Skip to main content
Oncoimmunology logoLink to Oncoimmunology
. 2017 Aug 30;6(12):e1371896. doi: 10.1080/2162402X.2017.1371896

Trial Watch: Immunostimulatory monoclonal antibodies for oncological indications

Mariona Cabo a, Rienk Offringa b,c,d, Laurence Zitvogel e,f,g,h, Guido Kroemer i,j,k,l,m,n,o, Aura Muntasell a,*,, Lorenzo Galluzzi i,p,q,*,
PMCID: PMC5706611  PMID: 29209572

ABSTRACT

The goal of cancer immunotherapy is to establish new or boost pre-existing anticancer immune responses that eradicate malignant cells while generating immunological memory to prevent disease relapse. Over the past few years, immunomodulatory monoclonal antibodies (mAbs) that block co-inhibitory receptors on immune effectors cells – such as cytotoxic T lymphocyte-associated protein 4 (CTLA4), programmed cell death 1 (PDCD1, best known as PD-1) – or their ligands – such as CD274 (best known as PD-L1) – have proven very successful in this sense. As a consequence, many of such immune checkpoint blockers (ICBs) have already entered the clinical practice for various oncological indications. Considerable attention is currently being attracted by a second group of immunomodulatory mAbs, which are conceived to activate co-stimulatory receptors on immune effector cells. Here, we discuss the mechanisms of action of these immunostimulatory mAbs and summarize recent progress in their preclinical and clinical development.

KEYWORDS: CD137, CD40, GITR, ICOS, OX40, PD-1

Introduction

Efficient anticancer immune responses rely on the robust activation of innate and adaptive immune mechanisms, ultimately resulting in the elimination of malignant cells in spite of the profound immunosuppressive mechanisms established by progressing tumors.1-6 Although the actual role of B lymphocytes, CD4+ helper T cells and natural killer (NK) cells might have been underestimated,7-13 CD8+ cytotoxic T lymphocytes (CTLs) are generally viewed as the most important effector cells for anticancer immunity, be it natural or driven by treatment.14-17 Efficient CTL activation and consequent expansion, acquisition of effector functions and establishment of immunological memory obligatorily relies on: (1) the TCR-dependent recognition of a tumor-associated antigen (TAA) or neoantigen presented by dendritic cells (DCs) or other antigen-presenting cells (APCs) in the context of MHC Class I molecules,18-21 along with (2) the delivery of positive signals via one or multiple co-stimulatory receptors expressed by CTLs.21-24 Conversely, transient or chronic antigen recognition in the absence of co-stimulatory signals results in T-cell anergy or exhaustion, respectively, which contributes to peripheral tolerance.14,21,25,26 Of note, the anticancer activity of CTLs and other immune effectors including NK cells is also regulated by multiple co-inhibitory receptors.21,26-31 This implies that the capacity of CTLs to mount a productive anticancer immune response is regulated by a balance between the expression of co-stimulatory receptors, their co-inhibitory counterparts and the availability of their cognate ligands in the tumor microenvironment.27,32,33 Although this balance is often tilted toward co-inhibition,34-39 several therapeutic strategies have been devised to reverse immunosuppression and re(initiate) a clinically relevant immune response.40

Spectacular results in this sense have been obtained with monoclonal antibodies (mAbs) that operate as immune checkpoint blockers (ICBs), i.e., they prevent co-inhibitory signaling on immune effector cells.6,41-47 Accordingly, no less than 6 of these agents are currently approved by the US Food and Drug Administration (FDA) or equivalent regulatory agencies worldwide for use in one or multiple oncological indications.48-50 At least in part, the unprecedented clinical success of ICBs reflects the high expression of co-inhibitory receptors such as cytotoxic lymphocyte-associated protein 4 (CTLA4) and programmed cell death 1 (PDCD1; best known as PD-1) by tumor-infiltrating lymphocytes, combined with a relative abundance of their cognate ligands – i.e., CD80, CD86 and CD274 (best known as PD-L1) – in the tumor microenvironment.42,51,52 However, a considerable fraction of cancer patients displays innate or acquired resistance to ICB-based immunotherapy (owing to a variety of mechanisms),53-60 calling for the development of alternative strategies to reverse immunosuppression and (re) enable tumor-targeting immune responses.42,49,61-66

One of these approaches is based on mAbs or fusion proteins that operate as agonists for co-stimulatory receptors expressed by CTLs, NK cells, CD4+ helper T cells, or APCs (Table 1).67-71 The most relevant receptors in this setting are CD27,72-74 CD28,75-77 CD40,78-82 TNF receptor superfamily, member 4 (TNFRSF4; best known as OX40),83-85 TNF receptor superfamily member 9 (TNFRSF9; best known as CD137 or 4-1BB),86-89 TNF receptor superfamily member 18 (TNFRSF18; best known as GITR),90-92 and inducible T-cell costimulatory (ICOS).93-97 The natural ligand for CD27 is CD70,74,98-102 CD28 is activated by CD80 and CD86 (hence sharing ligand specificity with CTLA4),41,103-106 while CD40 is the receptor for CD40 ligand (CD40LG),107-109 OX40 for TNF superfamily member 4 (TNFSF4; best known as OX40L),110-113 CD137 for TNF superfamily member 9 (TNFSF9; best known as CD137L or 4-1BBL),87,114-117 GITR for TNF superfamily member 18 (TNFSF18; best known as GITRL),118,119 and ICOS for inducible T-cell costimulator ligand (ICOSLG).120-123 Importantly, although some overlap in expression and some degree of functional redundancy exists,21 engaging each of these co-stimulatory receptors with relatively untargeted measures (e.g., the systemic or intratumoral administration of agonists that are not directed against a specific cell type) has a distinct functional outcome, which also depends on the precise experimental setting (at least in part). CD27, CD137, OX40 and GITR agonists have been shown to promote the differentiation of CD4+ TH1 or TH9 T cells with anticancer activity while suppressing the differentiation or function of CD4+CD25+FOXP3+ regulatory T (TREG) cells.119,124-135 Preclinical data suggest that – at least for some mAbs targeting mouse GITR and mouse OX40 – the inhibition of TREG cells depends on a direct depleting effect consequent to the activation of Fcγ receptors and antibody-dependent cellular cytotoxicity (ADCC).91,136-139 The relevance of this mechanism in the human system remains to be clarified. Engagement of CD27, CD137, OX40, GITR or ICOS has been documented to favor the expansion and survival of tumor-targeting CTLs, as well as to limit their functional exhaustion.124,140-145 CD40 stimulation has been associated with improved DC activation, resulting in superior anticancer responses by CTLs and NK cells.146,147 CD137 as well as OX40 agonists have been shown to favor tumor infiltration by CTLs,133,148 an effect that – at least for CD137 agonists – originated from co-stimulatory signaling at the tumor endothelium.148 Finally, specific CD40-targeting mAbs appear to inhibit the growth of some (CD40-expressing) tumors, as a consequence of direct cytostatic/cytotoxic effects or upon the activation of NK cell-mediated ADCC.78,149

Table 1.

Immunostimulatory mAbs in clinical development.

Target mAb Aliases Isotype Source Owner Clinical trial*
CD27 Varlilumab 1F5, CDX-1127 IgG1κ Human Celldex Therapeutics Yes
CD28 Theralizumab TAB08, TGN1412 IgG4 Humanized TheraMAB Yes
CD40 ADC-1013 JNJ-64457107 IgG1 Human Alligator Bioscience Yes
  APX005M EPI-0050 IgG1 Humanized Apexigen Yes
  Chi Lob 7/4 IgG1 Chimeric Cancer Research UK No
  Dacetuzumab SGN40 IgG1 Humanized Seattle Genetics No
  RO7009789 CP-870,893, RG-7876 IgG2 Human Roche Yes
  SEA-CD40** SEA-1C10 IgG1 Humanized Seattle Genetics Yes
CD137 Urelumab BMS-663513 IgG4 Human Bristol-Myers Squibb Yes
  Utomilumab PF-05082566 IgG2 Human Pfizer Yes
GITR AMG-228 IgG1 Human Amgen No
  BMS-986156 IgG1 Human Bristol-Myers Squibb Yes
  GWN323 IgG1 Human Novartis Yes
  INCAGN01876 IgG1 Humanized Agenus Yes
  MEDI-1873 GITRL-Fc IgG1 Human MedImmune Yes
  MK-1248 IgG4 Humanized Merck Yes
  MK-4166 IgG1 Humanized Merck Yes
  TRX518 IgG1 Human Leap Therapeutics Yes
ICOS GSK3359609 IgG4 Humanized Glaxo Smith Kline Yes
  JTX-2011 IgG1 Humanized Jounce Therapeutics Yes
  MEDI-570 IgG1 Human MedImmune Yes
OX40 9B12 IgG1 Mouse AgonOx Yes
  BMS-986178 n.a. n.a. Bristol-Myers Squibb Yes
  GSK3174998 IgG1 Humanized Glaxo Smith Kline Yes
  INCAGN01949 IgG1 Human Agenus Yes
  MEDI-0562 IgG1 Humanized MedImmune Yes
  MEDI-6383 OX40L-Fc n.a. n.a. MedImmune Yes
  MEDI-6469 n.a. Mouse MedImmune Yes
  MOXR0916 RG-7888 IgG1 Humanized Roche/Genentech Yes
  PF-04518600 IgG2 Human Pfizer Yes

Abbreviations. mAb, monoclonal antibody; n.a., not applicable or not available.

*

Ongoing at the date of submission.

**

Non-fucosylated variant of dacetuzumab.

Of note, some immunostimulatory mAbs including specific CD27-, CD40-, and CD137-targeting molecules need to interact (via their Fc domains) with inhibitory Fcγ receptors – notably Fc fragment of IgG receptor IIb (FCGR2B) – on myeloid cells for optimal potency (which depends on receptor cross-linking).150-159 Thus, the actual biological response of a specific patient to immunostimulatory mAbs may depend on: (1) the mAb class and its ability to efficiently engage distinct Fcγ receptors on immune cells;149 (2) the expression profile of the target within the tumor microenvironment; (3) the expression profile of Fcγ receptors – in particular FCGR2B and Fc fragment of IgG receptor IIIa (FCGR3A) – within the tumor microenvironment; (4) the overall composition of the tumor infiltrate; and (5) the expression profile of the target in extratumoral tissues.

Despite abundant preclinical evidence on the antineoplastic effects of several immunostimulatory mAbs in a variety of tumor models, the development of these immunotherapeutic agents is not as advanced as that of ICBs. At least in part, this delay reflects the tragic outcome of the first-in-human clinical trial testing a CD28 superagonist (i.e., TGN1412), which caused a life-threatening cytokine release syndrome in all 6 subjects receiving the drug (even though the agent was injected at 1/500th of the highest dose safely employed in cynomolgus macaques).160,161 Such an unfortunate occurrence sparked an intense debate about the serious toxicities potentially associated with the systemic administration of mAbs capable of eliciting antigen-independent T cell activation.162-164 Nowadays, an increased understanding of the biology of tumor-targeting immune responses in general (and co-stimulatory receptors in particular) has generated renewed interest into developing immunostimulatory mAbs for cancer therapy. Remarkably, TGN1412 (now known as TAB08) is still being tested (at low doses and in combination with corticosteroids) for oncological and non-oncological indications.165-167 This exemplifies well the importance of doses, schedules and delivery routes for immunostimulatory mAbs to achieve optimal clinical activity in the absence of severe side effects. Along the lines of our Trial Watch series,168,169 here we summarize recent preclinical and clinical advances in the development of immunostimulatory mAbs for oncological indications.

Update on the development of immunostimulatory mAbs

Preclinical and translational advances

Since the publication of the latest Trial Watch dealing with this topic (March 2015),69 a considerable amount of literature dealing with preclinical and translation aspects of cancer immunotherapy with immunostimulatory mAbs has been published in peer-reviewed scientific journals (source https://www.ncbi.nlm.nih.gov/pubmed). Amongst such preclinical and translational papers, we found of particular interest the work of: (1) Zippelius and colleagues (from the University of Basel; Basel, Switzerland), who reported that CD40-targeting mAbs promote the expression of PD-L1 by tumor-infiltrating monocytes and macrophages, mechanistically explaining the ability of CD40 agonists to synergize with PD-1- or PD-L1-directed ICBs in rodent models of breast and colorectal carcinoma (CRC);170 (2) White and collaborators (from the University of Southampton; Southampton, UK), who demonstrated that CD40-targeting human IgG2 mAbs exhibit superior immunostimulatory function as compared to human IgG1 mAbs, which does not depend on secondary cross-linking by Fcγ receptors;156 (3) Ngiow et al. (from the QIMR Berghofer Medical Research Institute; Herston, Australia), who employed a mouse model of resistance to PD-1-targeting ICBs associated with increased levels of tumor-infiltrating PD-1high cells to demonstrate that a CD40 agonist can reverse T-cell exhaustion and restore sensitivity to immune checkpoint blockade;171 (4) Buchan and co-authors (from the University of Southampton; Southampton, UK), who reported that both CD27 and OX40 can be harnessed to provide co-stimulatory signals that synergize with anti-PD-L1 mAbs at restoring exhausted CD8+ T-cell functions;172 (5) Sánchez-Paulete and collaborators (from the Center for Applied Medical Research, Pamplona, Spain), who showed that the cross-presentation of TAAs by BATF3-dependent DCs is critical for the therapeutic effects of CD137-directed as well as PD-1-targeting mAbs;173 (6) Akhmetzyanova et al. (from the University of Duisburg-Essen; Essen, Germany), who described the ability of a CD137 agonist to reprogram a subset of TREG cells into cytotoxic CD4+ T cells with tumoricidal activity in a model of virus-driven carcinogenesis;125 (7) McKee and co-authors (from the University of Queensland, Brisbane, Australia), who reported an unexpected decrease in the therapeutic efficacy of a CD137 agonist when administered in the context of PD-1 blockade in a transgenic model of mouse lymphoma;174 and (8) Homet Moreno and collaborators (from the University of California Los Angeles; Los Angeles, CA, USA), who demonstrated that the administration of CD137 or OX40 agonists can synergize with immunostimulatory tyrosine kinase inhibitors (e.g., dabrafenib and trametinib)4,22,175 in mouse model of BRAFV600E-driven melanoma.145

In addition, considerable efforts have recently been devoted to the development of alternative drug formats that would provide – compared to standard mAbs – improved delivery to malignant lesions, superior potency and limited toxicity.176 Along these lines of investigation: (1) Mangsbo and co-workers (from Uppsala University; Uppsala, Sweden) developed the first CD40-targeting mAb for local administration (ADC-1013), demonstrating long-lasting therapeutic responses associated with the establishment of immunological memory upon peritumoral delivery in a syngeneic bladder cancer mouse model;177,178 (2) Fromm and colleagues (from Heat Biologics, Inc.; Durham, NC, USA) showed that a cell-based anticancer vaccine179-184 co-secreting heat shock protein 90 beta family member 1 (HSP90B1, best known as gp96)185-189 fused to an immunoglobulin Fc region (gp96-Ig) and Fc-OX40L promotes (upon intraperitoneal delivery) TAA-specific T-cell proliferation and consequent tumor eradication in mice bearing established melanomas or CRCs;190 (3) Liu and collaborators (from the University of Pittsburgh School of Medicine; Pittsburgh, PA, USA) demonstrated that tumor-primed CD4+ T cells, TAA-loaded DCs and a GITR agonist administered intratumorally mediate considerable therapeutic effect in a mouse model of advanced cancer;191 and (4) Schrand et al. (University of Miami; Miami, FL, USA) harnessed an aptamer for delivering CD137 co-stimulation to an abundant product of the tumor stroma, i.e., vascular endothelial growth factor (VEGF),192-196 resulting in potential tumor control and abscopal responses197-200 to radiation therapy with no observable toxicities (in a mouse model of breast carcinoma).201,202

Taken together, these studies represent well the main lines of investigation that the field is now attempting to address at the preclinical level.

Completed clinical trials

Since the publication of the latest Trial Watch dealing with immunostimulatory mAbs,69 preliminary and final results from no less than 10 clinical studies investigating the therapeutic profile of immunostimulatory mAbs in cancer patients have been published in peer-reviewed scientific journals (source https://www.ncbi.nlm.nih.gov/pubmed) or presented at international oncology meetings (sources http://meetinglibrary.asco.org, http://aacrjournals.org/site/Meetings/meeting_abs.xhtml and http://www.esmo.org/conferences). Most of these studies are early (Phase I) trials addressing the safety and preliminary clinical efficacy of mAbs targeting co-stimulatory receptors including CD27,203,204 CD40,205-208 CD137,209-211 GITR,212-214 ICOS,215 and OX40.216-218 In this setting, immunostimulatory mAbs were administered either as standalone therapeutic interventions,203,212-216,218 or (1) in combination with ICBs219,220 including the anti-PD-1 mAbs pembrolizumab210,221 and nivolumab,204,214,215 the anti-PD-L1 mAb atezolizumab,217 and the anti-CTLA4 mAb tremelimumab;207,222 (2) in combination with tumor-targeting mAbs such as the CD20-targeting agent rituximab;205,211,223 or (3) in combination with conventional chemotherapy.205,206,224,225 The majority of patients enrolled in these trials were subjects with advanced solid tumors, notably melanoma,203,204,207,209,210,212,213,216 CRC,203,204,209,210,212,213 renal cell carcinoma (RCC),204,209,210,216 head and neck cancer (HNC),204,209,212,216 and non-small cell lung carcinoma (NSCLC).209,210,212,213,216 In addition, 3 studies involved patients with hematological malignancies including non-Hodgkin lymphoma (NHL)209,211 and diffuse large B-cell lymphoma (DLBCL).205

In general, the maximum tolerated dose (MTD) has been identified for a majority of immunostimulatory mAbs (which is not the case for many ICBs, notably PD-1-targeting agents).226 In a few patients, the CD137 agonist urelumab227 and the CD40 agonist Chi Lob 7/4208 caused dose-limiting toxicities that could be managed by decreasing dose. Most immunostimulatory mAbs were associated with mild-to-moderate (Grade 1–2) adverse events including fatigue, nausea or vomiting.208 Immune-related adverse events were more frequent amongst patients receiving combinatorial immunotherapeutic regimens (which resembles the case of ICBs).221,228 In particular, around 80% of patients receiving the CD40 agonist RO7009789 (also known as CP-870,893)229-232 together with tremelimumab207 or chemotherapy206 experienced Grade 1–2 cytokine release syndrome,233-235 which normally could be managed with standard supportive care. Although this is an “on-target” side effect, reflecting the ability of immunostimulatory mAbs to activate CTLs and NK cells,236 it appears to be particularly relevant for RO7009789, owing to its capacity to operate as a superagonist.237 Some CD40 and CD137 agonists have also been associated with liver toxicity, an “off-target” side effect potentially reflecting the expression of some co-stimulatory receptors by non-lymphoid cells, including hepatocytes.208,209 A strategy currently explored to limit the toxicity of some CD40 agonists (i.e., ADC-1013, APX005M and RO7009789) involves intratumoral/peritumoral (as opposed to systemic) delivery (see below). It will be interesting to see whether this approach can limit the side effects of CD40-targeting agents while preserving their immunological activity.

Signs of peripheral T cell activation in patients receiving CD27,203,204 CD40207 or OX40217-218 agonists were documented by various studies. A trend towards higher levels of activated CD8+ effector memory T cells238-240 in the circulation was observed in patients responding to the CD137 agonist utomilumab plus pembrolizumab (as compared to non-responders).210 Moreover, tumor infiltration by CD8+ CTLs was documented in a few patients receiving the CD27-targeting mAb varlilumab241 plus nivolumab (NCT02335918),204 or the OX40-targeting mAb MEDI-0562 (NCT02318394).218 Since most of these studies are early (Phase I-II) trials in patients with advanced disease, limited data on clinical efficacy are available. Some of these trials, however, currently continue to recruit participants for the proper assessment of therapeutic activity.204,211,213-217 Nonetheless, some extent of disease control, including complete response (CR), partial response (PR), and stable disease (SD),242-244 was achieved in 5–50% of the patients receiving immunostimulatory mAbs, depending on the specific scenario (i.e., tumor type or treatment received). The most remarkable responses were documented amongst individuals receiving: (1) utomilumab plus pembrolizumab, a setting in which 6 out of 23 patients (26%) achieved CR or PR, with CRs lasting more than a year in 2 patients (NCT02179918);210 (2) RO7009789 plus tremelimumab, a setting in which 25% of the patients (6 out of 24) achieved CR or PR (NCT01103635);207 and (3) the OX40 agonist PF-04518600 as a standalone immunotherapeutic, a setting in which 25 out of 48 patients (52%) achieved disease stabilization for more than 24 weeks (NCT02315066).216

Studies deserving special attention include (but may not be limited to) the following. (1) An integrated safety analysis of urelumab administered as a standalone treatment to 346 patients with advanced solid tumors and lymphomas enrolled in 3 different studies (NCT00309023, NCT00612664, and NCT01471210) disclosed a strong association between urelumab at doses ≥ 1 mg/kg and treatment-related adverse events, with a prominent hepatic toxicity.209 Conversely, a dose of 0.1 mg/kg administered every 3 weeks proved to be safe and was associated with signs of immunological activity, including the upregulation of interferon-stimulated factors,245-247 supporting further clinical assessment of urelumab at this dose.209 Along these lines, two clinical trials testing urelumab in combination with rituximab or the epidermal growth factor receptor (EGFR)-targeting antibody cetuximab248,249 (NCT01775631 and NCT02110082, respectively) have been recently completed. However, to the best of our knowledge, the results of these studies have not been released. (2) A study evaluating utomilumab plus rituximab in 35 patients with relapsed or refractory CD20+ NHL (NCT01307267) reported preliminary evidence of improved clinical activity for the combinatorial regimen when compared to rituximab administered as standalone therapeutic.211 (3) The first-in-human, dose-escalation and expansion studies of varlilumab identified signs of biological activity including increased levels of pro-inflammatory cytokines and chemokines,250,251 markers of T-cell stimulation,252-254 as well as TREG depletion255-259 in the blood of patients with advanced solid tumors receiving varlilumab as a standalone treatment (NCT01460134, n = 57)203 or in combination with nivolumab (NCT02335918, n = 33).204 (4) Equivalent CR rates were achieved by patients with DLBCL treated with the CD40 agonist dacetuzumab260-264 (n = 75) or placebo (n = 76) together with rituximab plus chemotherapy (NCT00529503), which prompted the premature termination of this Phase IIb study (NCT00529503). However, a post hoc analysis reported that dacetuzumab-treated patients who subsequently underwent autologous stem cell transplantation had increased overall survival rates than their placebo-treated counterparts.205 (5) A first-in-human open-label dose-escalation Phase 1 study of the GITR agonist AMG-228 administered as standalone immunotherapeutic intervention to 29 patients with advanced solid malignancies (NCT02437916) showed tolerability up to the highest dose tested (1200 mg). However, no clinical or immunological activity could be documented.212

Taken together, these clinical studies identified a MTD for many immunostimulatory mAbs, which constitute a promising starting point for future clinical development. Indeed, these agents often mediate immunological effects in cancer patients, and (at least in a subset of individuals) are associated with some clinical benefits. That said, large, randomized clinical trials are urgently awaited to precisely access the efficacy of immunostimulatory mAbs in cancer patients. Indeed, the majority of studies performed so far are early (Phase I-II) trials enrolling rather heterogeneous cohorts of patients with advanced disease (often after several previous lines of treatment), which considerably limits their informative potential on parameters other than safety.

Recently initiated clinical trials

Since the publication of the latest Trial Watch dealing with this topic (March 2015),69 no less than 40 early (Phase I/II) clinical trials have been initiated evaluating the safety and/or efficacy of immunostimulatory mAbs for oncological indications (source http://clinicaltrials.gov).

These studies involve a variety of agents including: (1) the CD137 agonists urelumab (4 studies) and utomilumab (3 studies); (2) the CD27 agonist varilumab (5 studies); (3) the CD28 agonist theralizumab (1 study); (4) the CD40 agonists ADC-1013 (2 studies), APX005M (5 studies), RO7009789 (4 studies), and SEA-CD40 (1 study); (5) the GITR agonists AMG-228 (1 study), BMS-986156 (1 study), GWN323 (1 study), INCAGN01876 (1 study), MEDI-1873 (1 study), MK-1248 (1 study), and TRX518 (1 study); (6) the ICOS agonists GSK3359609 (1 study), JTX-2011 (1 study), and MEDI-570 (1 study); and (7) the OX40 agonists BMS-986178 (1 study), GSK3174998 (1 study), INCAGN01949 (1 study), MEDI-0562 (1 study), MEDI-6469 (1 study), MOXR0916 (2 studies), and PF-04518600 (1 study). These trials enroll patients with a heterogeneous panel of neoplasms, albeit most studies recruit patients with solid neoplasms including CRC (1 study), gastroesophageal carcinoma (1 study), glioma and glioblastoma265 (2 studies), melanoma (3 studies), NSCLC (1 study), pancreatic carcinoma (1 study), RCC (2 studies), urothelial carcinoma (2 studies), and several other solid malignancies (26 studies). Additionally, 5 studies aim at assessing the safety and efficacy of immunostimulatory mAbs in patients with hematological malignancies including leukemia (1 study) and lymphoma266 (5 studies) (Table 2).

Table 2.

Recent clinical studies testing immunostimulatory mAbs in cancer patients.*

mAb Indication(s) Phase Status Notes Ref.
CD27 agonists          
Varlilumab B-cell lymphoma II Not yet recruiting Combined with nivolumab NCT03038672
  Glioma I Recruiting Combined with a peptide vaccine and hiltonol NCT02924038
  Melanoma I/II Terminated Combined with ipilimumab +/− CDX-140 and hiltonol NCT02413827
  Renal cell carcinoma I/II Terminated Combined with sunitinib NCT02386111
  Solid tumors I/II Terminated Combined with atezolizumab NCT02543645
CD28 agonists          
Theralizumab Solid tumors I Recruiting As a single agent NCT03006029
CD40 agonists          
ADC-1013 Solid tumors I Completed As a single agent NCT02379741
  Solid tumors I Recruiting As a single agent NCT02829099
APX005M Gastroesophageal neoplasms II Not yet recruiting Combined with multimodal therapy NCT03165994
  Melanoma I/II Recruiting Combined with pembrolizumab NCT02706353
  Melanoma NSCLC I/II Recruiting Combined with nivolumab NCT03123783
  Solid tumors I Recruiting As a single agent NCT02482168
RO7009789 Pancreatic carcinoma I Recruiting Combined with nab-paclitaxel and gemcitabine NCT02588443
  Solid tumors I Recruiting Combined with atezolizumab NCT02304393
  Solid tumors I Recruiting Combined with emactuzumab NCT02760797
  Solid tumors I Recruiting Combined with vanucizumab NCT02665416
SEA-CD40 Lymphomas Solid tumors I Recruiting As a single agent or combined with pembrolizumab NCT02376699
CD137 agonists          
Utomilumab Diffuse large B-cell lymphoma I Recruiting Combined with avelumab, and rituximab or azacitidine NCT02951156
  Solid tumors I Recruiting Combined with mogamulizumab NCT02444793
  Solid tumors I/II Recruiting Combined with avelumab +/− PF-04518600 NCT02554812
Urelumab Glioblastoma I Recruiting As a single agent or combined with nivolumab NCT02658981
  Leukemia II Withdrawn Combined with rituximab NCT02420938
  Solid tumors II Recruiting As a single agent or combined with nivolumab NCT02534506
  Urothelial carcinoma II Not yet recruiting Combined with nivolumab NCT02845323
GITR agonists          
AMG-228 Solid tumors I Terminated As a single agent NCT02437916
BMS-986156 Solid tumors I/II Recruiting As a single agent or combined with nivolumab NCT02598960
GWN323 Lymphomas Solid tumors I Recruiting As a single agent or combined with PDR001 NCT02740270
INCAGN01876 Solid tumors I/II Recruiting As a single agent NCT02697591
  Solid tumors I/II Recruiting Combined with nivolumab and/or ipilimumab NCT03126110
MEDI-1873 Solid tumors I Recruiting As a single agent NCT02583165
MK-1248 Solid tumors I Active, not recruiting As a single agent or combined with pembrolizumab NCT02553499
TRX518 Solid tumors I Recruiting As a single agent NCT02628574
ICOS agonists          
GSK3359609 Solid tumors I Recruiting As a single agent or combined with pembrolizumab NCT02723955
JTX-2011 Solid tumors I/II Recruiting As a single agent or combined with nivolumab NCT02904226
MEDI-570 Lymphomas I Recruiting As a single agent NCT02520791
OX40 agonists          
GSK3174998 Solid tumors I Recruiting As a single agent or combined with pembrolizumab NCT02528357
INCAGN01949 Solid tumors I/II Recruiting As a single agent NCT02923349
MEDI-0562 Solid tumors I Recruiting Combined with tremelimumab or durvalumab NCT02705482
MEDI-6469 CRC I Recruiting As a single agent NCT02559024
MOXR0916 Urothelial carcinoma II Recruiting Combined with atezolizumab NCT03029832
  Solid tumors I Recruiting Combined with atezolizumab +/− bevacizumab NCT02410512
PF-04518600 Renal cell carcinoma II Not yet recruiting Combined with axitinib NCT03092856

Abbreviations. CRC, colorectal carcinoma; mAb, monoclonal antibody; NSCLC, non-small cell lung carcinoma.

*

Initiated after 2015, March 1st.

The vast majority of these studies focus on the use of immunostimulatory mAbs as standalone immunotherapeutic interventions (22 studies) or in combination with ICBs targeting the PD-1/PD-L1 axis219,267-269 (19 studies). The rationale behind combining immunostimulatory mAbs with ICBs is multilayered: first, ICBs have already become standard-of-care interventions for multiple oncological indications (e.g., melanoma, NSCLC);44 second, only a fraction of patients achieve long-term clinical benefits from ICBs employed as standalone immunotherapeutic interventions;57 third, a consistent amount of preclinical data suggest that these treatment modalities can synergize at inducing robust therapeutic responses in tumor models that are refractory to ICBs or immunostimulatory mAbs used alone (see above). Specifically, CD27, CD40, CD137, GITR, ICOS and OX40 agonists are being tested in combination with: (1) the PD-1-targeting agents nivolumab (9 studies), pembrolizumab (5 studies), or PDR001 (1 study); or (2) the PD-L1-directed ICBs avelumab (2 studies), atezolizumab (4 studies), or durvalumab (1 study). A few studies in which immunostimulatory mAbs are tested in combination with CTLA4-targeting molecules64,270 including ipilimumab (2 studies) and tremelimumab (1 study) are as well ongoing. Additional combinatorial regimens include: (1) conventional chemotherapy4,22,271 (4 studies), (2) radiation therapy49,272-274 (1 study), (3) surgery275 (1 study), (4) tumor-targeting mAbs such as rituximab276,277 (2 studies), (5) targeted anti-cancer agents including tyrosine kinase inhibitors278-282 (2 studies), (6) anticancer vaccines183,283 plus Toll-like receptor (TLR) agonists284-287 (2 studies), and (7) mAbs targeting the tumor microenvironment such as the VEGF-targeting agent bevacizumab195,288,289 (1 study), the VEGF- and angiopoietin 2 (ANGPT2)-bispecific agent vanucizumab290-292 (1 study), the C-C motif chemokine receptor 4 (CCR4)-specific agent mogamulizumab293,294 (1 study), and the colony stimulating factor 1 receptor (CSF1R)-specific agent emactuzumab295-297 (1 study). All these combinatorial approaches are justified by preclinical evidence in support of a potential synergism. In particular, chemotherapy has been shown to synergize with CD40 agonists at the induction of robust therapeutic responses in multiple tumor models.79 In this context, a particularly interesting approach is the combination of CD137 agonists (e.g., utomilumab, urelumab) with ADCC-competent tumor-targeting mAbs (e.g., rituximab), mainly as it may allow for the use of CD137 agonists at low doses (which are associated with limited toxicity). For similar reasons, it would be interesting to assess the therapeutic efficacy of low-dose CD137 agonists administered in combination with adoptively transferred chimeric antigen receptor (CAR)-expressing T cells. To the best of our knowledge, however, no clinical trials are currently testing this combinatorial immunotherapeutic paradigm (Table 2).

All of the abovementioned studies are ongoing (“Active, not recruiting”, “Not yet recruiting”, “Recruiting”), but 6, which are “Terminated” (4 studies), “Withdrawn” (1 study), or “Completed” (1 study). NCT02386111 (a Phase II study aimed at testing varlilumab plus the tyrosine kinase inhibitor sunitinib298 in RCC patients), NCT02413827 (a Phase I/II study aimed at assessing the therapeutic profile of varlilumab in combination with ipilimumab and an anticancer vaccine plus the TLR agonist Hiltonol in melanoma patients), and NCT02543645 (a Phase I/II study aimed at investigating the efficacy of varlilumab plus atezolizumab in patients harboring advanced solid tumors) have been prematurely terminated due to portfolio re-prioritization/business decision of the sponsor company. NCT02437916 (a Phase I study aimed at evaluating the safety and preliminary clinical efficacy of AMG-228 as a single agent in subjects with solid tumors) has been terminated owing to its lack of clinical or immunological activity in a first patient cohort.212 NCT02420938 (a Phase II study aimed at testing urelumab plus rituximab in patients with leukemia) has been withdrawn prior to enrollment for undisclosed reasons. Finally, NCT02379741 (a Phase I study assessing the safety and preliminary clinical efficacy of ADC-1013 administered intravenously versus intratumorally as a single therapeutic agent to patients with advanced solid malignancies) is listed as “Completed”. To the best of our knowledge, 24 patients with 10 different tumor types were enrolled in this study, and results are expected to be available by the end of the year(source http://www.zymecommunications.com). NCT02379741 and NCT02706353 (a Phase I/II study testing intratumoral APX005M in combination with pembrolizumab in melanoma patients) constitute two notable exceptions to the general trend whereby immunostimulatory mAbs and ICBs are administered systemically (despite encouraging preclinical results achieved with local administration).299,300

The following studies listed in previous Trial Watches dealing with this topic69,301,302 have changed status since March 2015. NCT01775631 (a Phase I study aimed at assessing the safety and preliminary efficacy of urelumab plus rituximab in patients with chronic lymphocytic leukemia or NHL), NCT02110082 (a Phase I trial aimed at evaluating the therapeutic profile of urelumab plus cetuximab in patients harboring advanced CRC or HNC) and NCT02179918 (a Phase I study testing utomilumab plus pembrolizumab in patients with advanced solid tumors) are all listed as “Completed”. To the best of our knowledge, the results of NCT01775631 and NCT02110082 have not been disclosed yet. Conversely, the findings of NCT02179918 have already been published (see above).210 Finally, NCT02205333 (a Phase I/II trial evaluating MEDI-6469 as a single agent, or combined with tremelimumab, durvalumab, or rituximab in patients with advanced solid tumors or B-cell lymphomas) has been prematurely terminated at the sponsor's discretion.

Concluding remarks

The overall balance of co-stimulatory and co-inhibitory signals in tumor-infiltrating immune cells quantitatively and qualitatively defines anticancer immunity.1,5 Most often, alterations in the myeloid compartment secondary to changes in the tumor secretome or metabolome303-305 result in a reduced availability of ligands for co-stimulatory receptors, which in turn precludes the activation of productive anticancer immune responses and favors the functional exhaustion of effector lymphocytes.1,5 In this context, mAbs capable of activating co-stimulatory receptors harbor a considerable potential for resetting immune effector functions and (re-)establish robust anticancer immunity, at least based on preclinical evidence. Despite initial delays, the clinical development of immunostimulatory mAbs has now overcome safety concerns and has established doses associated with acceptable toxicity and auspicious immunostimulatory activity. Currently, the expectation is that immunostimulatory mAbs will provide clinical benefits to cancer patients mainly as part of combinatorial regimens involving other immunotherapeutic agents, chemotherapy and/or radiation therapy.175,271,306-308 Future will tell which (if any) of these approaches will be licensed by regulatory agencies for oncological indications. The great diversity of co-stimulatory receptors and the tools that are currently available for modulating their functions convey important challenges for the clinical development of immunostimulatory mAbs. Additional studies on key aspects such as (1) the control of the expression of co-stimulatory receptors and their ligands in distinct subsets of immune cells, (2) the relative contribution of co-stimulatory signaling to anticancer immunity, (3) the predominant mechanism of action of specific immunostimulatory mAbs in different malignant settings, and (4) the identification of efficacy or resistance biomarkers are urgently awaited to translate exciting preclinical findings into a clinical reality.

Author disclosures

LG provides remunerated consulting to OmniSEQ (Buffalo, NY, USA). RO is Head of the DKFZ-Bayer Joint Immunotherapeutics Laboratory at the German Cancer Research Center, Heidelberg, as well as a member of the scientific advisory boards of F-Star (Cambridge, UK), BioInvent International AB (Lund, Sweden) and TUSK Therapeutics (Stevenage, UK). All other authors declare no relevant conflicts of interests.

Acknowledgments

MC and AM are supported by a coordinated research project from Fundación Española contra el Cáncer (GCB15152947MELE); Proyecto Integrado de Excelencia ISCIII (PIE 2015/00008), and by the Worldwide Cancer Research Foundation. GK is supported by the French Ligue contre le Cancer (équipe labellisée); Agence National de la Recherche (ANR) – Projets blancs; ANR under the frame of E-Rare-2, the ERA-Net for Research on Rare Diseases; Association pour la recherche sur le cancer (ARC); Cancéropôle Ile-de-France; Institut National du Cancer (INCa); Institut Universitaire de France; Fondation pour la Recherche Médicale (FRM); the European Commission (ArtForce); the European Research Council (ERC); the LeDucq Foundation; the LabEx Immuno-Oncology; the SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (SOCRATE); the SIRIC Cancer Research and Personalized Medicine (CARPEM); and the Paris Alliance of Cancer Research Institutes (PACRI). The research activities by RO concerning immunostimulatory antibodies receive support from the K.H. Bauer Foundation, Heidelberg University, the European Union (FP7 program, Project no. 602262; IACT; Immunostimulatory Agonist antibodies for Cancer Therapy), and the DKFZ-Bayer Alliance (https://www.dkfz.de/en/dkfz-bayer-allianz/index.html). LG is supported by an intramural startup from the Department of Radiation Oncology of Weill Cornell Medical College (New York, US), and by Sotio a.c. (Prague, Czech Republic).

References

  • 1.Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017;541:321-30. doi: 10.1038/nature21349. PMID:28102259 [DOI] [PubMed] [Google Scholar]
  • 2.Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G. Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol. 2017;17:97-111. doi: 10.1038/nri.2016.107. PMID:27748397 [DOI] [PubMed] [Google Scholar]
  • 3.Cheng WC, Ho PC. Metabolic tug-of-war in tumors results in diminished T cell antitumor immunity. Oncoimmunology. 2016;5:e1119355. doi: 10.1080/2162402X.2015.1119355. PMID:27141402 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G. Immunological Effects of Conventional Chemotherapy and Targeted Anticancer Agents. Cancer Cell. 2015;28:690-714. doi: 10.1016/j.ccell.2015.10.012. PMID:26678337 [DOI] [PubMed] [Google Scholar]
  • 5.Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39:1-10. doi: 10.1016/j.immuni.2013.07.012. PMID:23890059 [DOI] [PubMed] [Google Scholar]
  • 6.Palucka AK, Coussens LM. The Basis of Oncoimmunology. Cell. 2016;164:1233-47. doi: 10.1016/j.cell.2016.01.049. PMID:26967289 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Hennequin A, Derangere V, Boidot R, Apetoh L, Vincent J, Orry D, Fraisse J, Causeret S, Martin F, Arnould L, et al.. Tumor infiltration by Tbet+ effector T cells and CD20+ B cells is associated with survival in gastric cancer patients. Oncoimmunology. 2016;5:e1054598. doi: 10.1080/2162402X.2015.1054598. PMID:27057426 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Sanchez-Martinez D, Azaceta G, Muntasell A, Aguilo N, Nunez D, Galvez EM, Naval J, Anel A, Palomera L, Vilches C, et al.. Human NK cells activated by EBV+ lymphoblastoid cells overcome anti-apoptotic mechanisms of drug resistance in haematological cancer cells. Oncoimmunology. 2015;4:e991613. doi: 10.4161/2162402X.2014.991613. PMID:25949911 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Muntasell A, Ochoa MC, Cordeiro L, Berraondo P, Lopez-Diaz de Cerio A, Cabo M, Lopez-Botet M, Melero I. Targeting NK-cell checkpoints for cancer immunotherapy. Curr Opin Immunol. 2017;45:73-81. doi: 10.1016/j.coi.2017.01.003. PMID:28236750 [DOI] [PubMed] [Google Scholar]
  • 10.Muntasell A, Lopez-Botet M. Natural Killer Cell-Based Immunotherapy in Acute Myeloid Leukemia: Lessons for the Future. Clin Cancer Res. 2016;22:1831-3. doi: 10.1158/1078-0432.CCR-15-3168. PMID:26903071 [DOI] [PubMed] [Google Scholar]
  • 11.Lopez-Soto A, Gonzalez S, Smyth MJ, Galluzzi L. Control of metastasis by NK cells. Cancer Cell. 2017;32:135-154. doi: 10.1016/j.ccell.2017.06.009. PMID:28292442 [DOI] [PubMed] [Google Scholar]
  • 12.Lopez-Soto A, Bravo-San Pedro JM, Kroemer G, Galluzzi L, Gonzalez S. Involvement of autophagy in NK cell development and function. Autophagy. 2017;13:633-6. doi: 10.1080/15548627.2016.1274486. PMID:28103115 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Sanchez-Martinez D, Lanuza PM, Gomez N, Muntasell A, Cisneros E, Moraru M, Azaceta G, Anel A, Martinez-Lostao L, Villalba M, et al.. Activated Allogeneic NK Cells Preferentially Kill Poor Prognosis B-Cell Chronic Lymphocytic Leukemia Cells. Front Immunol. 2016;7:454. doi: 10.3389/fimmu.2016.00454. PMID:27833611 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015;15:486-99. doi: 10.1038/nri3862. PMID:26205583 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Geary SM, Lemke CD, Lubaroff DM, Salem AK. Proposed mechanisms of action for prostate cancer vaccines. Nat Rev Urol. 2013;10:149-60. doi: 10.1038/nrurol.2013.8. PMID:23399727 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Voskoboinik I, Whisstock JC, Trapani JA. Perforin and granzymes: function, dysfunction and human pathology. Nat Rev Immunol. 2015;15:388-400. doi: 10.1038/nri3839. PMID:25998963 [DOI] [PubMed] [Google Scholar]
  • 17.Lim TS, Chew V, Sieow JL, Goh S, Yeong JP, Soon AL, Ricciardi-Castagnoli P. PD-1 expression on dendritic cells suppresses CD8+ T cell function and antitumor immunity. Oncoimmunology. 2016;5:e1085146. doi: 10.1080/2162402X.2015.1085146. PMID:27141339 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Baleeiro RB, Rietscher R, Diedrich A, Czaplewska JA, Lehr CM, Scherliess R, Hanefeld A, Gottschaldt M, Walden P. Spatial separation of the processing and MHC class I loading compartments for cross-presentation of the tumor-associated antigen HER2/neu by human dendritic cells. Oncoimmunology. 2015;4:e1047585. doi: 10.1080/2162402X.2015.1047585. PMID:26985398 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.McDonnell AM, Joost Lesterhuis W, Khong A, Nowak AK, Lake RA, Currie AJ, Robinson BW. Restoration of defective cross-presentation in tumors by gemcitabine. Oncoimmunology. 2015;4:e1005501. doi: 10.1080/2162402X.2015.1005501. PMID:26155402 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Yatim N, Cullen S, Albert ML. Dying cells actively regulate adaptive immune responses. Nat Rev Immunol. 2017;17:262-75. doi: 10.1038/nri.2017.9. PMID:28287107 [DOI] [PubMed] [Google Scholar]
  • 21.Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 2013;13:227-42. doi: 10.1038/nri3405. PMID:23470321 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Galluzzi L, Zitvogel L, Kroemer G. Immunological Mechanisms Underneath the Efficacy of Cancer Therapy. Cancer Immunol Res. 2016;4:895-902. doi: 10.1158/2326-6066.CIR-16-0197. PMID:27803050 [DOI] [PubMed] [Google Scholar]
  • 23.Rickert RC, Jellusova J, Miletic AV. Signaling by the tumor necrosis factor receptor superfamily in B-cell biology and disease. Immunol Rev. 2011;244:115-33. doi: 10.1111/j.1600-065X.2011.01067.x. PMID:22017435 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Croft M. The role of TNF superfamily members in T-cell function and diseases. Nat Rev Immunol. 2009;9:271-85. doi: 10.1038/nri2526. PMID:19319144 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Dai H, Zhang W, Li X, Han Q, Guo Y, Zhang Y, Wang Y, Wang C, Shi F, Zhang Y, et al.. Tolerance and efficacy of autologous or donor-derived T cells expressing CD19 chimeric antigen receptors in adult B-ALL with extramedullary leukemia. Oncoimmunology. 2015;4:e1027469. doi: 10.1080/2162402X.2015.1027469. PMID:26451310 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Schietinger A, Greenberg PD. Tolerance and exhaustion: defining mechanisms of T cell dysfunction. Trends Immunol. 2014;35:51-60. doi: 10.1016/j.it.2013.10.001. PMID:24210163 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Crespo J, Sun H, Welling TH, Tian Z, Zou W. T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr Opin Immunol. 2013;25:214-21. doi: 10.1016/j.coi.2012.12.003. PMID:23298609 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Morvan MG, Lanier LL. NK cells and cancer: you can teach innate cells new tricks. Nat Rev Cancer. 2016;16:7-19. doi: 10.1038/nrc.2015.5. PMID:26694935 [DOI] [PubMed] [Google Scholar]
  • 29.Martinet L, Smyth MJ. Balancing natural killer cell activation through paired receptors. Nat Rev Immunol. 2015;15:243-54. doi: 10.1038/nri3799. PMID:25743219 [DOI] [PubMed] [Google Scholar]
  • 30.Vivier E, Anfossi N. Inhibitory NK-cell receptors on T cells: witness of the past, actors of the future. Nat Rev Immunol. 2004;4:190-8. doi: 10.1038/nri1306. PMID:15039756 [DOI] [PubMed] [Google Scholar]
  • 31.Vivier E, Ugolini S, Blaise D, Chabannon C, Brossay L. Targeting natural killer cells and natural killer T cells in cancer. Nat Rev Immunol. 2012;12:239-52. doi: 10.1038/nri3174. PMID:22437937 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Wu AA, Drake V, Huang HS, Chiu S, Zheng L. Reprogramming the tumor microenvironment: tumor-induced immunosuppressive factors paralyze T cells. Oncoimmunology. 2015;4:e1016700. doi: 10.1080/2162402X.2015.1016700. PMID:26140242 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Speiser DE, Ho PC, Verdeil G. Regulatory circuits of T cell function in cancer. Nat Rev Immunol. 2016;16:599-611. doi: 10.1038/nri.2016.80. PMID:27526640 [DOI] [PubMed] [Google Scholar]
  • 34.Turley SJ, Cremasco V, Astarita JL. Immunological hallmarks of stromal cells in the tumour microenvironment. Nat Rev Immunol. 2015;15:669-82. doi: 10.1038/nri3902. PMID:26471778 [DOI] [PubMed] [Google Scholar]
  • 35.Nirschl CJ, Suarez-Farinas M, Izar B, Prakadan S, Dannenfelser R, Tirosh I, Liu Y, Zhu Q, Devi KSP, Carroll SL, et al.. IFNgamma-Dependent Tissue-Immune Homeostasis Is Co-opted in the Tumor Microenvironment. Cell. 2017;170:127-41.e15. doi: 10.1016/j.cell.2017.06.016. PMID:28666115 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Lavin Y, Kobayashi S, Leader A, Amir ED, Elefant N, Bigenwald C, Remark R, Sweeney R, Becker CD, Levine JH, et al.. Innate Immune Landscape in Early Lung Adenocarcinoma by Paired Single-Cell Analyses. Cell. 2017;169:750-65.e17. doi: 10.1016/j.cell.2017.04.014. PMID:28475900 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Chevrier S, Levine JH, Zanotelli VRT, Silina K, Schulz D, Bacac M, Ries CH, Ailles L, Jewett MAS, Moch H, et al.. An Immune Atlas of Clear Cell Renal Cell Carcinoma. Cell. 2017;169:736-49.e18. doi: 10.1016/j.cell.2017.04.016. PMID:28475899 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Kroemer G, Galluzzi L. Autophagy-dependent danger signaling and adaptive immunity to poorly immunogenic tumors. Oncotarget. 2017;8:5686-91. PMID:27974686 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Daniyan AF, Brentjens RJ. Immunotherapy: Hiding in plain sight: immune escape in the era of targeted T-cell-based immunotherapies. Nat Rev Clin Oncol. 2017;14:333-4. doi: 10.1038/nrclinonc.2017.49. PMID:28397826 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Galluzzi L, Vacchelli E, Bravo-San Pedro JM, Buque A, Senovilla L, Baracco EE, Bloy N, Castoldi F, Abastado JP, Agostinis P, et al.. Classification of current anticancer immunotherapies. Oncotarget. 2014;5:12472-508. doi: 10.18632/oncotarget.2998. PMID:25537519 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252-64. doi: 10.1038/nrc3239. PMID:22437870 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Nishino M, Ramaiya NH, Hatabu H, Hodi FS. Monitoring immune-checkpoint blockade: response evaluation and biomarker development. Nat Rev Clin Oncol. 2017;in press. doi: 10.1038/nrclinonc.2017.88. PMID:28653677 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. 2016;16:275-87. doi: 10.1038/nrc.2016.36. PMID:27079802 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell. 2015;161:205-14. doi: 10.1016/j.cell.2015.03.030. PMID:25860605 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Sharma P, Allison JP. The future of immune checkpoint therapy. Science. 2015;348:56-61. doi: 10.1126/science.aaa8172. PMID:25838373 [DOI] [PubMed] [Google Scholar]
  • 46.Sharma P, Wagner K, Wolchok JD, Allison JP. Novel cancer immunotherapy agents with survival benefit: recent successes and next steps. Nat Rev Cancer. 2011;11:805-12. doi: 10.1038/nrc3153. PMID:22020206 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Schildberg FA, Klein SR, Freeman GJ, Sharpe AH. Coinhibitory Pathways in the B7-CD28 Ligand-Receptor Family. Immunity. 2016;44:955-72. doi: 10.1016/j.immuni.2016.05.002. PMID:27192563 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, Lu S, Kemberling H, Wilt C, Luber BS, et al.. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357:409-13. doi: 10.1126/science.aan6733. PMID:28596308 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Vacchelli E, Bloy N, Aranda F, Buque A, Cremer I, Demaria S, Eggermont A, Formenti SC, Fridman WH, Fucikova J, et al.. Trial Watch: Immunotherapy plus radiation therapy for oncological indications. Oncoimmunology. 2016;5:e1214790. doi: 10.1080/2162402X.2016.1214790. PMID:27757313 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Mullard A. New checkpoint inhibitors ride the immunotherapy tsunami. Nat Rev Drug Discov. 2013;12:489-92. doi: 10.1038/nrd4066. PMID:23812256 [DOI] [PubMed] [Google Scholar]
  • 51.Paluch BE, Glenn ST, Conroy JM, Papanicolau-Sengos A, Bshara W, Omilian AR, Brese E, Nesline M, Burgher B, Andreas J, et al.. Robust detection of immune transcripts in FFPE samples using targeted RNA sequencing. Oncotarget. 2017;8:3197-205. PMID:27911273 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Lesterhuis WJ, Bosco A, Millward MJ, Small M, Nowak AK, Lake RA. Dynamic versus static biomarkers in cancer immune checkpoint blockade: unravelling complexity. Nat Rev Drug Discov. 2017;16:264-72. doi: 10.1038/nrd.2016.233. PMID:28057932 [DOI] [PubMed] [Google Scholar]
  • 53.Restifo NP, Smyth MJ, Snyder A. Acquired resistance to immunotherapy and future challenges. Nat Rev Cancer. 2016;16:121-6. doi: 10.1038/nrc.2016.2. PMID:26822578 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Roh W, Chen PL, Reuben A, Spencer CN, Prieto PA, Miller JP, Gopalakrishnan V, Wang F, Cooper ZA, Reddy SM, et al.. Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance. Sci Transl Med. 2017;9:eaah3560. doi: 10.1126/scitranslmed.aah3560. PMID:28251903 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Wang X, Schoenhals JE, Li A, Valdecanas DR, Ye H, Zang F, Tang C, Tang M, Liu CG, Liu X, et al.. Suppression of Type I IFN Signaling in Tumors Mediates Resistance to Anti-PD-1 Treatment That Can Be Overcome by Radiotherapy. Cancer Res. 2017;77:839-50. doi: 10.1158/0008-5472.CAN-15-3142. PMID:27821490 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Gao J, Shi LZ, Zhao H, Chen J, Xiong L, He Q, Chen T, Roszik J, Bernatchez C, Woodman SE, et al.. Loss of IFN-gamma Pathway Genes in Tumor Cells as a Mechanism of Resistance to Anti-CTLA-4 Therapy. Cell. 2016;167:397-404.e9. doi: 10.1016/j.cell.2016.08.069. PMID:27667683 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell. 2017;168:707-23. doi: 10.1016/j.cell.2017.01.017. PMID:28187290 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, Berent-Maoz B, Pang J, Chmielowski B, Cherry G, et al.. Genomic and Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma. Cell. 2016;165:35-44. doi: 10.1016/j.cell.2016.02.065. PMID:26997480 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.De Henau O, Rausch M, Winkler D, Campesato LF, Liu C, Cymerman DH, Budhu S, Ghosh A, Pink M, Tchaicha J, et al.. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kgamma in myeloid cells. Nature. 2016;539:443-7. doi: 10.1038/nature20554. PMID:27828943 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.George S, Miao D, Demetri GD, Adeegbe D, Rodig SJ, Shukla S, Lipschitz M, Amin-Mansour A, Raut CP, Carter SL, et al.. Loss of PTEN Is Associated with Resistance to Anti-PD-1 Checkpoint Blockade Therapy in Metastatic Uterine Leiomyosarcoma. Immunity. 2017;46:197-204. doi: 10.1016/j.immuni.2017.02.001. PMID:28228279 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Pol J, Buque A, Aranda F, Bloy N, Cremer I, Eggermont A, Erbs P, Fucikova J, Galon J, Limacher JM, et al.. Trial Watch-Oncolytic viruses and cancer therapy. Oncoimmunology. 2016;5:e1117740. doi: 10.1080/2162402X.2015.1117740. PMID:27057469 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Buque A, Bloy N, Aranda F, Cremer I, Eggermont A, Fridman WH, Fucikova J, Galon J, Spisek R, Tartour E, et al.. Trial Watch-Small molecules targeting the immunological tumor microenvironment for cancer therapy. Oncoimmunology. 2016;5:e1149674. doi: 10.1080/2162402X.2016.1149674. PMID:27471617 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Adams JL, Smothers J, Srinivasan R, Hoos A. Big opportunities for small molecules in immuno-oncology. Nat Rev Drug Discov. 2015;14:603-22. doi: 10.1038/nrd4596. PMID:26228631 [DOI] [PubMed] [Google Scholar]
  • 64.Hoos A. Development of immuno-oncology drugs – from CTLA4 to PD1 to the next generations. Nat Rev Drug Discov. 2016;15:235-47. doi: 10.1038/nrd.2015.35. PMID:26965203 [DOI] [PubMed] [Google Scholar]
  • 65.Fesnak AD, June CH, Levine BL. Engineered T cells: the promise and challenges of cancer immunotherapy. Nat Rev Cancer. 2016;16:566-81. doi: 10.1038/nrc.2016.97. PMID:27550819 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Kaufman HL, Kohlhapp FJ, Zloza A. Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov. 2015;14:642-62. doi: 10.1038/nrd4663. PMID:26323545 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Sanmamed MF, Pastor F, Rodriguez A, Perez-Gracia JL, Rodriguez-Ruiz ME, Jure-Kunkel M, Melero I. Agonists of Co-stimulation in Cancer Immunotherapy Directed Against CD137, OX40, GITR, CD27, CD28, and ICOS. Semin Oncol. 2015;42:640-55. doi: 10.1053/j.seminoncol.2015.05.014. PMID:26320067 [DOI] [PubMed] [Google Scholar]
  • 68.Melero I, Hirschhorn-Cymerman D, Morales-Kastresana A, Sanmamed MF, Wolchok JD. Agonist antibodies to TNFR molecules that costimulate T and NK cells. Clin Cancer Res. 2013;19:1044-53. doi: 10.1158/1078-0432.CCR-12-2065. PMID:23460535 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Buque A, Bloy N, Aranda F, Castoldi F, Eggermont A, Cremer I, Fridman WH, Fucikova J, Galon J, Marabelle A, et al.. Trial Watch: Immunomodulatory monoclonal antibodies for oncological indications. Oncoimmunology. 2015;4:e1008814. doi: 10.1080/2162402X.2015.1008814. PMID:26137403 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Fellermeier S, Beha N, Meyer JE, Ring S, Bader S, Kontermann RE, Muller D. Advancing targeted co-stimulation with antibody-fusion proteins by introducing TNF superfamily members in a single-chain format. Oncoimmunology. 2016;5:e1238540. doi: 10.1080/2162402X.2016.1238540. PMID:27999756 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Offringa R, Glennie MJ. Development of Next-Generation Immunomodulatory Antibodies for Cancer Therapy through Optimization of the IgG Framework. Cancer Cell. 2015;28:273-5. doi: 10.1016/j.ccell.2015.08.008. PMID:26373272 [DOI] [PubMed] [Google Scholar]
  • 72.Wajant H. Therapeutic targeting of CD70 and CD27. Expert Opin Ther Targets. 2016;20:959-73. doi: 10.1517/14728222.2016.1158812. PMID:26914723 [DOI] [PubMed] [Google Scholar]
  • 73.Bullock TN. Stimulating CD27 to quantitatively and qualitatively shape adaptive immunity to cancer. Curr Opin Immunol. 2017;45:82-8. doi: 10.1016/j.coi.2017.02.001. PMID:28319731 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Wang X, Dong C. The CD70-CD27 axis, a new brake in the T helper 17 cell response. Immunity. 2013;38:1-3. doi: 10.1016/j.immuni.2013.01.005. PMID:23352216 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Leung J, Suh WK. The CD28-B7 Family in Anti-Tumor Immunity: Emerging Concepts in Cancer Immunotherapy. Immune Netw. 2014;14:265-76. doi: 10.4110/in.2014.14.6.265. PMID:25550693 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Kamphorst AO, Wieland A, Nasti T, Yang S, Zhang R, Barber DL, Konieczny BT, Daugherty CZ, Koenig L, Yu K, et al.. Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent. Science. 2017;355:1423-7. doi: 10.1126/science.aaf0683. PMID:28280249 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Hui E, Cheung J, Zhu J, Su X, Taylor MJ, Wallweber HA, Sasmal DK, Huang J, Kim JM, Mellman I, et al.. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science. 2017;355:1428-33. doi: 10.1126/science.aaf1292. PMID:28280247 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Vonderheide RH, Glennie MJ. Agonistic CD40 antibodies and cancer therapy. Clin Cancer Res. 2013;19:1035-43. doi: 10.1158/1078-0432.CCR-12-2064. PMID:23460534 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.Beatty GL, Li Y, Long KB. Cancer immunotherapy: activating innate and adaptive immunity through CD40 agonists. Expert Rev Anticancer Ther. 2017;17:175-86. doi: 10.1080/14737140.2017.1270208. PMID:27927088 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.Byrne KT, Vonderheide RH. CD40 Stimulation Obviates Innate Sensors and Drives T Cell Immunity in Cancer. Cell Rep. 2016;15:2719-32. doi: 10.1016/j.celrep.2016.05.058. PMID:27292635 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Burington B, Yue P, Shi X, Advani R, Lau JT, Tan J, Stinson S, Stinson J, Januario T, de Vos S, et al.. CD40 pathway activation status predicts response to CD40 therapy in diffuse large B cell lymphoma. Sci Transl Med. 2011;3:74ra22. doi: 10.1126/scitranslmed.3001620. [DOI] [PubMed] [Google Scholar]
  • 82.van Mierlo GJ, Boonman ZF, Dumortier HM, den Boer AT, Fransen MF, Nouta J, van der Voort EI, Offringa R, Toes RE, Melief CJ. Activation of dendritic cells that cross-present tumor-derived antigen licenses CD8+ CTL to cause tumor eradication. J Immunol. 2004;173:6753-9. doi: 10.4049/jimmunol.173.11.6753. PMID:15557168 [DOI] [PubMed] [Google Scholar]
  • 83.Aspeslagh S, Postel-Vinay S, Rusakiewicz S, Soria JC, Zitvogel L, Marabelle A. Rationale for anti-OX40 cancer immunotherapy. Eur J Cancer. 2016;52:50-66. doi: 10.1016/j.ejca.2015.08.021. PMID:26645943 [DOI] [PubMed] [Google Scholar]
  • 84.Linch SN, McNamara MJ, Redmond WL. OX40 Agonists and Combination Immunotherapy: Putting the Pedal to the Metal. Front Oncol. 2015;5:34. doi: 10.3389/fonc.2015.00034. PMID:25763356 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Sugamura K, Ishii N, Weinberg AD. Therapeutic targeting of the effector T-cell co-stimulatory molecule OX40. Nat Rev Immunol. 2004;4:420-31. doi: 10.1038/nri1371. PMID:15173831 [DOI] [PubMed] [Google Scholar]
  • 86.Souza-Fonseca-Guimaraes F, Blake SJ, Makkouk A, Chester C, Kohrt HE, Smyth MJ. Anti-CD137 enhances anti-CD20 therapy of systemic B-cell lymphoma with altered immune homeostasis but negligible toxicity. Oncoimmunology. 2016;5:e1192740. doi: 10.1080/2162402X.2016.1192740. PMID:27622048 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Makkouk A, Chester C, Kohrt HE. Rationale for anti-CD137 cancer immunotherapy. Eur J Cancer. 2016;54:112-9. doi: 10.1016/j.ejca.2015.09.026. PMID:26751393 [DOI] [PubMed] [Google Scholar]
  • 88.Chester C, Ambulkar S, Kohrt HE. 4-1BB agonism: adding the accelerator to cancer immunotherapy. Cancer Immunol Immunother. 2016;65:1243-8. doi: 10.1007/s00262-016-1829-2. PMID:27034234 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Alfaro C, Echeveste JI, Rodriguez-Ruiz ME, Solorzano JL, Perez-Gracia JL, Idoate MA, Lopez-Picazo JM, Sanchez-Paulete AR, Labiano S, Rouzaut A, et al.. Functional expression of CD137 (4-1BB) on T helper follicular cells. Oncoimmunology. 2015;4:e1054597. doi: 10.1080/2162402X.2015.1054597. PMID:26587331 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Knee DA, Hewes B, Brogdon JL. Rationale for anti-GITR cancer immunotherapy. Eur J Cancer. 2016;67:1-10. doi: 10.1016/j.ejca.2016.06.028. PMID:27591414 [DOI] [PubMed] [Google Scholar]
  • 91.Zhu LX, Davoodi M, Srivastava MK, Kachroo P, Lee JM, St John M, Harris-White M, Huang M, Strieter RM, Dubinett S, et al.. GITR agonist enhances vaccination responses in lung cancer. Oncoimmunology. 2015;4:e992237. doi: 10.4161/2162402X.2014.992237. PMID:26137407 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Schaer DA, Cohen AD, Wolchok JD. Anti-GITR antibodies–potential clinical applications for tumor immunotherapy. Curr Opin Investig Drugs. 2010;11:1378-86. PMID:21154120 [PubMed] [Google Scholar]
  • 93.Simpson TR, Quezada SA, Allison JP. Regulation of CD4 T cell activation and effector function by inducible costimulator (ICOS). Curr Opin Immunol. 2010;22:326-32. doi: 10.1016/j.coi.2010.01.001. PMID:20116985 [DOI] [PubMed] [Google Scholar]
  • 94.Danielli R, Cutaia O, Fazio C, Bertocci E, Fonsatti E, Maio M, Calabro L. ICOS Expression as Immunologic Marker in Immune Activating Monoclonal Antibodies. Methods Mol Biol. 2016;1393:133-9. doi: 10.1007/978-1-4939-3338-9_13. PMID:27033223 [DOI] [PubMed] [Google Scholar]
  • 95.Fan X, Quezada SA, Sepulveda MA, Sharma P, Allison JP. Engagement of the ICOS pathway markedly enhances efficacy of CTLA-4 blockade in cancer immunotherapy. J Exp Med. 2014;211:715-25. doi: 10.1084/jem.20130590. PMID:24687957 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96.van Dodewaard-de Jong JM, Santegoets SJ, van de Ven PM, Versluis J, Verheul HM, de Gruijl TD, Gerritsen WR, van den Eertwegh AJ. Improved efficacy of mitoxantrone in patients with castration-resistant prostate cancer after vaccination with GM-CSF-transduced allogeneic prostate cancer cells. Oncoimmunology. 2016;5:e1105431. doi: 10.1080/2162402X.2015.1105431. PMID:27141390 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Maazi H, Patel N, Sankaranarayanan I, Suzuki Y, Rigas D, Soroosh P, Freeman GJ, Sharpe AH, Akbari O. ICOS:ICOS-ligand interaction is required for type 2 innate lymphoid cell function, homeostasis, and induction of airway hyperreactivity. Immunity. 2015;42:538-51. doi: 10.1016/j.immuni.2015.02.007. PMID:25769613 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98.Jacobs J, Deschoolmeester V, Zwaenepoel K, Rolfo C, Silence K, Rottey S, Lardon F, Smits E, Pauwels P. CD70: An emerging target in cancer immunotherapy. Pharmacol Ther. 2015;155:1-10. doi: 10.1016/j.pharmthera.2015.07.007. PMID:26213107 [DOI] [PubMed] [Google Scholar]
  • 99.Ruf M, Moch H, Schraml P. Interaction of tumor cells with infiltrating lymphocytes via CD70 and CD27 in clear cell renal cell carcinoma. Oncoimmunology. 2015;4:e1049805. doi: 10.1080/2162402X.2015.1049805. PMID:26587319 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.Kuka M, Munitic I, Giardino Torchia ML, Ashwell JD. CD70 is downregulated by interaction with CD27. J Immunol. 2013;191:2282-9. doi: 10.4049/jimmunol.1300868. PMID:23913967 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Coquet JM, Middendorp S, van der Horst G, Kind J, Veraar EA, Xiao Y, Jacobs H, Borst J. The CD27 and CD70 costimulatory pathway inhibits effector function of T helper 17 cells and attenuates associated autoimmunity. Immunity. 2013;38:53-65. doi: 10.1016/j.immuni.2012.09.009. PMID:23159439 [DOI] [PubMed] [Google Scholar]
  • 102.Munitic I, Kuka M, Allam A, Scoville JP, Ashwell JD. CD70 deficiency impairs effector CD8 T cell generation and viral clearance but is dispensable for the recall response to lymphocytic choriomeningitis virus. J Immunol. 2013;190:1169-79. doi: 10.4049/jimmunol.1202353. PMID:23269247 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103.Sato Y, Shimizu K, Shinga J, Hidaka M, Kawano F, Kakimi K, Yamasaki S, Asakura M, Fujii SI. Characterization of the myeloid-derived suppressor cell subset regulated by NK cells in malignant lymphoma. Oncoimmunology. 2015;4:e995541. doi: 10.1080/2162402X.2014.995541. PMID:25949922 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104.Orabona C, Grohmann U, Belladonna ML, Fallarino F, Vacca C, Bianchi R, Bozza S, Volpi C, Salomon BL, Fioretti MC, et al.. CD28 induces immunostimulatory signals in dendritic cells via CD80 and CD86. Nat Immunol. 2004;5:1134-42. doi: 10.1038/ni1124. PMID:15467723 [DOI] [PubMed] [Google Scholar]
  • 105.Bak SP, Barnkob MS, Bai A, Higham EM, Wittrup KD, Chen J. Differential requirement for CD70 and CD80/CD86 in dendritic cell-mediated activation of tumor-tolerized CD8 T cells. J Immunol. 2012;189:1708-16. doi: 10.4049/jimmunol.1201271. PMID:22798683 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.Marigo I, Zilio S, Desantis G, Mlecnik B, Agnellini AH, Ugel S, Sasso MS, Qualls JE, Kratochvill F, Zanovello P, et al.. T Cell Cancer Therapy Requires CD40-CD40L Activation of Tumor Necrosis Factor and Inducible Nitric-Oxide-Synthase-Producing Dendritic Cells. Cancer Cell. 2016;30:377-90. doi: 10.1016/j.ccell.2016.08.004. PMID:27622331 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.Parrot T, Oger R, Benlalam H, Raingeard de la Bletiere D, Jouand N, Coutolleau A, Preisser L, Khammari A, Dreno B, Guardiola P, et al.. CD40L confers helper functions to human intra-melanoma class-I-restricted CD4+CD8+ double positive T cells. Oncoimmunology. 2016;5:e1250991. doi: 10.1080/2162402X.2016.1250991. PMID:28123891 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108.Shin CA, Cho HW, Shin AR, Sohn HJ, Cho HI, Kim TG. Co-expression of CD40L with CD70 or OX40L increases B-cell viability and antitumor efficacy. Oncotarget. 2016;7:46173-86. doi: 10.18632/oncotarget.10068. PMID:27323820 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109.Liljenfeldt L, Dieterich LC, Dimberg A, Mangsbo SM, Loskog AS. CD40L gene therapy tilts the myeloid cell profile and promotes infiltration of activated T lymphocytes. Cancer Gene Ther. 2014;21:95-102. doi: 10.1038/cgt.2014.2. PMID:24481488 [DOI] [PubMed] [Google Scholar]
  • 110.Gough MJ, Weinberg AD. OX40 (CD134) and OX40L. Adv Exp Med Biol. 2009;647:94-107. doi: 10.1007/978-0-387-89520-8_6. PMID:19760068 [DOI] [PubMed] [Google Scholar]
  • 111.Serebrovskaya EO, Yuzhakova DV, Ryumina AP, Druzhkova IN, Sharonov GV, Kotlobay AA, Zagaynova EV, Lukyanov SA, Shirmanova MV. Soluble OX40L favors tumor rejection in CT26 colon carcinoma model. Cytokine. 2016;84:10-6. doi: 10.1016/j.cyto.2016.05.005. PMID:27203665 [DOI] [PubMed] [Google Scholar]
  • 112.Godefroy E, Manches O, Dreno B, Hochman T, Roldoi:nitzky L, Labarriere N, Guilloux Y, Goldberg J, Jotereau F, Bhardwaj N. Matrix metalloproteinase-2 conditions human dendritic cells to prime inflammatory T(H)2 cells via an IL-12- and OX40L-dependent pathway. Cancer Cell. 2011;19:333-46. doi: 10.1016/j.ccr.2011.01.037. PMID:21397857 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 113.Serghides L, Bukczynski J, Wen T, Wang C, Routy JP, Boulassel MR, Sekaly RP, Ostrowski M, Bernard NF, Watts TH. Evaluation of OX40 ligand as a costimulator of human antiviral memory CD8 T cell responses: comparison with B7.1 and 4-1BBL. J Immunol. 2005;175:6368-77. doi: 10.4049/jimmunol.175.10.6368. PMID:16272289 [DOI] [PubMed] [Google Scholar]
  • 114.Srivastava AK, Yolcu ES, Dinc G, Sharma RK, Shirwan H. SA-4-1BBL/MPL as a novel immune adjuvant platform to combat cancer. Oncoimmunology. 2016;5:e1064580. doi: 10.1080/2162402X.2015.1064580. PMID:26942082 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115.Rajendran S, Ho WT, Schwarz H. CD137 signaling in Hodgkin and Reed-Sternberg cell lines induces IL-13 secretion, immune deviation and enhanced growth. Oncoimmunology. 2016;5:e1160188. doi: 10.1080/2162402X.2016.1160188. PMID:27471634 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116.Guinn BA, DeBenedette MA, Watts TH, Berinstein NL. 4-1BBL cooperates with B7-1 and B7-2 in converting a B cell lymphoma cell line into a long-lasting antitumor vaccine. J Immunol. 1999;162:5003-10. PMID:10202049 [PubMed] [Google Scholar]
  • 117.Kang YJ, Kim SO, Shimada S, Otsuka M, Seit-Nebi A, Kwon BS, Watts TH, Han J. Cell surface 4-1BBL mediates sequential signaling pathways ‘downstream’ of TLR and is required for sustained TNF production in macrophages. Nat Immunol. 2007;8:601-9. doi: 10.1038/ni1471. PMID:17496895 [DOI] [PubMed] [Google Scholar]
  • 118.Nocentini G, Ronchetti S, Petrillo MG, Riccardi C. Pharmacological modulation of GITRL/GITR system: therapeutic perspectives. Br J Pharmacol. 2012;165:2089-99. doi: 10.1111/j.1476-5381.2011.01753.x. PMID:22029729 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 119.Pedroza-Gonzalez A, Zhou G, Singh SP, Boor PP, Pan Q, Grunhagen D, de Jonge J, Tran TK, Verhoef C, JN IJ, et al.. GITR engagement in combination with CTLA-4 blockade completely abrogates immunosuppression mediated by human liver tumor-derived regulatory T cells ex vivo. Oncoimmunology. 2015;4:e1051297. doi: 10.1080/2162402X.2015.1051297. PMID:26587321 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120.Zhang Y, Luo Y, Qin SL, Mu YF, Qi Y, Yu MH, Zhong M. The clinical impact of ICOS signal in colorectal cancer patients. Oncoimmunology. 2016;5:e1141857. doi: 10.1080/2162402X.2016.1141857. PMID:27467961 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121.Fu T, He Q, Sharma P. The ICOS/ICOSL pathway is required for optimal antitumor responses mediated by anti-CTLA-4 therapy. Cancer Res. 2011;71:5445-54. doi: 10.1158/0008-5472.CAN-11-1138. PMID:21708958 [DOI] [PubMed] [Google Scholar]
  • 122.Liu D, Xu H, Shih C, Wan Z, Ma X, Ma W, Luo D, Qi H. T-B-cell entanglement and ICOSL-driven feed-forward regulation of germinal centre reaction. Nature 2015;517:214-8. doi: 10.1038/nature13803. PMID:25317561 [DOI] [PubMed] [Google Scholar]
  • 123.Akbari O, Stock P, Meyer EH, Freeman GJ, Sharpe AH, Umetsu DT, DeKruyff RH. ICOS/ICOSL interaction is required for CD4+ invariant NKT cell function and homeostatic survival. J Immunol 2008;180:5448-56. doi: 10.4049/jimmunol.180.8.5448. PMID:18390727 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124.He LZ, Prostak N, Thomas LJ, Vitale L, Weidlick J, Crocker A, Pilsmaker CD, Round SM, Tutt A, Glennie MJ, et al.. Agonist anti-human CD27 monoclonal antibody induces T cell activation and tumor immunity in human CD27-transgenic mice. J Immunol 2013;191:4174-83. doi: 10.4049/jimmunol.1300409. PMID:24026078 [DOI] [PubMed] [Google Scholar]
  • 125.Akhmetzyanova I, Zelinskyy G, Littwitz-Salomon E, Malyshkina A, Dietze KK, Streeck H, Brandau S, Dittmer U. CD137 Agonist Therapy Can Reprogram Regulatory T Cells into Cytotoxic CD4+ T Cells with Antitumor Activity. J Immunol 2016;196:484-92. doi: 10.4049/jimmunol.1403039. PMID:26608920 [DOI] [PubMed] [Google Scholar]
  • 126.Piconese S, Valzasina B, Colombo MP. OX40 triggering blocks suppression by regulatory T cells and facilitates tumor rejection. J Exp Med 2008;205:825-39. doi: 10.1084/jem.20071341. PMID:18362171 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 127.Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S. Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 2002;3:135-42. doi: 10.1038/ni759. PMID:11812990 [DOI] [PubMed] [Google Scholar]
  • 128.Schaer DA, Budhu S, Liu C, Bryson C, Malandro N, Cohen A, Zhong H, Yang X, Houghton AN, Merghoub T, et al.. GITR pathway activation abrogates tumor immune suppression through loss of regulatory T cell lineage stability. Cancer Immunol Res 2013;1:320-31. doi: 10.1158/2326-6066.CIR-13-0086. PMID:24416730 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 129.Kim IK, Kim BS, Koh CH, Seok JW, Park JS, Shin KS, Bae EA, Lee GE, Jeon H, Cho J, et al.. Glucocorticoid-induced tumor necrosis factor receptor-related protein co-stimulation facilitates tumor regression by inducing IL-9-producing helper T cells. Nat Med. 2015;21:1010-7. doi: 10.1038/nm.3922. PMID:26280119 [DOI] [PubMed] [Google Scholar]
  • 130.Kim IK, Chung Y, Kang CY. GITR drives TH9-mediated antitumor immunity. Oncoimmunology. 2016;5:e1122862. doi: 10.1080/2162402X.2015.1122862. PMID:27467921 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 131.Weinberg AD, Rivera MM, Prell R, Morris A, Ramstad T, Vetto JT, Urba WJ, Alvord G, Bunce C, Shields J. Engagement of the OX-40 receptor in vivo enhances antitumor immunity. J Immunol. 2000;164:2160-9. doi: 10.4049/jimmunol.164.4.2160. PMID:10657670 [DOI] [PubMed] [Google Scholar]
  • 132.Timperi E, Pacella I, Schinzari V, Focaccetti C, Sacco L, Farelli F, Caronna R, Del Bene G, Longo F, Ciardi A, et al.. Regulatory T cells with multiple suppressive and potentially pro-tumor activities accumulate in human colorectal cancer. Oncoimmunology. 2016;5:e1175800. doi: 10.1080/2162402X.2016.1175800. PMID:27622025 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 133.Gough MJ, Ruby CE, Redmond WL, Dhungel B, Brown A, Weinberg AD. OX40 agonist therapy enhances CD8 infiltration and decreases immune suppression in the tumor. Cancer Res. 2008;68:5206-15. doi: 10.1158/0008-5472.CAN-07-6484. PMID:18593921 [DOI] [PubMed] [Google Scholar]
  • 134.Xiao X, Shi X, Fan Y, Zhang X, Wu M, Lan P, Minze L, Fu YX, Ghobrial RM, Liu W, et al.. GITR subverts Foxp3(+) Tregs to boost Th9 immunity through regulation of histone acetylation. Nat Commun. 2015;6:8266. doi: 10.1038/ncomms9266. PMID:26365427 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 135.Kim YH, Shin SM, Choi BK, Oh HS, Kim CH, Lee SJ, Kim KH, Lee DG, Park SH, Kwon BS. Authentic GITR Signaling Fails To Induce Tumor Regression unless Foxp3+ Regulatory T Cells Are Depleted. J Immunol. 2015;195:4721-9. doi: 10.4049/jimmunol.1403076. PMID:26423152 [DOI] [PubMed] [Google Scholar]
  • 136.Mahne AE, Mauze S, Joyce-Shaikh B, Xia J, Bowman EP, Beebe AM, Cua DJ, Jain R. Dual Roles for Regulatory T-cell Depletion and Costimulatory Signaling in Agonistic GITR Targeting for Tumor Immunotherapy. Cancer Res. 2017;77:1108-18. doi: 10.1158/0008-5472.CAN-16-0797. PMID:28122327 [DOI] [PubMed] [Google Scholar]
  • 137.Bulliard Y, Jolicoeur R, Zhang J, Dranoff G, Wilson NS, Brogdon JL. OX40 engagement depletes intratumoral Tregs via activating FcgammaRs, leading to antitumor efficacy. Immunol Cell Biol. 2014;92:475-80. doi: 10.1038/icb.2014.26. PMID:24732076 [DOI] [PubMed] [Google Scholar]
  • 138.Bulliard Y, Jolicoeur R, Windman M, Rue SM, Ettenberg S, Knee DA, Wilson NS, Dranoff G, Brogdon JL. Activating Fc gamma receptors contribute to the antitumor activities of immunoregulatory receptor-targeting antibodies. J Exp Med. 2013;210:1685-93. doi: 10.1084/jem.20130573. PMID:23897982 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 139.Wilson NS, Yang B, Yang A, Loeser S, Marsters S, Lawrence D, Li Y, Pitti R, Totpal K, Yee S, et al.. An Fcgamma receptor-dependent mechanism drives antibody-mediated target-receptor signaling in cancer cells. Cancer Cell. 2011;19:101-13. doi: 10.1016/j.ccr.2010.11.012. PMID:21251615 [DOI] [PubMed] [Google Scholar]
  • 140.Roberts DJ, Franklin NA, Kingeter LM, Yagita H, Tutt AL, Glennie MJ, Bullock TN. Control of established melanoma by CD27 stimulation is associated with enhanced effector function and persistence, and reduced PD-1 expression of tumor infiltrating CD8(+) T cells. J Immunother. 2010;33:769-79. doi: 10.1097/CJI.0b013e3181ee238f. PMID:20842060 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 141.Weigelin B, Bolanos E, Teijeira A, Martinez-Forero I, Labiano S, Azpilikueta A, Morales-Kastresana A, Quetglas JI, Wagena E, Sanchez-Paulete AR, et al.. Focusing and sustaining the antitumor CTL effector killer response by agonist anti-CD137 mAb. Proc Natl Acad Sci U S A. 2015;112:7551-6. doi: 10.1073/pnas.1506357112. PMID:26034288 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 142.Wilcox RA, Flies DB, Zhu G, Johnson AJ, Tamada K, Chapoval AI, Strome SE, Pease LR, Chen L. Provision of antigen and CD137 signaling breaks immunological ignorance, promoting regression of poorly immunogenic tumors. J Clin Invest. 2002;109:651-9. doi: 10.1172/JCI0214184. PMID:11877473 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 143.Durham NM, Holoweckyj N, MacGill RS, McGlinchey K, Leow CC, Robbins SH. GITR ligand fusion protein agonist enhances the tumor antigen-specific CD8 T-cell response and leads to long-lasting memory. J Immunother Cancer. 2017;5:47. doi: 10.1186/s40425-017-0247-0. PMID:28649380 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 144.Franzese O, Palermo B, Di Donna C, Sperduti I, Ferraresi V, Stabile H, Gismondi A, Santoni A, Nistico P. Polyfunctional Melan-A-specific tumor-reactive CD8(+) T cells elicited by dacarbazine treatment before peptide-vaccination depends on AKT activation sustained by ICOS. Oncoimmunology. 2016;5:e1114203. doi: 10.1080/2162402X.2015.1114203. PMID:27467927 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 145.Homet Moreno B, Mok S, Comin-Anduix B, Hu-Lieskovan S, Ribas A. Combined treatment with dabrafenib and trametinib with immune-stimulating antibodies for BRAF mutant melanoma. Oncoimmunology. 2016;5:e1052212. doi: 10.1080/2162402X.2015.1052212. PMID:27622011 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 146.Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR, Sun W, Huhn RD, Song W, Li D, Sharp LL, et al.. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science. 2011;331:1612-6. doi: 10.1126/science.1198443. PMID:21436454 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 147.Ellmark P, Mangsbo SM, Furebring C, Totterman TH, Norlen P. Kick-starting the cancer-immunity cycle by targeting CD40. Oncoimmunology. 2015;4:e1011484. doi: 10.1080/2162402X.2015.1011484. PMID:26140231 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 148.Palazon A, Teijeira A, Martinez-Forero I, Hervas-Stubbs S, Roncal C, Penuelas I, Dubrot J, Morales-Kastresana A, Perez-Gracia JL, Ochoa MC, et al.. Agonist anti-CD137 mAb act on tumor endothelial cells to enhance recruitment of activated T lymphocytes. Cancer Res. 2011;71:801-11. doi: 10.1158/0008-5472.CAN-10-1733. PMID:21266358 [DOI] [PubMed] [Google Scholar]
  • 149.Horton HM, Bernett MJ, Peipp M, Pong E, Karki S, Chu SY, Richards JO, Chen H, Repp R, Desjarlais JR, et al.. Fc-engineered anti-CD40 antibody enhances multiple effector functions and exhibits potent in vitro and in vivo antitumor activity against hematologic malignancies. Blood. 2010;116:3004-12. doi: 10.1182/blood-2010-01-265280. PMID:20616215 [DOI] [PubMed] [Google Scholar]
  • 150.Dahan R, Barnhart BC, Li F, Yamniuk AP, Korman AJ, Ravetch JV. Therapeutic Activity of Agonistic, Human Anti-CD40 Monoclonal Antibodies Requires Selective FcgammaR Engagement. Cancer Cell. 2016;29:820-31. doi: 10.1016/j.ccell.2016.05.001. PMID:27265505 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 151.Li F, Ravetch JV. Inhibitory Fcgamma receptor engagement drives adjuvant and anti-tumor activities of agonistic CD40 antibodies. Science. 2011;333:1030-4. doi: 10.1126/science.1206954. PMID:21852502 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 152.Dubrovsky L, Brea EJ, Pankov D, Casey E, Dao T, Liu C, Scheinberg DA. Mechanisms of leukemia resistance to antibody dependent cellular cytotoxicity. Oncoimmunology. 2016;5:e1211221. doi: 10.1080/2162402X.2016.1211221. PMID:27757306 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 153.Li F, Ravetch JV. Antitumor activities of agonistic anti-TNFR antibodies require differential FcgammaRIIB coengagement in vivo. Proc Natl Acad Sci U S A. 2013;110:19501-6. doi: 10.1073/pnas.1319502110. PMID:24218606 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 154.Siebert N, Jensen C, Troschke-Meurer S, Zumpe M, Juttner M, Ehlert K, Kietz S, Muller I, Lode HN. Neuroblastoma patients with high-affinity FCGR2A, -3A and stimulatory KIR 2DS2 treated by long-term infusion of anti-GD2 antibody ch14.18/CHO show higher ADCC levels and improved event-free survival. Oncoimmunology. 2016;5:e1235108. doi: 10.1080/2162402X.2016.1235108. PMID:27999754 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 155.DiLillo DJ, Ravetch JV. Fc-Receptor Interactions Regulate Both Cytotoxic and Immunomodulatory Therapeutic Antibody Effector Functions. Cancer Immunol Res. 2015;3:704-13. doi: 10.1158/2326-6066.CIR-15-0120. PMID:26138698 [DOI] [PubMed] [Google Scholar]
  • 156.White AL, Chan HT, French RR, Willoughby J, Mockridge CI, Roghanian A, Penfold CA, Booth SG, Dodhy A, Polak ME, et al.. Conformation of the human immunoglobulin G2 hinge imparts superagonistic properties to immunostimulatory anticancer antibodies. Cancer Cell. 2015;27:138-48. doi: 10.1016/j.ccell.2014.11.001. PMID:25500122 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 157.White AL, Chan HT, French RR, Beers SA, Cragg MS, Johnson PW, Glennie MJ. FcgammaRIotaIotaB controls the potency of agonistic anti-TNFR mAbs. Cancer Immunol Immunother. 2013;62:941-8. doi: 10.1007/s00262-013-1398-6. PMID:23543215 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 158.White AL, Chan HT, Roghanian A, French RR, Mockridge CI, Tutt AL, Dixon SV, Ajona D, Verbeek JS, Al-Shamkhani A, et al.. Interaction with FcgammaRIIB is critical for the agonistic activity of anti-CD40 monoclonal antibody. J Immunol. 2011;187:1754-63. doi: 10.4049/jimmunol.1101135. PMID:21742972 [DOI] [PubMed] [Google Scholar]
  • 159.White AL, Dou L, Chan HT, Field VL, Mockridge CI, Moss K, Williams EL, Booth SG, French RR, Potter EA, et al.. Fcgamma receptor dependency of agonistic CD40 antibody in lymphoma therapy can be overcome through antibody multimerization. J Immunol. 2014;193:1828-35. doi: 10.4049/jimmunol.1303204. PMID:25024386 [DOI] [PubMed] [Google Scholar]
  • 160.Marshall E. Clinical medicine. Accident prompts a closer look at antibody trials . Science. 2006;312:172. [DOI] [PubMed] [Google Scholar]
  • 161.Hunig T. The storm has cleared: lessons from the CD28 superagonist TGN1412 trial. Nat Rev Immunol. 2012;12:317-8. doi: 10.1038/nri3192-c2. PMID:22487653 [DOI] [PubMed] [Google Scholar]
  • 162.Hansen S, Leslie RG. TGN1412: scrutinizing preclinical trials of antibody-based medicines. Nature. 2006;441:282. doi: 10.1038/441282a. PMID:16710395 [DOI] [PubMed] [Google Scholar]
  • 163.Schneider CK, Kalinke U, Lower J. TGN1412–a regulator's perspective. Nat Biotechnol. 2006;24:493-6. doi: 10.1038/nbt0506-493. PMID:16680120 [DOI] [PubMed] [Google Scholar]
  • 164.Wood AJ, Darbyshire J. Injury to research volunteers–the clinical-research nightmare. N Engl J Med. 2006;354:1869-71. doi: 10.1056/NEJMp068082. PMID:16672696 [DOI] [PubMed] [Google Scholar]
  • 165.Hunig T. The rise and fall of the CD28 superagonist TGN1412 and its return as TAB08: a personal account. Febs j. 2016;283:3325-34. doi: 10.1111/febs.13754. PMID:27191544 [DOI] [PubMed] [Google Scholar]
  • 166.Tyrsin D, Chuvpilo S, Matskevich A, Nemenov D, Romer PS, Tabares P, Hunig T. From TGN1412 to TAB08: the return of CD28 superagonist therapy to clinical development for the treatment of rheumatoid arthritis. Clin Exp Rheumatol. 2016;34:45-8. PMID:27586803 [PubMed] [Google Scholar]
  • 167.Dyer O. Experimental drug that injured UK volunteers resumes in human trials. Bmj. 2015;350:h1831. doi: 10.1136/bmj.h1831. PMID:25838401 [DOI] [PubMed] [Google Scholar]
  • 168.Vacchelli E, Aranda F, Bloy N, Buque A, Cremer I, Eggermont A, Fridman WH, Fucikova J, Galon J, Spisek R, et al.. Trial Watch-Immunostimulation with cytokines in cancer therapy. Oncoimmunology. 2016;5:e1115942. doi: 10.1080/2162402X.2015.1115942. PMID:27057468 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 169.Bloy N, Buque A, Aranda F, Castoldi F, Eggermont A, Cremer I, Sautes-Fridman C, Fucikova J, Galon J, Spisek R, et al.. Trial watch: Naked and vectored DNA-based anticancer vaccines. Oncoimmunology. 2015;4:e1026531. doi: 10.1080/2162402X.2015.1026531. PMID:26155408 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 170.Zippelius A, Schreiner J, Herzig P, Muller P. Induced PD-L1 expression mediates acquired resistance to agonistic anti-CD40 treatment. Cancer Immunol Res. 2015;3:236-44. doi: 10.1158/2326-6066.CIR-14-0226. PMID:25623164 [DOI] [PubMed] [Google Scholar]
  • 171.Ngiow SF, Young A, Blake SJ, Hill GR, Yagita H, Teng MW, Korman AJ, Smyth MJ. Agonistic CD40 mAb-Driven IL12 Reverses Resistance to Anti-PD1 in a T-cell-Rich Tumor. Cancer Res. 2016;76:6266-77. doi: 10.1158/0008-5472.CAN-16-2141. PMID:27634762 [DOI] [PubMed] [Google Scholar]
  • 172.Buchan S, Manzo T, Flutter B, Rogel A, Edwards N, Zhang L, Sivakumaran S, Ghorashian S, Carpenter B, Bennett C, et al.. OX40- and CD27-mediated costimulation synergizes with anti-PD-L1 blockade by forcing exhausted CD8+ T cells to exit quiescence. J Immunol. 2015;194:125-33. doi: 10.4049/jimmunol.1401644. PMID:25404365 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 173.Sanchez-Paulete AR, Cueto FJ, Martinez-Lopez M, Labiano S, Morales-Kastresana A, Rodriguez-Ruiz ME, Jure-Kunkel M, Azpilikueta A, Aznar MA, Quetglas JI, et al.. Cancer Immunotherapy with Immunomodulatory Anti-CD137 and Anti-PD-1 Monoclonal Antibodies Requires BATF3-Dependent Dendritic Cells. Cancer Discov. 2016;6:71-9. doi: 10.1158/2159-8290.CD-15-0510. PMID:26493961 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 174.McKee SJ, Doff BL, Soon MS, Mattarollo SR. Therapeutic Efficacy of 4-1BB Costimulation Is Abrogated by PD-1 Blockade in a Model of Spontaneous B-cell Lymphoma. Cancer Immunol Res. 2017;5:191-7. doi: 10.1158/2326-6066.CIR-16-0249. PMID:28115358 [DOI] [PubMed] [Google Scholar]
  • 175.Luke JJ, Flaherty KT, Ribas A, Long GV. Targeted agents and immunotherapies: optimizing outcomes in melanoma. Nat Rev Clin Oncol. 2017;14:463-82. doi: 10.1038/nrclinonc.2017.43. PMID:28374786 [DOI] [PubMed] [Google Scholar]
  • 176.Ryan JM, Wasser JS, Adler AJ, Vella AT. Enhancing the safety of antibody-based immunomodulatory cancer therapy without compromising therapeutic benefit: Can we have our cake and eat it too? Expert Opin Biol Ther. 2016;16:655-74. doi: 10.1517/14712598.2016.1152256. PMID:26855028 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 177.Mangsbo SM, Broos S, Fletcher E, Veitonmaki N, Furebring C, Dahlen E, Norlen P, Lindstedt M, Totterman TH, Ellmark P. The human agonistic CD40 antibody ADC-1013 eradicates bladder tumors and generates T-cell-dependent tumor immunity. Clin Cancer Res. 2015;21:1115-26. doi: 10.1158/1078-0432.CCR-14-0913. PMID:25316820 [DOI] [PubMed] [Google Scholar]
  • 178.Dronca RS, Dong H. Immunomodulatory antibody therapy of cancer: the closer, the better. Clin Cancer Res. 2015;21:944-6. doi: 10.1158/1078-0432.CCR-14-2111. PMID:25351746 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 179.Combe P, de Guillebon E, Thibault C, Granier C, Tartour E, Oudard S. Trial Watch: Therapeutic vaccines in metastatic renal cell carcinoma. Oncoimmunology. 2015;4:e1001236. doi: 10.1080/2162402X.2014.1001236. PMID:26155388 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 180.Kastenmuller W, Kastenmuller K, Kurts C, Seder RA. Dendritic cell-targeted vaccines–hope or hype? Nat Rev Immunol. 2014;14:705-11. doi: 10.1038/nri3727. PMID:25190285 [DOI] [PubMed] [Google Scholar]
  • 181.Melero I, Gaudernack G, Gerritsen W, Huber C, Parmiani G, Scholl S, Thatcher N, Wagstaff J, Zielinski C, Faulkner I, et al.. Therapeutic vaccines for cancer: an overview of clinical trials. Nat Rev Clin Oncol. 2014;11:509-24. doi: 10.1038/nrclinonc.2014.111. PMID:25001465 [DOI] [PubMed] [Google Scholar]
  • 182.Mullard A. The cancer vaccine resurgence. Nat Rev Drug Discov. 2016;15:663-5. doi: 10.1038/nrd.2016.201. PMID:27681782 [DOI] [PubMed] [Google Scholar]
  • 183.van der Burg SH, Arens R, Ossendorp F, van Hall T, Melief CJ. Vaccines for established cancer: overcoming the challenges posed by immune evasion. Nat Rev Cancer. 2016;16:219-33. doi: 10.1038/nrc.2016.16. PMID:26965076 [DOI] [PubMed] [Google Scholar]
  • 184.Weller M, Roth P, Preusser M, Wick W, Reardon DA, Platten M, Sampson JH. Vaccine-based immunotherapeutic approaches to gliomas and beyond. Nat Rev Neurol. 2017;13:363-74. doi: 10.1038/nrneurol.2017.64. PMID:28497804 [DOI] [PubMed] [Google Scholar]
  • 185.Amato RJ. Heat-shock protein-peptide complex-96 for the treatment of cancer. Expert Opin Biol Ther. 2007;7:1267-73. doi: 10.1517/14712598.7.8.1267. PMID:17696824 [DOI] [PubMed] [Google Scholar]
  • 186.Fucikova J, Kralikova P, Fialova A, Brtnicky T, Rob L, Bartunkova J, Spisek R. Human tumor cells killed by anthracyclines induce a tumor-specific immune response. Cancer Res. 2011;71:4821-33. doi: 10.1158/0008-5472.CAN-11-0950. PMID:21602432 [DOI] [PubMed] [Google Scholar]
  • 187.Spisek R, Charalambous A, Mazumder A, Vesole DH, Jagannath S, Dhodapkar MV. Bortezomib enhances dendritic cell (DC)-mediated induction of immunity to human myeloma via exposure of cell surface heat shock protein 90 on dying tumor cells: therapeutic implications. Blood. 2007;109:4839-45. doi: 10.1182/blood-2006-10-054221. PMID:17299090 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 188.Spisek R, Dhodapkar MV. Towards a better way to die with chemotherapy: role of heat shock protein exposure on dying tumor cells. Cell Cycle. 2007;6:1962-5. doi: 10.4161/cc.6.16.4601. PMID:17721082 [DOI] [PubMed] [Google Scholar]
  • 189.Wu BX, Hong F, Zhang Y, Ansa-Addo E, Li Z. GRP94/gp96 in Cancer: Biology, Structure, Immunology, and Drug Development. Adv Cancer Res. 2016;129:165-90. doi: 10.1016/bs.acr.2015.09.001. PMID:26916005 [DOI] [PubMed] [Google Scholar]
  • 190.Fromm G, de Silva S, Giffin L, Xu X, Rose J, Schreiber TH. Gp96-Ig/Costimulator (OX40L, ICOSL, or 4-1BBL) Combination Vaccine Improves T-cell Priming and Enhances Immunity, Memory, and Tumor Elimination. Cancer Immunol Res. 2016;4:766-78. doi: 10.1158/2326-6066.CIR-15-0228. PMID:27364122 [DOI] [PubMed] [Google Scholar]
  • 191.Liu Z, Hao X, Zhang Y, Zhang J, Carey CD, Falo LD Jr., Storkus WJ, You Z. Intratumoral delivery of tumor antigen-loaded DC and tumor-primed CD4+ T cells combined with agonist alpha-GITR mAb promotes durable CD8+ T-cell-dependent antitumor immunity. Oncoimmunology. 2017;6:e1315487. doi: 10.1080/2162402X.2017.1315487. PMID:28680744 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 192.Schrand B, Berezhnoy A, Brenneman R, Williams A, Levay A, Gilboa E. Reducing toxicity of 4-1BB costimulation: targeting 4-1BB ligands to the tumor stroma with bi-specific aptamer conjugates. Oncoimmunology. 2015;4:e970918. doi: 10.4161/21624011.2014.970918. PMID:25949891 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 193.Yelamos J, Galindo M, Navarro J, Albanell J, Rovira A, Rojo F, Oliver J. Enhancing tumor-targeting monoclonal antibodies therapy by PARP inhibitors. Oncoimmunology. 2016;5:e1065370. doi: 10.1080/2162402X.2015.1065370. PMID:26942084 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 194.Simons M, Gordon E, Claesson-Welsh L. Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol. 2016;17:611-25. doi: 10.1038/nrm.2016.87. PMID:27461391 [DOI] [PubMed] [Google Scholar]
  • 195.Ferrara N, Adamis AP. Ten years of anti-vascular endothelial growth factor therapy. Nat Rev Drug Discov. 2016;15:385-403. doi: 10.1038/nrd.2015.17. PMID:26775688 [DOI] [PubMed] [Google Scholar]
  • 196.Barker HE, Paget JT, Khan AA, Harrington KJ. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer. 2015;15:409-25. doi: 10.1038/nrc3958. PMID:26105538 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 197.Wennerberg E, Lhuillier C, Vanpouille-Box C, Pilones KA, Garcia-Martinez E, Rudqvist NP, Formenti SC, Demaria S. Barriers to Radiation-Induced In Situ Tumor Vaccination. Front Immunol. 2017;8:229. doi: 10.3389/fimmu.2017.00229. PMID:28348554 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 198.Demaria S, Formenti SC. Can abscopal effects of local radiotherapy be predicted by modeling T cell trafficking? J Immunother Cancer. 2016;4:29. doi: 10.1186/s40425-016-0133-1. PMID:27190630 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 199.Golden EB, Chhabra A, Chachoua A, Adams S, Donach M, Fenton-Kerimian M, Friedman K, Ponzo F, Babb JS, Goldberg J, et al.. Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: a proof-of-principle trial. Lancet Oncol. 2015;16:795-803. PMID:26095785 [DOI] [PubMed] [Google Scholar]
  • 200.Pilones KA, Vanpouille-Box C, Demaria S. Combination of radiotherapy and immune checkpoint inhibitors. Semin Radiat Oncol. 2015;25:28-33. PMID:25481263 [DOI] [PubMed] [Google Scholar]
  • 201.Schrand B, Verma B, Levay A, Patel S, Castro I, Benaduce AP, Brenneman R, Umland O, Yagita H, Gilboa E, et al.. Radiation-Induced Enhancement of Antitumor T-cell Immunity by VEGF-Targeted 4-1BB Costimulation. Cancer Res. 2017;77:1310-21. PMID:28082399 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 202.Schrand B, Berezhnoy A, Brenneman R, Williams A, Levay A, Kong LY, Rao G, Zhou S, Heimberger AB, Gilboa E. Targeting 4-1BB costimulation to the tumor stroma with bispecific aptamer conjugates enhances the therapeutic index of tumor immunotherapy. Cancer Immunol Res. 2014;2:867-77. PMID:24938283 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 203.Burris HA, Infante JR, Ansell SM, Nemunaitis JJ, Weiss GR, Villalobos VM, Sikic BI, Taylor MH, Northfelt DW, Carson WE 3rd, et al.. Safety and Activity of Varlilumab, a Novel and First-in-Class Agonist Anti-CD27 Antibody, in Patients With Advanced Solid Tumors. J Clin Oncol. 2017;35:2028-36. PMID:28463630 [DOI] [PubMed] [Google Scholar]
  • 204.Sanborn RE, Pishvain MJ, Callahan MK, Rizvi N, Kluger H, Yellin M, Rawls T, Vitale L, Halim A, Davis T, et al.. Abstract CT023: Phase I results from the combination of an immune-activating anti-CD27 antibody (varlilumab) in combination with PD-1 blockade (nivolumab): activation across multiple immune pathways without untoward immune-related adverse events. Cancer Research. 2016;76:CT023. [Google Scholar]
  • 205.Fayad L, Ansell SM, Advani R, Coiffier B, Stuart R, Bartlett NL, Forero-Torres A, Kuliczkowski K, Belada D, Ng E, et al.. Dacetuzumab plus rituximab, ifosfamide, carboplatin and etoposide as salvage therapy for patients with diffuse large B-cell lymphoma relapsing after rituximab, cyclophosphamide, doxorubicin, vincristine and prednisolone: a randomized, double-blind, placebo-controlled phase 2b trial. Leuk Lymphoma. 2015;56:2569-78. PMID:25651427 [DOI] [PubMed] [Google Scholar]
  • 206.Nowak AK, Cook AM, McDonnell AM, Millward MJ, Creaney J, Francis RJ, Hasani A, Segal A, Musk AW, Turlach BA, et al.. A phase 1b clinical trial of the CD40-activating antibody CP-870,893 in combination with cisplatin and pemetrexed in malignant pleural mesothelioma. Ann Oncol. 2015;26:2483-90. PMID:26386124 [DOI] [PubMed] [Google Scholar]
  • 207.Bajor DL, Mick R, Riese MJ, Richman LP, Xu X, Torigian DA, Stelekati E, Sweeney M, Sullivan B, Schuchter LM, et al.. Abstract CT137: Combination of agonistic CD40 monoclonal antibody CP-870,893 and anti-CTLA-4 antibody tremelimumab in patients with metastatic melanoma. Cancer Research. 2015;75:CT137. [Google Scholar]
  • 208.Johnson P, Challis R, Chowdhury F, Gao Y, Harvey M, Geldart T, Kerr P, Chan C, Smith A, Steven N, et al.. Clinical and biological effects of an agonist anti-CD40 antibody: a Cancer Research UK phase I study. Clin Cancer Res. 2015;21:1321-8. doi: 10.1158/1078-0432.CCR-14-2355. PMID:25589626 [DOI] [PubMed] [Google Scholar]
  • 209.Segal NH, Logan TF, Hodi FS, McDermott D, Melero I, Hamid O, Schmidt H, Robert C, Chiarion-Sileni V, Ascierto PA, et al.. Results from an Integrated Safety Analysis of Urelumab, an Agonist Anti-CD137 Monoclonal Antibody. Clin Cancer Res. 2017;23:1929-36. doi: 10.1158/1078-0432.CCR-16-1272. PMID:27756788 [DOI] [PubMed] [Google Scholar]
  • 210.Tolcher AW, Sznol M, Hu-Lieskovan S, Papadopoulos KP, Patnaik A, Rasco D, Di Gravio D, Huang B, Gambhire D, Chen Y, et al.. Phase Ib Study of Utomilumab (PF-05082566), a 4-1BB/CD137 Agonist, in Combination with Pembrolizumab (MK-3475) in Patients with Advanced Solid Tumors. Clin Cancer Res. 2017;in press. doi: 10.1158/1078-0432.CCR-17-1243. PMID:28634283 [DOI] [PubMed] [Google Scholar]
  • 211.Gopal AK, Bartlett NL, Levy R, Houot R, Smith SD, Segal NH, Thall AD, Mugundu G, Huang B, Davis C, et al.. A phase I study of PF-05082566 (anti-4-1BB) + rituximab in patients with CD20+ NHL. Journal of Clinical Oncology. 2015;33:3004. [Google Scholar]
  • 212.Tran B, Carvajal RD, Marabelle A, Patel SP, LoRusso P, Rasmussen E, Juan G, Upreti VV, Ngarmchamnanrith G, Schöffski P. Dose escalation results from a first-in-human, phase 1 study of the glucocorticoid-induced TNF receptor-related protein (GITR) agonist AMG 228 in patients (Pts) with advanced solid tumors. J Clin Oncol. 2017;35:2521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 213.Koon HB, Shepard DR, Merghoub T, Schaer DA, Sirard CA, Wolchok JD. First-in-human phase 1 single-dose study of TRX-518, an anti-human glucocorticoid-induced tumor necrosis factor receptor (GITR) monoclonal antibody in adults with advanced solid tumors. Journal of Clinical Oncology. 2016;34:3017. [Google Scholar]
  • 214.Siu LL, Steeghs N, Meniawy T, Joerger M, Spratlin JL, Rottey S, Nagrial A, Cooper A, Meier R, Guan X, et al.. Preliminary results of a phase I/IIa study of BMS-986156 (glucocorticoid-induced tumor necrosis factor receptor–related gene [GITR] agonist), alone and in combination with nivolumab in pts with advanced solid tumors. Journal of Clinical Oncology. 2017;35:104. [Google Scholar]
  • 215.Burris HA, Callahan MK, Tolcher AW, Kummar S, Falchook GS, Pachynski RK, Tykodi SS, Gibney GT, Seiwert TY, Gainor JF, et al.. Phase 1 safety of ICOS agonist antibody JTX-2011 alone and with nivolumab (nivo) in advanced solid tumors; predicted vs observed pharmacokinetics (PK) in ICONIC. J Clin Oncol. 2017;35:3033. [Google Scholar]
  • 216.El-Khoueiry AB, Hamid O, Thompson JA, Ros W, Eskens F, Doi T, Hu-Lieskovan S, Chou J, Liao K, Ganguly BJ, et al.. The relationship of pharmacodynamics (PD) and pharmacokinetics (PK) to clinical outcomes in a phase I study of OX40 agonistic monoclonal antibody (mAb) PF-04518600 (PF-8600). Journal of Clinical Oncology. 2017;35:3027. [Google Scholar]
  • 217.Infante JR, Hansen AR, Pishvaian MJ, Chow LQM, McArthur GA, Bauer TM, Liu SV, Sandhu SK, Tsai FY-C, Kim J, et al.. A phase Ib dose escalation study of the OX40 agonist MOXR0916 and the PD-L1 inhibitor atezolizumab in patients with advanced solid tumors. Journal of Clinical Oncology. 2016;34:101. [Google Scholar]
  • 218.Glisson BS, Leidner R, Ferris RL, Powderly J, Rizvi N, Norton JD, Burton J, Lanasa MC, Patel SP. Phase 1 study of MEDI0562, a humanized OX40 agonist monoclonal antibody (mAb), in adult patients (pts) with advanced solid tumors. Annals of Oncology. 2016;27:1052PD. doi: 10.1093/annonc/mdw378.07. [DOI] [Google Scholar]
  • 219.Callahan MK, Postow MA, Wolchok JD. Targeting T Cell Co-receptors for Cancer Therapy. Immunity. 2016;44:1069-78. doi: 10.1016/j.immuni.2016.04.023. PMID:27192570 [DOI] [PubMed] [Google Scholar]
  • 220.Iwai Y, Hamanishi J, Chamoto K, Honjo T. Cancer immunotherapies targeting the PD-1 signaling pathway. J Biomed Sci. 2017;24:26. doi: 10.1186/s12929-017-0329-9. PMID:28376884 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 221.Kroemer G, Galluzzi L. Combinatorial immunotherapy with checkpoint blockers solves the problem of metastatic melanoma-An exclamation sign with a question mark. Oncoimmunology. 2015;4:e1058037. doi: 10.1080/2162402X.2015.1058037. PMID:26140249 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 222.Yu GT, Bu LL, Zhao YY, Mao L, Deng WW, Wu TF, Zhang WF, Sun ZJ. CTLA4 blockade reduces immature myeloid cells in head and neck squamous cell carcinoma. Oncoimmunology. 2016;5:e1151594. doi: 10.1080/2162402X.2016.1151594. PMID:27471622 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 223.Vacchelli E, Pol J, Bloy N, Eggermont A, Cremer I, Fridman WH, Galon J, Marabelle A, Kohrt H, Zitvogel L, et al.. Trial watch: Tumor-targeting monoclonal antibodies for oncological indications. Oncoimmunology. 2015;4:e985940. doi: 10.4161/2162402X.2014.985940. PMID:25949870 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 224.Pol J, Vacchelli E, Aranda F, Castoldi F, Eggermont A, Cremer I, Sautes-Fridman C, Fucikova J, Galon J, Spisek R, et al.. Trial Watch: Immunogenic cell death inducers for anticancer chemotherapy. Oncoimmunology. 2015;4:e1008866. doi: 10.1080/2162402X.2015.1008866. PMID:26137404 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 225.Hanoteau A, Moser M. Chemotherapy and immunotherapy: A close interplay to fight cancer? Oncoimmunology. 2016;5:e1190061. doi: 10.1080/2162402X.2016.1190061. PMID:27622046 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 226.Varlilumab Is Safe and Active in Patients with Advanced Solid Tumors. Cancer Discov. 2017;7:OF9. doi: 10.1158/2159-8290.CD-RW2017-089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 227.Sanmamed MF, Rodriguez I, Schalper KA, Onate C, Azpilikueta A, Rodriguez-Ruiz ME, Morales-Kastresana A, Labiano S, Perez-Gracia JL, Martin-Algarra S, et al.. Nivolumab and Urelumab Enhance Antitumor Activity of Human T Lymphocytes Engrafted in Rag2−/−IL2Rgammanull Immunodeficient Mice. Cancer Res. 2015;75:3466-78. doi: 10.1158/0008-5472.CAN-14-3510. PMID:26113085 [DOI] [PubMed] [Google Scholar]
  • 228.Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, Segal NH, Ariyan CE, Gordon RA, Reed K, et al.. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369:122-33. doi: 10.1056/NEJMoa1302369. PMID:23724867 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 229.Ruter J, Antonia SJ, Burris HA, Huhn RD, Vonderheide RH. Immune modulation with weekly dosing of an agonist CD40 antibody in a phase I study of patients with advanced solid tumors. Cancer Biol Ther. 2010;10:983-93. doi: 10.4161/cbt.10.10.13251. PMID:20855968 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 230.Vonderheide RH, Flaherty KT, Khalil M, Stumacher MS, Bajor DL, Hutnick NA, Sullivan P, Mahany JJ, Gallagher M, Kramer A, et al.. Clinical activity and immune modulation in cancer patients treated with CP-870,893, a novel CD40 agonist monoclonal antibody. J Clin Oncol. 2007;25:876-83. doi: 10.1200/JCO.2006.08.3311. PMID:17327609 [DOI] [PubMed] [Google Scholar]
  • 231.Kalbasi A, Fonsatti E, Natali PG, Altomonte M, Bertocci E, Cutaia O, Calabro L, Chiou M, Tap W, Chmielowski B, et al.. CD40 expression by human melanocytic lesions and melanoma cell lines and direct CD40 targeting with the therapeutic anti-CD40 antibody CP-870,893. J Immunother. 2010;33:810-6. doi: 10.1097/CJI.0b013e3181ee73a7. PMID:20842056 [DOI] [PubMed] [Google Scholar]
  • 232.Carpenter EL, Mick R, Ruter J, Vonderheide RH. Activation of human B cells by the agonist CD40 antibody CP-870,893 and augmentation with simultaneous toll-like receptor 9 stimulation. J Transl Med. 2009;7:93. doi: 10.1186/1479-5876-7-93. PMID:19906293 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 233.Frey NV, Porter DL. Cytokine release syndrome with novel therapeutics for acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program. 2016; 2016:567-72. PMID:27913530 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 234.Maude SL, Barrett D, Teachey DT, Grupp SA. Managing cytokine release syndrome associated with novel T cell-engaging therapies. Cancer J. 2014;20:119-22. doi: 10.1097/PPO.0000000000000035. PMID:24667956 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 235.Walker M, Makropoulos D, Achuthanandam R, Bugelski PJ. Recent advances in the understanding of drug-mediated infusion reactions and cytokine release syndrome. Curr Opin Drug Discov Devel. 2010;13:124-35. PMID:20047153 [PubMed] [Google Scholar]
  • 236.Kroschinsky F, Stolzel F, von Bonin S, Beutel G, Kochanek M, Kiehl M, Schellongowski P, Intensive Care in H, Oncological Patients Collaborative G . New drugs, new toxicities: severe side effects of modern targeted and immunotherapy of cancer and their management. Crit Care. 2017;21:89. doi: 10.1186/s13054-017-1678-1. PMID:28407743 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 237.Remer M, White A, Glennie M, Al-Shamkhani A, Johnson P. The Use of Anti-CD40 mAb in Cancer. Curr Top Microbiol Immunol. 2017;405:165-207. PMID:25651948 [DOI] [PubMed] [Google Scholar]
  • 238.Kaech SM, Cui W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat Rev Immunol. 2012;12:749-61. doi: 10.1038/nri3307. PMID:23080391 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 239.Laidlaw BJ, Craft JE, Kaech SM. The multifaceted role of CD4(+) T cells in CD8(+) T cell memory. Nat Rev Immunol. 2016;16:102-11. doi: 10.1038/nri.2015.10. PMID:26781939 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 240.Rosenblum MD, Way SS, Abbas AK. Regulatory T cell memory. Nat Rev Immunol. 2016;16:90-101. doi: 10.1038/nri.2015.1. PMID:26688349 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 241.Ramakrishna V, Sundarapandiyan K, Zhao B, Bylesjo M, Marsh HC, Keler T. Characterization of the human T cell response to in vitro CD27 costimulation with varlilumab. J Immunother Cancer. 2015;3:37. doi: 10.1186/s40425-015-0080-2. PMID:26500773 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 242.Ferte C, Marabelle A. iRECIST: A clarification of tumour response assessment in the immunotherapy era. Eur J Cancer. 2017;77:165-7. doi: 10.1016/j.ejca.2017.02.015. PMID:28385325 [DOI] [PubMed] [Google Scholar]
  • 243.Le Lay J, Jarraya H, Lebellec L, Penel N. IrRECIST and iRECIST: the devil is in the details. Ann Oncol. 2017. PMID:28383646 [DOI] [PubMed] [Google Scholar]
  • 244.Seymour L, Bogaerts J, Perrone A, Ford R, Schwartz LH, Mandrekar S, Lin NU, Litiere S, Dancey J, Chen A, et al.. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 2017;18:e143-e52. doi: 10.1016/S1470-2045(17)30074-8. PMID:28271869 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 245.Zitvogel L, Galluzzi L, Kepp O, Smyth MJ, Kroemer G. Type I interferons in anticancer immunity. Nat Rev Immunol. 2015;15:405-14. doi: 10.1038/nri3845. PMID:26027717 [DOI] [PubMed] [Google Scholar]
  • 246.Vanpouille-Box C, Alard A, Aryankalayil MJ, Sarfraz Y, Diamond JM, Schneider RJ, Inghirami G, Coleman CN, Formenti SC, Demaria S. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat Commun. 2017;8:15618. doi: 10.1038/ncomms15618. PMID:28598415 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 247.Fucikova J, Moserova I, Urbanova L, Bezu L, Kepp O, Cremer I, Salek C, Strnad P, Kroemer G, Galluzzi L, et al.. Prognostic and Predictive Value of DAMPs and DAMP-Associated Processes in Cancer. Front Immunol. 2015;6:402. doi: 10.3389/fimmu.2015.00402. PMID:26300886 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 248.de La Motte Rouge T, Galluzzi L, Olaussen KA, Zermati Y, Tasdemir E, Robert T, Ripoche H, Lazar V, Dessen P, Harper F, et al.. A novel epidermal growth factor receptor inhibitor promotes apoptosis in non-small cell lung cancer cells resistant to erlotinib. Cancer Res. 2007;67:6253-62. doi: 10.1158/0008-5472.CAN-07-0538. PMID:17616683 [DOI] [PubMed] [Google Scholar]
  • 249.Saxon JA, Sherrill TP, Polosukhin VV, Sai J, Zaynagetdinov R, McLoed AG, Gulleman PM, Barham W, Cheng DS, Hunt RP, et al.. Epithelial NF-kappaB signaling promotes EGFR-driven lung carcinogenesis via macrophage recruitment. Oncoimmunology. 2016;5:e1168549. doi: 10.1080/2162402X.2016.1168549. PMID:27471643 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 250.Everson RG, Jin RM, Wang X, Safaee M, Scharnweber R, Lisiero DN, Soto H, Liau LM, Prins RM. Cytokine responsiveness of CD8(+) T cells is a reproducible biomarker for the clinical efficacy of dendritic cell vaccination in glioblastoma patients. J Immunother Cancer. 2014;2:10. doi: 10.1186/2051-1426-2-10. PMID:24883189 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 251.Yamazaki N, Kiyohara Y, Uhara H, Iizuka H, Uehara J, Otsuka F, Fujisawa Y, Takenouchi T, Isei T, Iwatsuki K, et al.. Cytokine biomarkers to predict antitumor responses to nivolumab suggested in a phase 2 study for advanced melanoma. Cancer Sci. 2017;108:1022-31. doi: 10.1111/cas.13226. PMID:28266140 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 252.Lever M, Maini PK, van der Merwe PA, Dushek O. Phenotypic models of T cell activation. Nat Rev Immunol. 2014;14:619-29. doi: 10.1038/nri3728. PMID:25145757 [DOI] [PubMed] [Google Scholar]
  • 253.Li MO, Rudensky AY. T cell receptor signalling in the control of regulatory T cell differentiation and function. Nat Rev Immunol. 2016;16:220-33. doi: 10.1038/nri.2016.26. PMID:27026074 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 254.Pollizzi KN, Powell JD. Integrating canonical and metabolic signalling programmes in the regulation of T cell responses. Nat Rev Immunol. 2014;14:435-46. doi: 10.1038/nri3701. PMID:24962260 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 255.Flemming A. Cancer: Tumour-specific ablation of Treg cells induces anticancer response. Nat Rev Drug Discov. 2016;15:676-7. doi: 10.1038/nrd.2016.198. [DOI] [PubMed] [Google Scholar]
  • 256.Fridman WH, Pages F, Sautes-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer. 2012;12:298-306. doi: 10.1038/nrc3245. PMID:22419253 [DOI] [PubMed] [Google Scholar]
  • 257.Fridman WH, Zitvogel L, Sautes-Fridman C, Kroemer G. The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol. 2017;in press. doi: 10.1038/nrclinonc.2017.101. PMID:28741618 [DOI] [PubMed] [Google Scholar]
  • 258.Lu L, Barbi J, Pan F. The regulation of immune tolerance by FOXP3. Nat Rev Immunol. 2017;in press. doi: 10.1038/nri.2017.75. PMID: 28757603 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 259.Tanchot C, Terme M, Pere H, Tran T, Benhamouda N, Strioga M, Banissi C, Galluzzi L, Kroemer G, Tartour E. Tumor-infiltrating regulatory T cells: phenotype, role, mechanism of expansion in situ and clinical significance. Cancer Microenviron. 2013;6:147-57. doi: 10.1007/s12307-012-0122-y. PMID:23104434 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 260.Khubchandani S, Czuczman MS, Hernandez-Ilizaliturri FJ. Dacetuzumab, a humanized mAb against CD40 for the treatment of hematological malignancies. Curr Opin Investig Drugs. 2009;10:579-87. PMID:19513947 [PubMed] [Google Scholar]
  • 261.Advani R, Forero-Torres A, Furman RR, Rosenblatt JD, Younes A, Ren H, Harrop K, Whiting N, Drachman JG. Phase I study of the humanized anti-CD40 monoclonal antibody dacetuzumab in refractory or recurrent non-Hodgkin's lymphoma. J Clin Oncol. 2009;27:4371-7. doi: 10.1200/JCO.2008.21.3017. PMID:19636010 [DOI] [PubMed] [Google Scholar]
  • 262.Furman RR, Forero-Torres A, Shustov A, Drachman JG. A phase I study of dacetuzumab (SGN-40, a humanized anti-CD40 monoclonal antibody) in patients with chronic lymphocytic leukemia. Leuk Lymphoma. 2010;51:228-35. doi: 10.3109/10428190903440946. PMID:20038235 [DOI] [PubMed] [Google Scholar]
  • 263.Hussein M, Berenson JR, Niesvizky R, Munshi N, Matous J, Sobecks R, Harrop K, Drachman JG, Whiting N. A phase I multidose study of dacetuzumab (SGN-40; humanized anti-CD40 monoclonal antibody) in patients with multiple myeloma. Haematologica. 2010;95:845-8. doi: 10.3324/haematol.2009.008003. PMID:20133895 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 264.Forero-Torres A, Bartlett N, Beaven A, Myint H, Nasta S, Northfelt DW, Whiting NC, Drachman JG, Lobuglio AF, Moskowitz CH. Pilot study of dacetuzumab in combination with rituximab and gemcitabine for relapsed or refractory diffuse large B-cell lymphoma. Leuk Lymphoma. 2013;54:277-83. doi: 10.3109/10428194.2012.710328. PMID:22775314 [DOI] [PubMed] [Google Scholar]
  • 265.Binder DC, Davis AA, Wainwright DA. Immunotherapy for cancer in the central nervous system: Current and future directions. Oncoimmunology. 2016;5:e1082027. doi: 10.1080/2162402X.2015.1082027. PMID:27057463 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 266.Houot R, Gaulard P, Schreiber R, Mellman I, Lambotte O, Coulie PG, Fest T, Korman A, Levy R, Shipp M, et al.. Immunomodulatory antibodies for the treatment of lymphoma: Report on the CALYM Workshop. Oncoimmunology. 2016;5:e1186323. doi: 10.1080/2162402X.2016.1186323. PMID:27622041 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 267.Granier C, De Guillebon E, Blanc C, Roussel H, Badoual C, Colin E, Saldmann A, Gey A, Oudard S, Tartour E. Mechanisms of action and rationale for the use of checkpoint inhibitors in cancer. ESMO Open. 2017;2:e000213. doi: 10.1136/esmoopen-2017-000213. PMID:28761757 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 268.Meng X, Liu Y, Zhang J, Teng F, Xing L, Yu J. PD-1/PD-L1 checkpoint blockades in non-small cell lung cancer: New development and challenges. Cancer Lett. 2017;405:29-37. doi: 10.1016/j.canlet.2017.06.033. PMID:28688973 [DOI] [PubMed] [Google Scholar]
  • 269.Goodman A, Patel SP, Kurzrock R. PD-1-PD-L1 immune-checkpoint blockade in B-cell lymphomas. Nat Rev Clin Oncol. 2017;14:203-20. doi: 10.1038/nrclinonc.2016.168. PMID:27805626 [DOI] [PubMed] [Google Scholar]
  • 270.Mahoney KM, Rennert PD, Freeman GJ. Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov. 2015;14:561-84. doi: 10.1038/nrd4591. PMID:26228759 [DOI] [PubMed] [Google Scholar]
  • 271.Gotwals P, Cameron S, Cipolletta D, Cremasco V, Crystal A, Hewes B, Mueller B, Quaratino S, Sabatos-Peyton C, Petruzzelli L, et al.. Prospects for combining targeted and conventional cancer therapy with immunotherapy. Nat Rev Cancer. 2017;17:286-301. doi: 10.1038/nrc.2017.17. PMID:28338065 [DOI] [PubMed] [Google Scholar]
  • 272.Demaria S, Coleman CN, Formenti SC. Radiotherapy: Changing the Game in Immunotherapy. Trends Cancer. 2016;2:286-94. doi: 10.1016/j.trecan.2016.05.002. PMID:27774519 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 273.Vanpouille-Box C, Formenti SC, Demaria S. Towards precision radiotherapy for use with immune checkpoint blockers. Clin Cancer Res. 2017. doi: 10.1158/1078-0432.CCR-16-0037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 274.Galluzzi L, Bravo-San Pedro JM, Demaria S, Formenti SC, Kroemer G. Activating autophagy to potentiate immunogenic chemotherapy and radiation therapy. Nat Rev Clin Oncol. 2017;14:247-58. doi: 10.1038/nrclinonc.2016.183. PMID:27845767 [DOI] [PubMed] [Google Scholar]
  • 275.Melero I, Berraondo P, Rodriguez-Ruiz ME, Perez-Gracia JL. Making the Most of Cancer Surgery with Neoadjuvant Immunotherapy. Cancer Discov. 2016;6:1312-4. doi: 10.1158/2159-8290.CD-16-1109. PMID:27920139 [DOI] [PubMed] [Google Scholar]
  • 276.Roschewski M, Staudt LM, Wilson WH. Diffuse large B-cell lymphoma-treatment approaches in the molecular era. Nat Rev Clin Oncol. 2014;11:12-23. doi: 10.1038/nrclinonc.2013.197. PMID:24217204 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 277.Zhang F, Yang J, Li H, Liu M, Zhang J, Zhao L, Wang L, LingHu R, Feng F, Gao X, et al.. Combating rituximab resistance by inducing ceramide/lysosome-involved cell death through initiation of CD20-TNFR1 co-localization. Oncoimmunology. 2016;5:e1143995. doi: 10.1080/2162402X.2016.1143995. PMID:27467962 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 278.Posadas EM, Limvorasak S, Figlin RA. Targeted therapies for renal cell carcinoma. Nat Rev Nephrol. 2017;13:496-511. doi: 10.1038/nrneph.2017.82. PMID:28691713 [DOI] [PubMed] [Google Scholar]
  • 279.Draghiciu O, Boerma A, Hoogeboom BN, Nijman HW, Daemen T. A rationally designed combined treatment with an alphavirus-based cancer vaccine, sunitinib and low-dose tumor irradiation completely blocks tumor development. Oncoimmunology. 2015;4:e1029699. doi: 10.1080/2162402X.2015.1029699. PMID:26451295 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 280.Blick C, Ritchie AWS, Eisen T, Stewart GD. Improving outcomes in high-risk, nonmetastatic renal cancer: new data and ongoing trials. Nat Rev Urol. 2017;in press. doi: 10.1038/nrurol.2017.123. PMID:28762388 [DOI] [PubMed] [Google Scholar]
  • 281.Lopez JS, Banerji U. Combine and conquer: challenges for targeted therapy combinations in early phase trials. Nat Rev Clin Oncol. 2017;14:57-66. doi: 10.1038/nrclinonc.2016.96. PMID:27377132 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 282.Galluzzi L, Kepp O, Vander Heiden MG, Kroemer G. Metabolic targets for cancer therapy. Nat Rev Drug Discov. 2013;12:829-46. doi: 10.1038/nrd4145. PMID:24113830 [DOI] [PubMed] [Google Scholar]
  • 283.Pol J, Bloy N, Buque A, Eggermont A, Cremer I, Sautes-Fridman C, Galon J, Tartour E, Zitvogel L, Kroemer G, et al.. Trial Watch: Peptide-based anticancer vaccines. Oncoimmunology. 2015;4:e974411. doi: 10.4161/2162402X.2014.974411. PMID:26137405 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 284.Le Noci V, Sommariva M, Tortoreto M, Zaffaroni N, Campiglio M, Tagliabue E, Balsari A, Sfondrini L. Reprogramming the lung microenvironment by inhaled immunotherapy fosters immune destruction of tumor. Oncoimmunology. 2016;5:e1234571. doi: 10.1080/2162402X.2016.1234571. PMID:27999750 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 285.Iribarren K, Bloy N, Buque A, Cremer I, Eggermont A, Fridman WH, Fucikova J, Galon J, Spisek R, Zitvogel L, et al.. Trial Watch: Immunostimulation with Toll-like receptor agonists in cancer therapy. Oncoimmunology. 2016;5:e1088631. doi: 10.1080/2162402X.2015.1088631. PMID:27141345 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 286.Junt T, Barchet W. Translating nucleic acid-sensing pathways into therapies. Nat Rev Immunol. 2015;15:529-44. doi: 10.1038/nri3875. PMID:26292638 [DOI] [PubMed] [Google Scholar]
  • 287.Hennessy EJ, Parker AE, O'Neill LA. Targeting Toll-like receptors: emerging therapeutics? Nat Rev Drug Discov. 2010;9:293-307. doi: 10.1038/nrd3203. PMID:20380038 [DOI] [PubMed] [Google Scholar]
  • 288.Hsieh JJ, Purdue MP, Signoretti S, Swanton C, Albiges L, Schmidinger M, Heng DY, Larkin J, Ficarra V. Renal cell carcinoma. Nat Rev Dis Primers. 2017;3:17009. doi: 10.1038/nrdp.2017.9. PMID:28276433 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 289.Roselli M, Formica V, Cereda V, Jochems C, Richards J, Grenga I, Orlandi A, Ferroni P, Guadagni F, Schlom J. The association of clinical outcome and peripheral T-cell subsets in metastatic colorectal cancer patients receiving first-line FOLFIRI plus bevacizumab therapy. Oncoimmunology. 2016;5:e1188243. doi: 10.1080/2162402X.2016.1188243. PMID:27622042 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 290.Baker LC, Boult JK, Thomas M, Koehler A, Nayak T, Tessier J, Ooi CH, Birzele F, Belousov A, Zajac M, et al.. Acute tumour response to a bispecific Ang-2-VEGF-A antibody: insights from multiparametric MRI and gene expression profiling. Br J Cancer. 2016;115:691-702. doi: 10.1038/bjc.2016.236. PMID:27529514 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 291.Klein C, Schaefer W, Regula JT. The use of CrossMAb technology for the generation of bi- and multispecific antibodies. MAbs. 2016;8:1010-20. doi: 10.1080/19420862.2016.1197457. PMID:27285945 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 292.Tampellini M, Sonetto C, Scagliotti GV. Novel anti-angiogenic therapeutic strategies in colorectal cancer. Expert Opin Investig Drugs. 2016;25:507-20. doi: 10.1517/13543784.2016.1161754. PMID:26938715 [DOI] [PubMed] [Google Scholar]
  • 293.Chang DK, Peterson E, Sun J, Goudie C, Drapkin RI, Liu JF, Matulonis U, Zhu Q, Marasco WA. Anti-CCR4 monoclonal antibody enhances antitumor immunity by modulating tumor-infiltrating Tregs in an ovarian cancer xenograft humanized mouse model. Oncoimmunology. 2016;5:e1090075. doi: 10.1080/2162402X.2015.1090075. PMID:27141347 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 294.Wilcox RA. Mogamulizumab: 2 birds, 1 stone. Blood. 2015;125:1847-8. doi: 10.1182/blood-2015-02-625251. PMID:25792728 [DOI] [PubMed] [Google Scholar]
  • 295.Cassier PA, Italiano A, Gomez-Roca CA, Le Tourneau C, Toulmonde M, Cannarile MA, Ries C, Brillouet A, Muller C, Jegg AM, et al.. CSF1R inhibition with emactuzumab in locally advanced diffuse-type tenosynovial giant cell tumours of the soft tissue: a dose-escalation and dose-expansion phase 1 study. Lancet Oncol. 2015;16:949-56. doi: 10.1016/S1470-2045(15)00132-1. PMID:26179200 [DOI] [PubMed] [Google Scholar]
  • 296.Cannarile MA, Weisser M, Jacob W, Jegg AM, Ries CH, Ruttinger D. Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J Immunother Cancer. 2017;5:53. doi: 10.1186/s40425-017-0257-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 297.Casbon AJ, Lohela M, Werb Z. Delineating CSF-1-dependent regulation of myeloid cell diversity in tumors. Oncoimmunology. 2015;4:e1008871. doi: 10.1080/2162402X.2015.1008871. PMID:26155427 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 298.Escudier B, Szczylik C, Porta C, Gore M. Treatment selection in metastatic renal cell carcinoma: expert consensus. Nat Rev Clin Oncol. 2012;9:327-37. doi: 10.1038/nrclinonc.2012.59. PMID:22473096 [DOI] [PubMed] [Google Scholar]
  • 299.Marabelle A, Kohrt H, Levy R. Intratumoral anti-CTLA-4 therapy: enhancing efficacy while avoiding toxicity. Clin Cancer Res. 2013;19:5261-3. doi: 10.1158/1078-0432.CCR-13-1923. PMID:23965900 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 300.Fransen MF, van der Sluis TC, Ossendorp F, Arens R, Melief CJ. Controlled local delivery of CTLA-4 blocking antibody induces CD8+ T-cell-dependent tumor eradication and decreases risk of toxic side effects. Clin Cancer Res. 2013;19:5381-9. doi: 10.1158/1078-0432.CCR-12-0781. PMID:23788581 [DOI] [PubMed] [Google Scholar]
  • 301.Aranda F, Vacchelli E, Eggermont A, Galon J, Fridman WH, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Immunostimulatory monoclonal antibodies in cancer therapy. Oncoimmunology. 2014;3:e27297. doi: 10.4161/onci.27297. PMID:24701370 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 302.Galluzzi L, Vacchelli E, Fridman WH, Galon J, Sautes-Fridman C, Tartour E, Zucman-Rossi J, Zitvogel L, Kroemer G. Trial Watch: Monoclonal antibodies in cancer therapy. Oncoimmunology. 2012;1:28-37. doi: 10.4161/onci.1.1.17938. PMID:22720209 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 303.Shi Y, Du L, Lin L, Wang Y. Tumour-associated mesenchymal stem/stromal cells: emerging therapeutic targets. Nat Rev Drug Discov. 2017;16:35-52. doi: 10.1038/nrd.2016.193. PMID:27811929 [DOI] [PubMed] [Google Scholar]
  • 304.Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 2017;14:399-416. doi: 10.1038/nrclinonc.2016.217. PMID:28117416 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 305.Engblom C, Pfirschke C, Pittet MJ. The role of myeloid cells in cancer therapies. Nat Rev Cancer. 2016;16:447-62. doi: 10.1038/nrc.2016.54. PMID:27339708 [DOI] [PubMed] [Google Scholar]
  • 306.Weichselbaum RR, Liang H, Deng L, Fu YX. Radiotherapy and immunotherapy: A beneficial liaison? Nat Rev Clin Oncol. 2017;14:365-79. doi: 10.1038/nrclinonc.2016.211. PMID:28094262 [DOI] [PubMed] [Google Scholar]
  • 307.Smyth MJ, Ngiow SF, Ribas A, Teng MW. Combination cancer immunotherapies tailored to the tumour microenvironment. Nat Rev Clin Oncol. 2016;13:143-58. doi: 10.1038/nrclinonc.2015.209. PMID:26598942 [DOI] [PubMed] [Google Scholar]
  • 308.Khalil DN, Smith EL, Brentjens RJ, Wolchok JD. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol. 2016;13:394. doi: 10.1038/nrclinonc.2016.65. PMID:27118494 [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Oncoimmunology are provided here courtesy of Taylor & Francis

RESOURCES