Skip to main content
NIHPA Author Manuscripts logoLink to NIHPA Author Manuscripts
. Author manuscript; available in PMC: 2017 Dec 4.
Published in final edited form as: JAMA Neurol. 2016 Jan;73(1):36–42. doi: 10.1001/jamaneurol.2015.3145

Frequency, Risk Factors, and Outcome of Coexistent Small Vessel Disease and Intracranial Arterial Stenosis

Hyung-Min Kwon 1, Michael J Lynn 2, Tanya N Turan 3, Colin P Derdeyn 4, David Fiorella 5, Bethany F Lane 6, Jean Montgomery 2, L Scott Janis 7, Zoran Rumboldt 8, Marc I Chimowitz 3; for the SAMMPRIS Investigators
PMCID: PMC5714507  NIHMSID: NIHMS911961  PMID: 26618534

Abstract

Importance

Intracranial large artery stenosis (ICAS) and small vessel disease (SVD) may coexist. There are limited data on the frequency and risk factors for coexistent SVD and the effect of SVD on stroke recurrence in patients receiving medical treatment for ICAS.

Objective

To investigate the frequency and risk factors for SVD and the effect of SVD on stroke recurrence in patients with ICAS.

Design, Setting, and Participants

A post hoc analysis of the Stenting and Aggressive Medical Management for Preventing Recurrent Stroke in Intracranial Stenosis (SAMMPRIS) study, a prospective, multicenter clinical trial. Among 451 participants, 313 (69.4%) had baseline brain magnetic resonance imaging scans read centrally for SVD that was defined by any of the following: old lacunar infarction, grade 2 to 3 on the Fazekas scale (for high-grade white matter hyperintensities), or microbleeds. Patient enrollment in SAMMPRIS began November 25, 2008, and follow-up ended on April 30, 2013. Data analysis for the present study was performed from May 13, 2014, to July 29, 2015.

Main Outcomes and Measures

Risk factors in patients with vs without SVD and the association between SVD and other baseline risk factors with any ischemic stroke and ischemic stroke in the territory of the stenotic artery determined using proportional hazards regression.

Results

Of 313 patients, 155 individuals (49.5%) had SVD noted on baseline magnetic resonance imaging. Variables that were significantly higher in patients with SVD, reported as mean (SD), included age, 63.5 (10.5) years (P < .001), systolic blood pressure, 149 (22) mmHg (P < .001), glucose level, 130 (50) mg/dL (P = .03), and lower Montreal Cognitive Assessment scores (median, ≥24 [interquartile range, 20–26]; P = .02).Other significant variables were the number of patients with diabetes mellitus (88 of 155 [56.8%]; P = .003), coronary artery disease (46 [29.7%]; P = .004), stroke before the qualifying event (59 [38.1%]; P < .001), old infarct in the territory of the stenotic intracranial artery (88 [56.8%]; P < .001), and receiving antithrombotic therapy at the time of the qualifying event (109 [70.3%]; P = .005). The association between SVD and any ischemic stroke was nearly significant in the direction of a higher risk (18 [23.7%]); P = .07) for patients with SVD. On bivariate analysis, SVD was not associated with an increased risk on multivariable analyses (hazard ratio, 1.7 [95%CI, 0.8–3.8]; P = .20). In addition, SVD was not associated with an increased risk of stroke in the territory on either bivariate or multivariable analyses.

Conclusions and Relevance

Although SVD is common in patients with ICAS, the presence of SVD on baseline magnetic resonance imaging is not independently associated with an increased risk of stroke in patients with ICAS.

Keywords: Vascular disease, Risk factors, Atherosclerosis, Cerebrovascular circulation, Lacunar infarct

Introduction

Atherosclerosis of the large intracranial arteries is a common cause of stroke that is associated with a high risk of recurrent stroke.13 Intracranial arterial stenosis (ICAS) may coexist with disease in the small perforator vessels (termed small vessel disease [SVD]) that arise from the large basal arteries of the brain or their branches. The presence of SVD is inferred from the presence of prominent white matter hyperintensities, old lacunar infarcts, or cerebral microbleeds observed on brain imaging, which are strongly linked to each other4,5 and have been associated with a higher risk of stroke recurrence and cognitive decline.69

Although some studies1012 have suggested that patients with ICAS may be particularly prone to having coexistent SVD, there are limited data on the frequency and risk factors for coexistent SVD and the effect of SVD on stroke recurrence in patients with ICAS who receive medical treatment. The Stenting and Aggressive Medical Management for Preventing Recurrent Stroke in Intracranial Stenosis (SAMMPRIS) trial13,14 provided a unique opportunity to investigate these associations.

Methods

Study Population and Design

SAMMPRIS was a prospective, multicenter clinical trial funded by the National Institute of Neurological Disorders and Stroke. Enrollment began on November 25, 2008, and follow-up was completed on April 30, 2013. Data analysis for the present study was performed from May 13, 2014, to July 9, 2015. Participants included 451 patients with symptomatic ICAS randomized to aggressive medical management and percutaneous transluminal angioplasty and stenting or aggressive medical management alone. Details of the trial’s design and results of the comparison between medical management and percutaneous transluminal angioplasty and stenting have been published.13,14 Eligible patients were aged 30 to 80 years and had experienced nondisabling stroke or transient ischemic attack within 30 days before enrollment attributable to angiographically proved 70% to 99% stenosis of a major intracranial artery. The Medical University of South Carolina institutional review board approved the present study. All patients provided written informed consent. Participants did not receive financial reimbursement.

All patients enrolled in SAMMPRIS were required to undergo baseline brain imaging that was reviewed centrally by a neuroradiologist (Z.R.). Because magnetic resonance imaging (MRI) of the brain is farmore sensitive for diagnosing SVD compared with computed tomography of the brain, we excluded 138 patients who had baseline computed tomography alone or inadequate baseline MRI, leaving 313 patients (69.4%) for the present analysis.

Definition of SVD

All white matter hyperintensities and subcortical infarctson T2 or fluid-attenuated inversion recovery and lesions with low signal intensity on T2* gradient-echo images were evaluated by the SAMMPRIS central neuroradiology reader (Z.R.) to determine the presence of SVD, which was defined by the presence of any of the following: grade 2 to 3 for white matter hyperintensities on the Fazekas scale,15,16 old lacunar infarct, or cerebral microbleed (≥1). The boundaries of white matter hyperintensities and old lacunar infarcts were differentiated from acute ischemic lesions by visually coregistering fluid-attenuated inversion recovery images with diffusion-weighted images. Supratentorial lacunar infarcts were defined as subcortical infarcts that were 1.5 cm or less in the territory of perforator branches to the basal ganglia, thalamus, internal capsule, corona radiata, or centrum semi-ovale that had central signal intensity corresponding to the cerebrospinal fluid with a peripheral hyperintense rim on fluid-attenuated inversion recovery images.17 Infratentorial lacunar infarcts were defined as infarcts that were a size of 1.5 cm or less and found in the territory of perforator branches to the brainstem or cerebellum. Cerebral microbleeds were defined as focal, round, very low-signal intensity lesions (areas of signal loss) on gradient-echo imaging with a diameter of less than 10 mm.18

Statistical Analysis

We compared baseline risk factors between patients with vs without SVD for all patients enrolled in the trial (ie, both the percutaneous transluminal angioplasty and stenting and medical treatment groups) using the Fisher exact test (for percentages), independent-groups t test (for means), or Wilcoxon rank sum test (for medians). Among patients in the medical group, we evaluated the bivariate association of SVD and each of the other baseline risk factors with any ischemic stroke and with ischemic stroke in the territory of the stenotic artery using proportional hazards regression. To assess the effect of potential confounding factors on the association between SVD and each of the outcomes, we identified the baseline risk factors that were different between patients with and those without SVD (as described above) and also associated with each of the outcomes as selected using multivariable proportional hazards regression with the backwarde limination method. Candidate risk factors for multivariable analysis were those with P < .10 in the bivariate analyses described above. After the confounding risk factors were identified for each outcome, we estimated the adjusted hazard ratio for SVD using a proportional hazards regression model that included SVD and the confounding risk factors. Patients lost to follow-up and those who withdrew consent were censored at the last contact date. All reported P values are 2-sided and P < .05 was considered statistically significant. All analyses were performed from May 13, 2014, to July 29, 2015, using SAS, version 9.3 (SAS Institute Inc).

Results

Frequency and Risk Factors for SVD in Both Groups

Of the 313 patients in this analysis, 155 individuals (49.5%) had evidence of SVD on baseline brain MRI. Among these, 76 patients (49.0%) showed white matter hyperintensities of Fazekas grade 2 to 3 (isolated in 27 patients, with a lacune in 42, Microbleeds in 4, and a lacune and microbleeds in 3); 121 patients (78.1%) had an old lacune (isolatedin 72, with a microbleed alone in 4); and 14 patients (9.0%) had microbleeds (isolated in 3).

Demographics and baseline clinical features of participants with and without SVD are provided in Table 1. Variables that were significantly higher in patients with SVD, reported as mean (SD), included age, 63.5 (10.5) years (P < .001), systolic blood pressure, 149 (22) mmHg (P < .001), glucose level, 130 (50) mg/dL (P = .03) (to convert to millimoles per liter, multiply by 0.0555), and lower Montreal Cognitive Assessment (MoCA) scores (median, 24 [interquartile range, 20–26]; P = .02). Other significant variables were the number of patients with diabetes mellitus (88 [56.8%]; P = .003), coronary artery disease (46 [29.7%]; P = .004), stroke before the qualifying event (59 [38.1%]; P < .001), old infarct in the territory of the stenotic intracranial artery (88 [56.8%]; P < .001), and receiving antithrombotic therapy at the time of the qualifying event (109 [70.3%]; P = .005).

Table 1.

Baseline risk factors between patients with and without SVD

Risk factor Small Vessel Disease P-value*

No
(n=158)
Yes
(n=155)
Age (yrs) 56.8 ± 11.5 63.5 ± 10.5 < 0.0001
Female Gender 62 (39%) 64 (41%) 0.73
Non-white Race 46 (29%) 50 (32%) 0.62
History of Hypertension 134 (85%) 141 (91%) 0.12
Diabetes§ 63 (40%) 88 (57%) 0.003
History of Coronary Artery Disease 25 (16%) 46 (30%) 0.004
Stroke Prior to Qualifying Event 30 (19%) 59 (38%) < 0.0001
Not on Statin Use at Enrollment 25 (16%) 21 (14%) 0.63
NIH Stroke Scale > 1 55 (35%) 61 (39%) 0.48
Modified Rankin Grade ≥ 1 100 (64%) 113 (73%) 0.089
Systolic Blood Pressure (mmHg) 140 ± 21 (n=156) 149 ± 22 0.0006
Cholesterol (mg/dl) 155 ± 43 158 ± 48 (n=154) 0.52
LDL-C (mg/dl) 98 ± 37 98 ± 40 (n=154) 0.98
HDL-C (mg/dl) 38 ± 10 39 ± 11(n=154) 0.47
BMI (kg/m2) 30 ± 7 30 ± 6 0.36
Glucose (mg/dl) 118 ± 45 (n=155) 130 ± 50 (n=152) 0.025
Former or Current Smoker 100 (63%) 91/154 (59%) 0.49
Physical Activity Out of Target 111 (70%) 108/153 (71%) 0.99
MoCA Score Categories (n=152) (n=151) 0.027
  ≤ 18 18 (12%) 18 (12%)
  19–25 66 (43%) 87 (58%)
  ≥ 26 68 (45%) 46 (30%)
MoCA Score (n=152) (n=151) 0.022
25 (22 – 28) 24 (20 – 26)
Old Infarct in the Territory 27 (17%) 88 (57%) < 0.0001
Qualifying Event was Stroke 109 (69%) 109 (70%) 0.81
On an Antithrombotic at Qualifying Event 88 (56%) 109 (70%) 0.005
Time from Qualifying Event to Randomization (Days) 8 (4 – 20) 7 (4 – 18) 0.80
Symptomatic Artery 0.069
Internal Carotid Artery (ICA) 35 (22%) 34 (22%)
Middle Cerebral Artery (MCA) 78 (49%) 59 (38%)
Vertebral Artery 21 (13%) 21 (14%)
Basilar Artery 24 (15%) 41 (26%)
Percent Stenosis of Symptomatic Artery** 80 ± 7 81 ± 7 0.72
Categories of Percent Stenosis of the Symptomatic Artery** 0.99
  70–79% 75 (47%) 73 (47%)
  80–89% 65 (41%) 64 (41%)
  90–99% 18 (11%) 18 (12%)

Values are number (%), mean ± standard deviation or median (interquartile range).

*

Differences between groups were compared using the Fisher exact test (for percentages), independent-groups t test (for means), or Wilcoxon rank sum test (for medians).

§

History of diabetes mellitus or a baseline hemoglobin A1c of 6.5% or higher.

The target range for physical activity was 30 minutes or more of moderate exercise at least 3 times per week.

**

According to a reading of the angiogram by the site interventionist

LDL-C, Low density lipoprotein-cholesterol; HDL-C, high density lipoprotein cholesterol; BMI, body mass index; MoCA, Montreal Cognitive Assessment

Stroke Outcomes in Patients with and without SVD in the Medical Group

Table 2 reports the rates of all ischemic stroke and stroke in the territory of the stenotic artery in patients with and with-without SVD at 30 days, 1 year and 2 years in the medical group of SAMMPRIS. The association between SVD and any ischemic stroke was nearly statistically significant (P = .07) in the direction of a higher risk for patients with SVD, but there was no significant difference between patients with and without SVD for stroke in the territory (P = .16).

Table 2.

Recurrent strokes in patients with versus without Small Vessel Disease in the medical group in SAMMPRIS

Small Vessel Disease

No
(n=73)
Yes
(n=76)
P-value*
Any Ischemic Stroke
No. of Events (%) 9 (12.3) 18 (23.7) 0.07
Probability of Event (95% CI)
1 Month 4.1% (1.3 – 12.2) 8.0% (3.7 – 16.8)
1 Year 9.7% (4.8 – 19.3) 21.4% (13.7 – 32.6)
2 Years 11.1% (5.7 – 21.0) 22.8% (14.9 – 34.2)
Ischemic Stroke in the Territory of the Stenotic Artery
No. of Events (%) 7 (9.6) 13 (17.1) 0.16
Probability of Event (95% CI)
1 Month 2.8% (0.7 – 10.6) 6.7% (2.8 – 15.3)
1 Year 8.4% (3.9 – 17.8) 16.3% (9.6 – 27.0)
2 Years 9.9% (4.8 – 19.6) 16.3% (9.6 – 27.0)
*

The P value determined using a proportional hazards regression model with SVD was the only factor in the model.

Only 1 of 227 patients (0.4%) in the medical group of SAMMPRIS had an intracerebral hemorrhage (ICH) during follow-up; this patient had lacunar infarcts in the right caudate and both internal capsules, mild leukoaraiosis (Fazekas grade 1), and no microbleeds on baseline MRI. None of the 14 patients in the medical group with microbleeds observed on baseline MRI had evidence of an ICH during follow-up.

Baseline factors at a level of P < .10 for any ischemic stroke on bivariate analyses included SVD, female sex, hypertension, diabetes mellitus, not receiving a statin at enrollment, physical activity out of target range at enrollment (target was ≥30 minutes of moderate exercise at least 3 times per week), elevated high-density lipoprotein cholesterol and glucose levels, low MoCA score, stroke (rather than transient ischemic attack) as the qualifying event for the trial, old infarct in the territory of the stenotic artery on baseline brain imaging, and modified Rankin scale score of 1 or higher (eTable 1 in the Supplement). Among these factors after excluding SVD, the only factors that were independently associated with any ischemic stroke during follow-up in the multivariable analysis, reported as a hazard ratio (95% CI) were not receiving statin therapy at enrollment (3.7 [1.6–8.2]; P = .002), decrease in MoCA score (1.5 [1.1–2.1]; P = .02), presence of diabetes (2.4 [1.1–5.4]; P = .03), and modified Rankin scale score of 1 or higher (4.9 [1.2–21.2]; P = .03) (Table 3).

Table 3.

Multivariable analysis of baseline features vs any ischemic stroke in the medical group in SAMMPRIS*

Risk factor Hazard Ratio
(95% CI)
P-value
Not on Statin Therapy at Enrollment (Yes vs No) 3.7 (1.6 – 8.2) 0.0016
MoCA Score (5 point decrease) 1.5 (1.1 – 2.1) 0.018
Diabetes (Yes vs No) 2.4 (1.1 – 5.4) 0.028
Modified Rankin Grade (≥ 1 vs < 1) 4.9 (1.2 – 21.2) 0.031
*

The number of patients included was 145. Candidate variables for the multivariable analysis using proportional hazards regression included those other than small vessel disease at P < .10 in the bivariate analyses. The variables reported in this table were selected using the backward elimination method. Other variables included as candidates that were not selected were sex, history of hypertension, high-density lipoprotein cholesterol and glucose levels, physical activity out of target range (≥30 minutes of moderate exercise ≥3 times per week), qualifying event, and old infarcts in the territory of the stenotic artery.

The association between SVD and any ischemic stroke after adjusting for the potential confounders of MoCA score and diabetes (ie, the features that were different between patients with and without SVD and also associated with any ischemic stroke in the multivariable analysis) is shown in Table 4. This adjusted analysis indicates that SVD was not independently associated with ischemic stroke (hazard ratio, 1.7; 95% CI, 0.8–3.8; P = .20).

Table 4.

Adjusted analysis of association of small vessel disease and any ischemic stroke in the medical group of SAMMPRIS*

Risk factor Hazard Ratio
(95% CI)
P-value
Small Vessel Disease (Yes vs No) 1.7 (0.8 – 3.8) 0.20
MoCA Score (5 point decrease) 1.6 (1.1 – 2.1) 0.006
Diabetes (Yes vs No) 2.1 (0.9 – 4.7) 0.06
*

The number of patients included was 147. This proportional hazards regression model included small vessel disease plus MoCA score and diabetes mellitus, which were the only risk factors that were both different between patients with and without SVD and also related to the outcome of any ischemic stroke.

For the outcome of ischemic stroke in the territory of the stenotic artery, the baseline factors that were associated with P < .10 for ischemic stroke in the territory on bivariate analyses included female sex, hypertension, not receiving a statin at enrollment, physical activity out of target range at enrollment, elevated high-density lipoprotein cholesterol and total cholesterol levels, stroke as the qualifying event for the trial, old infarct in the territory of the stenotic artery on baseline brain imaging, and modified Rankin scale score of 1 or higher (eTable 2 in the Supplement). Among these factors, after excluding SVD, the only factors independently associated with ischemic stroke in the territory during follow-up were not receiving statin therapy at enrollment, old infarct in the territory of the stenotic artery, and modified Rankin scale score of 1 or higher (Table 5). Small vessel disease was not associated with ischemic stroke in the territory of the stenotic artery on baseline brain imaging on either bivariate analysis (P = .16) or multivariable analysis (P = .63) after adjusting for old infarct in the territory of the stenotic artery, which was the only baseline feature that was both different between patients with and without SVD and also associated with ischemic stroke in the territory of the stenotic artery.

Table 5.

Multivariable analysis of baseline features vs stroke in the territory in the medical group in SAMMPRIS*

Risk factor Hazard Ratio
(95% CI)
P-value
Absence of Statin Use at Enrollment (Yes vs No) 4.5 (1.9 – 11.2) 0.001
Old Infarct in the Territory (Yes vs No) 4.0 (1.5 – 10.3) 0.005
Modified Rankin Grade (≥ 1 vs < 1) 4.3 (1.001 – 18.7) 0.049
*

The number of patients included was 149. Candidate variables for the multivariable analysis using proportional hazards regression included those other than small vessel disease at P < .10 in the bivariate analyses. The variables reported in this table were selected using the backward elimination method. Other variables included as candidates that were not selected were: sex, history of hypertension, total cholesterol and high-density lipoprotein cholesterol levels, physical activity out of target range (≥30 minutes of moderate exercise≥3 times per week), and qualifying event.

Discussion

To our knowledge, SAMMPRIS provides the largest cohort yet to study the frequency and risk factors of coexistent SVD in patients with ICAS. This analysis shows that SVD as defined by brain imaging features occurs in 50% of patients with recently symptomatic, high-grade ICAS and is associated with the typical risk factors associated with SVD: older age, diabetes, and poorly controlled blood pressure.8,11

The higher frequency of previous stroke and coronary disease in patients with SVD in SAMMPRIS is likely explained by the higher burden of risk factors in these patients. Those with previous stroke or coronary disease would typically receive antithrombotic therapy, which likely explains the higher use of antithrombotic agents at the time of the qualifying transient ischemic attack or stroke in SAMMPRIS participants with SVD (Table 1). The association of SVD and cognitive impairment is well established9,19 and is likely the explanation for the significantly lower MoCA scores at baseline in patients with SVD compared with patients without SVD (Table 1).

Although the observed rates of any ischemic stroke in patients with SVD vs those without SVD in the medical group in SAMMPRIS (Table 2) suggest that patients with SVD may be at higher risk of any ischemic stroke, the multivariable analyses indicated that SVD is not independently associated with any ischemic stroke (Table 4). This implies that the numerically higher stroke rate in patients with SVD (Table 2) is associated with other baseline features with which SVD is associated (eg, diabetes and low MoCA score) (Table 4). These findings are distinct from previous studies1921 that have indicated that white matter hyperintensities or silent lacunar infarcts are associated with an increased risk of stroke even after controlling for vascular risk factors.

The association between diabetes and increased risk of stroke is well established22,23 but the explanation for the association between low MoCA score and increased risk of any ischemic stroke in the medical group in SAMMPRIS is less apparent. It is possible that this association may be explained by a higher cumulative burden of stroke risk factors in patients with a low MoCA score or that a low MoCA score may be a marker of severe underlying pathological changes in the penetrating arteries that could have increased the risk of stroke, particularly lacunar stroke, in patients receiving medical treatment in SAMMPRIS.

Although a low MoCA score was associated with an increased risk of any ischemic stroke during follow-up, it was not associated with an increased risk of stroke in the territory of the stenotic artery (eTable 2 in the Supplement). This difference may be explained by the relative frequency of lacunar infarction caused by SVD during follow-up in compared with out of the territory of the stenotic artery, that is, the frequency of lacunar infarction in the territory of the stenotic artery from coincidental SVD (even if more severe when associated with low MoCA scores) is low compared with the more common mechanisms of stroke from ICAS (ie, artery-to-artery embolism and hypoperfusion).24 However, it is likely that a high proportion of strokes outside of the territory of the stenotic artery during follow-up in SAMMPRIS patients who were prescreened for a known cardioembolic source and other vascular disorders were caused by lacunar infarctions from SVD.

Previous studies25,26 have suggested hat patients with leukoaraiosis and microbleeds are at increased risk of ICH. However, in both SAMMPRIS and the Warfarin-Aspirin Symptomatic Intracranial Disease (WASID) trial,27 the frequency of ICH in patients receiving medical treatment was low despite the high frequency of SVD in patients with ICAS and the use of combination aspirin and clopidogrel for 90 days followed by aspirin alone in SAMMPRIS and the use of warfarin in one of the arms of the WASID trial. It is likely that the effective blood pressure–lowering protocol used in SAMMPRIS contributed to the low rate of ICH in the medical arm of the trial. However, blood pressure control was not nearly as effective in WASID28 and yet those patients also had a low rate of ICH (only 2 of 289 patients receiving warfarin had an ICH during a mean follow-up of 1.8 years27).

The strengths of our study are that the data were derived from a large, prospective, multicenter study; systematic MRI-based assessment of SVD was used; and the protocol was driven by follow-up and adjudication of events. The major weaknesses are the post hoc analysis, the possibility that some patients with isolated lacunar infarcts who were defined as having SVD may have had an alternative cause of the lacunar infarct (eg, branch artery atherosclerosis at the site of the ICAS), and the limited statistical power despite the fact that this is the largest cohort of patients described with coexistent SVD and ICAS.

Conclusions

Patients with recent symptoms of severe ICAS have a high frequency of SVD based on brain imaging features. Patients with ICAS who are at particularly high risk of coexistent SVD are older, diabetic, have higher baseline systolic blood pressure and glucose levels, and have lower cognitive scores. Patients with ICAS and coexistent SVD may be at higher risk of any ischemic stroke; however, SVD is not independently associated with an increased risk of any ischemic stroke or stroke in the territory of the stenotic artery.

Supplementary Material

2

Acknowledgments

This study was funded by a research grant (U01 NS058728) from the US Public Health Service National Institute of Neurological Disorders and Stroke (NINDS). In addition, the following Clinical and Translational Science Awards, funded by the National Institutes of Health, provided local support for the evaluation of patients in the trial: Medical University of South Carolina (UL1RR029882), University of Florida (UL1RR029889), University of Cincinnati (UL1RR029890), and University of California, San Francisco (UL1RR024131).

Corporate Support: Stryker Neurovascular (formerly Boston Scientific Neurovascular) provided study devices and supplemental funding for third party device distribution, site monitoring, and study auditing. This research was also supported by the Investigator-Sponsored Study Program of AstraZeneca, which donated rosuvastatin (Crestor) to study patients.

Vendors: INTERVENT provided the lifestyle modification program to the study at a discounted rate. The Regulatory and Clinical Research Institute (RCRI) (Minneapolis, MN) provided assistance in designing the site monitoring processes and perform the site monitoring visits. The VA Cooperative Studies Program Clinical Research Pharmacy Coordinating Center (Albuquerque, NM) handled the procurement, labeling, distribution, and inventory management of the study devices and rosuvastatin. Walgreens pharmacies provided study medications except rosuvastatin to patients at a discounted price (paid for by the study).

Michael J. Lynn, MS reports grants from National Institute of Neurological Disorders and Stroke during the conduct of the study.

Tanya N. Turan, MD reports a K23 grant from NIH/NINDS unrelated to this project; personal fees from Gore and Boehriner Ingelheim for participating as a stroke adjudicator in clinical trials unrelated to this work.

Colin Derdeyn, MD has relationships with companies that manufacture medical devices for the treatment of cerebovascular disease in general, although none directly involved in this study. These are: W.L. Gore and Associates (Scientific Advisory Board and Consultant), Microvention, Inc (Angiographic Core Lab for clinical trial); Penumbra, Inc (DSMB member for clinical trial); Pulse Therapeutics (Chair, Scientific Advisory Board).

David Fiorella, MD, PhD reports Siemens, Microvention, Sequent: Institutional payment for research /salary support. Covidien Ev3, Cordis consulting fees. Codman& Shurtleff (REVIVE) royalties. Vascular Simulators LLC, TDC Technologies & CVSL ownership and stock interests.

Zoran Rumboldt, MD reports research support from Bayer unrelated to this study. He also has relationship with Bracco Diagnostics (speaker/consultant), not related to this project.

Marc Chimowitz, MBChB reports a grant from NIH/NINDS related to this study. He also reports other grants from NIH/NINDS and personal fees from Gore Associates, Merck /Parexel, and Medtronic for participating as a stroke adjudicator or data safety monitoring board member on clinical trials unrelated to the submitted work. He also reports personal fees as an Expert Witness in medical legal cases related to stroke.

Footnotes

Disclosures

Hyung-Min Kwon, MD, PhD reports no disclosures.

Bethany F. Lane, RN reports no disclosures.

Jean Montgomery, RN reports no disclosures.

L. Scott Janis, PhD reports no disclosures.

References

  • 1.Arenillas JF. Intracranial atherosclerosis: current concepts. Stroke. 2011;42:S20–23. doi: 10.1161/STROKEAHA.110.597278. [DOI] [PubMed] [Google Scholar]
  • 2.Wong KS, Li H. Long-term mortality and recurrent stroke risk among Chinese stroke patients with predominant intracranial atherosclerosis. Stroke. 2003;34:2361–2366. doi: 10.1161/01.STR.0000089017.90037.7A. [DOI] [PubMed] [Google Scholar]
  • 3.Kasner SE, Chimowitz MI, Lynn MJ, et al. Predictors of ischemic stroke in the territory of a symptomatic intracranial arterial stenosis. Circulation. 2006;113:555–63. doi: 10.1161/CIRCULATIONAHA.105.578229. [DOI] [PubMed] [Google Scholar]
  • 4.Igase M, Tabara Y, Igase K, et al. Asymptomatic cerebral microbleeds seen in healthy subjects have a strong association with asymptomatic lacunar infarction. Circ J. 2009;73:530–533. doi: 10.1253/circj.cj-08-0764. [DOI] [PubMed] [Google Scholar]
  • 5.Kato H, Izumiyama M, Izumiyama K, Takahashi A, Itoyama Y. Silent cerebral microbleeds on T2*-weighted MRI: correlation with stroke subtype, stroke recurrence, and leukoaraiosis. Stroke. 2002;33:1536–1540. doi: 10.1161/01.str.0000018012.65108.86. [DOI] [PubMed] [Google Scholar]
  • 6.Lim JS, Kwon HM. Risk of "silent stroke" in patients older than 60 years: risk assessment and clinical perspectives. Clin Interv Aging. 2010;5:239–251. doi: 10.2147/cia.s7382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Inzitari D. Leukoaraiosis: an independent risk factor for stroke? Stroke. 2003;34:2067–2071. doi: 10.1161/01.STR.0000080934.68280.82. [DOI] [PubMed] [Google Scholar]
  • 8.Kim BJ, Lee SH. Cerebral Microbleeds: Their associated factors, radiologic findings, and clinical implications. J Stroke. 2013;15:153–163. doi: 10.5853/jos.2013.15.3.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Benjamin P, Lawrence AJ, Lambert C, et al. Strategic lacunes and their relationship to cognitive impairment in cerebral small vessel disease. Neuroimage Clin. 2014;4:828–837. doi: 10.1016/j.nicl.2014.05.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Chutinet A, Biffi A, Kanakis A, Fitzpatrick KM, Furie KL, Rost NS. Severity of leukoaraiosis in large vessel atherosclerotic disease. AJNR Am J Neuroradiol. 2012;33:1591–1595. doi: 10.3174/ajnr.A3015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Park JH, Kwon HM, Lee J, Kim DS, Ovbiagele B. Association of intracranial atherosclerotic stenosis with severity of white matter hyperintensities. Eur J Neurol. 2015;22:44–52. doi: 10.1111/ene.12431. [DOI] [PubMed] [Google Scholar]
  • 12.Lee SJ, Kim JS, Lee KS, et al. The leukoaraiosis is more prevalent in the large artery atherosclerosis stroke subtype among Korean patients with ischemic stroke. BMC Neurol. 2008;8:31. doi: 10.1186/1471-2377-8-31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Chimowitz MI, Lynn MJ, Derdeyn CP, et al. Stenting versus aggressive medical therapy for intracranial arterial stenosis. N Engl J Med. 2011;365:993–1003. doi: 10.1056/NEJMoa1105335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Derdeyn CP, Chimowitz MI, Lynn MJ, et al. Aggressive medical treatment with or without stenting in high-risk patients with intracranial artery stenosis (SAMMPRIS): the final results of a randomised trial. Lancet. 2014;383:333–341. doi: 10.1016/S0140-6736(13)62038-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Scheltens P, Barkhof F, Leys D, et al. A semiquantative rating scale for the assessment of signal hyperintensities on magnetic resonance imaging. J Neurol Sci. 1993;114:7–12. doi: 10.1016/0022-510x(93)90041-v. [DOI] [PubMed] [Google Scholar]
  • 16.Neumann-Haefelin T, Hoelig S, Berkefeld J, et al. Leukoaraiosis is a risk factor for symptomatic intracerebral hemorrhage after thrombolysis for acute stroke. Stroke. 2006;37:2463–2466. doi: 10.1161/01.STR.0000239321.53203.ea. [DOI] [PubMed] [Google Scholar]
  • 17.Bokura H, Kobayashi S, Yamaguchi S. Distinguishing silent lacunar infarction from enlarged Virchow-Robin spaces: a magnetic resonance imaging and pathological study. J Neurol. 1998;245:116–122. doi: 10.1007/s004150050189. [DOI] [PubMed] [Google Scholar]
  • 18.Werring DJ, Coward LJ, Losseff NA, Jager HR, Brown MM. Cerebral microbleeds are common in ischemic stroke but rare in TIA. Neurology. 2005;65:1914–8. doi: 10.1212/01.wnl.0000188874.48592.f7. [DOI] [PubMed] [Google Scholar]
  • 19.Debette S, Beiser A, DeCarli C, et al. Association of MRI markers of vascular brain injury with incident stroke, mild cognitive impairment, dementia, and mortality: the Framingham Offspring Study. Stroke. 2010;41:600–606. doi: 10.1161/STROKEAHA.109.570044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Vermeer SE, Longstreth WT, Jr, Koudstaal PJ. Silent brain infarcts: a systematic review. Lancet Neurol. 2007;6:611–619. doi: 10.1016/S1474-4422(07)70170-9. [DOI] [PubMed] [Google Scholar]
  • 21.Kim GM, Park KY, Avery R, et al. Extensive leukoaraiosis is associated with high early risk of recurrence after ischemic stroke. Stroke. 2014;45:479–485. doi: 10.1161/STROKEAHA.113.003004. [DOI] [PubMed] [Google Scholar]
  • 22.Hill MD. Stroke and diabetes mellitus. Handb Clin Neurol. 2014;126:167–174. doi: 10.1016/B978-0-444-53480-4.00012-6. [DOI] [PubMed] [Google Scholar]
  • 23.Tsai CF, Anderson N, Thomas B, Sudlow CL. Risk factors for ischemic stroke and its subtypes in Chinese vs. Caucasians: Systematic review and meta-analysis. Int J Stroke. 2015;10:485–493. doi: 10.1111/ijs.12508. [DOI] [PubMed] [Google Scholar]
  • 24.López-Cancio E, Matheus MG, Romano JG, et al. Infarct patterns, collaterals and likely causative mechanisms of stroke in symptomatic intracranial atherosclerosis. Cerebrovasc Dis. 2014;37:417–422. doi: 10.1159/000362922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Folsom AR, Yatsuya H, Mosley TH, Jr, Psaty BM, Longstreth WT., Jr Risk of intraparenchymal hemorrhage with magnetic resonance imaging-defined leukoaraiosis and brain infarcts. Ann Neurol. 2012;71:552–559. doi: 10.1002/ana.22690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Charidimou A, Werring DJ. Cerebral microbleeds as a predictor of macrobleeds: what is the evidence? Int J Stroke. 2014;9:457–459. doi: 10.1111/ijs.12280. [DOI] [PubMed] [Google Scholar]
  • 27.Chimowitz MI, Lynn MJ, Howlett-Smith H, et al. Comparison of warfarin and aspirin for symptomatic intracranial arterial stenosis. N Engl J Med. 2005;352:1305–16. doi: 10.1056/NEJMoa043033. [DOI] [PubMed] [Google Scholar]
  • 28.Turan TN, Lynn M, Cotsonis G, Chaturvedi S, Chimowitz M for the WASID Trial Investigators. Relationship between blood pressure and stroke recurrence in patients with intracranial arterial stenosis. Circulation. 2007;115:2969–2975. doi: 10.1161/CIRCULATIONAHA.106.622464. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

2

RESOURCES