;71:251–58. [DOI] [PubMed] [Google Scholar]
  • 38. Lomax AJ. Intensity modulated proton therapy and its sensitivity to treatment uncertainties 2: the potential effects of inter‐fraction and inter‐field motions. Phys Med Biol. 2008;53(4):1043–56. [DOI] [PubMed] [Google Scholar]
  • 39. Albertini F, Hug EB, Lomax AJ. Is it necessary to plan with safety margins for actively scanned proton therapy? Phys Med Biol. 2011;56(14):4399–413. [DOI] [PubMed] [Google Scholar]
  • 40. Doolan P, Rosenberg I, Ainsley C, Gibson A, Royle G. A comparison of the beam configuration modules of two proton treatment planning systems [abstract]. ESTRO 2nd Forum, April 2013, Geneva. Brussels, Belgium: ESTRO; 2013. [Google Scholar]
  • 41. Zhu XR, Sahoo N, Zhang X, et al. Intensity modulated proton therapy treatment planning using single‐field optimization: the impact of monitor unit constraints on plan quality. Med Phys. 2010;37(3):1210–19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42. Schneider U, Pedroni E, Lomax A. The calibration of CT Hounsfield units for radiotherapy treatment planning. Phys Med Biol. 1996;41(1):111–24. [DOI] [PubMed] [Google Scholar]
  • 43. Lomax A, Pedroni E, Schaffner B, Scheib S, Schneider U, Tourovsky A. 3D treatment planning for conformal proton therapy by spot scanning. In: Faulkner K, Carey B, Crellin A, Harrison R, editors. Quantitative imaging in oncology: Proceedings of the 19th L. H. Gray Conference. London: BIR Publishing; 1997. [Google Scholar]
  • 44. Varian Medical Systems . Proton algorithm reference guide: Eclipse. Palo Alto, CA: Varian Medical Systems; 2011. [Google Scholar]
  • 45. Philips Medical Systems . Pinnacle3 IMPT/Spot Scanning Proton Treatment Planning Prototype, User Manual. Andover, MA: Philips Healthcare; 2013. [Google Scholar]
  • 46. Deasy JO, Blanco AI, Clark VH. CERR: a computational environment for radiotherapy research. Med Phys. 2003;30(5):979–85. [DOI] [PubMed] [Google Scholar]
  • 47. Liu W, Li Y, Li X, Cao W, Zhang X. Influence of robust optimization in intensity‐modulated proton therapy with different dose delivery techniques. Med Phys. 2012;39(6):3089–101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48. Pflugfelder D, Wilkens JJ, Oelfke U. Worst case optimization: a method to account for uncertainties in the optimization of intensity modulated proton therapy. Phys Med Biol. 2008;53(6):1689–700. [DOI] [PubMed] [Google Scholar]
  • 49. Unkelbach J, Bortfeld T, Martin BC, Soukup M. Reducing the sensitivity of IMPT treatment plans to setup errors and range uncertainties via probabilistic treatment planning. Med Phys. 2009;36(1):149–63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50. Meyer J, Bluett J, Amos R, et al. Spot scanning proton beam therapy for prostate cancer: treatment planning technique and analysis of consequences of rotational and translational alignment errors. Int J Radiat Oncol Biol Phys. 2010;78(2):428–34. [DOI] [PubMed] [Google Scholar]
  • 51. Fredriksson A, Forsgren A, Hårdemark B. Minimax optimization for handling range and setup uncertainties in proton therapy. Med Phys. 2011;38(3):1672–84. [DOI] [PubMed] [Google Scholar]
  • 52. Chen W, Unkelbach J, Trofimov A, et al. Including robustness in multi‐criteria optimization for intensity‐modulated proton therapy [Internet]. Phys Med Biol. 2012;57(3):591–608. Cited 8 October 2012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53. Zhang M, Flynn RT, Mo X, Mackie TR. The energy margin strategy for reducing dose variation due to setup uncertainty in intensity modulated proton therapy (IMPT) delivered with distal edge tracking (DET). J Appl Clin Med Phys. 2012;13(5):3863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54. Pflugfelder D, Wilkens JJ, Szymanowski H, Oelfke U. Quantifying lateral tissue heterogeneities in hadron therapy. Med Phys. 2007;34(4):1506–13. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary Material


Articles from Journal of Applied Clinical Medical Physics are provided here courtesy of Wiley

RESOURCES