Skip to main content
Wiley Open Access Collection logoLink to Wiley Open Access Collection
. 2016 Nov 23;23(1):57–60. doi: 10.1002/chem.201604286

First‐Principles Calculation, Synthesis, and Catalytic Properties of Rh‐Cu Alloy Nanoparticles

Tokutaro Komatsu 1,2,, Hirokazu Kobayashi 1,3, Kohei Kusada 1, Yoshiki Kubota 4, Masaki Takata 5,6, Tomokazu Yamamoto 7, Syo Matsumura 7, Katsutoshi Sato 8,9, Katsutoshi Nagaoka 8,9, Hiroshi Kitagawa 1,10,11,
PMCID: PMC5724656  PMID: 27787925

Abstract

The first synthesis of pure Rh1−xCux solid‐solution nanoparticles is reported. In contrast to the bulk state, the solid‐solution phase was stable up to 750 °C. Based on facile density‐functional calculations, we made a prediction that the catalytic activity of Rh1−xCux can be maintained even with 50 at % replacement of Rh with Cu. The prediction was confirmed for the catalytic activities on CO and NOx conversions.

Keywords: copper, density-functional calculations, heterogeneous catalysis, nanoparticles, rhodium

Supporting information

As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re‐organized for online delivery, but are not copy‐edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.

Supplementary

T. Komatsu, H. Kobayashi, K. Kusada, Y. Kubota, M. Takata, T. Yamamoto, S. Matsumura, K. Sato, K. Nagaoka, H. Kitagawa, Chem. Eur. J. 2017, 23, 57.

Contributor Information

Dr. Tokutaro Komatsu, Email: komatsu.tokutaro@nihon-u.ac.jp

Prof. Dr. Hiroshi Kitagawa, Email: kitagawa@kuchem.kyoto-u.ac.jp

References

  • 1. Kobayashi H., Kusada K., Kitagawa H., Acc. Chem. Res. 2015, 48, 1551–1559. [DOI] [PubMed] [Google Scholar]
  • 2. Gonzalez S., Sousa C., Illas F., Int. J. Mod. Phys. B 2010, 24, 5128–5138. [Google Scholar]
  • 3. 
  • 3a. Foord J. S., Jones P. D., Surf. Sci. 1985, 152–153, [Google Scholar]; Part 1, 487–495; [Google Scholar]
  • 3b. Campbell C. T., Annu. Rev. Phys. Chem. 1990, 41, 775–837; [Google Scholar]
  • 3c. Gonzalez S., Sousa C., Illas F., J. Catal. 2006, 239, 431–440. [Google Scholar]
  • 4. 
  • 4a. Kacimi S., Barbier J., Taha R., Duprez D., Catal. Lett. 1993, 22, 343–350; [Google Scholar]
  • 4b. Reyes P., Pecchi G., Fierro J. L. G., Langmuir 2001, 17, 522–527; [Google Scholar]
  • 4c. Coq B., Dutartre R., Figueras F., Rouco A., J. Phys. Chem. 1989, 93, 4904–4908; [Google Scholar]
  • 4d. Chou S.-C., Yeh C.-T., Chang T.-H., J. Phys. Chem. B 1997, 101, 5828–5833; [Google Scholar]
  • 4e. Meitzner G., J. Chem. Phys. 1983, 78, 882; [Google Scholar]
  • 4f. Fernández-García M., Martínez-Arias A., Rodríguez-Ramos I., Ferreira-Aparicio P., Guerrero-Ruiz A., Langmuir 1999, 15, 5295–5302. [Google Scholar]
  • 5. Chakrabarti D. J., Laughlin D. E., Bull. of Alloy Phase Diagr. 1982, 2, 460–462. [Google Scholar]
  • 6. Priya S., Jacob K. T., J. Phase Equilib. 2000, 21, 342–349. [Google Scholar]
  • 7. Fritz A., Pitchon V., Appl. Catal. B 1997, 13, 1–25. [Google Scholar]
  • 8. Roy S., Hegde M. S., Madras G., Appl. Energy 2009, 86, 2283–2297. [Google Scholar]
  • 9. Garin F., Appl. Catal. A 2001, 222, 183–219. [Google Scholar]
  • 10. Choi K. I., Vannice M. A., J. Catal. 1991, 131, 22–35. [Google Scholar]
  • 11. Mendes F. M. T., Schmal M., Appl. Catal. A 1997, 163, 153–164. [Google Scholar]
  • 12. 
  • 12a. Hoffmann R., Rev. Mod. Phys. 1988, 60, 601–628; [Google Scholar]
  • 12b. Cohen M. H., Ganduglia-Pirovano M. V., Kudrnovský J., Phys. Rev. Lett. 1994, 72, 3222–3225; [DOI] [PubMed] [Google Scholar]
  • 12c. Gonzalez S., Illas F., Surf. Sci. 2005, 598, 144–155. [Google Scholar]
  • 13. 
  • 13a. Hammer B., Nørskov J. K. in Theoretical surface science and catalysis—calculations and concepts, Vol. 45 Academic Press, 2000, pp. 71–129; [Google Scholar]
  • 13b. Hammer B., Morikawa Y., Nørskov J. K., Phys. Rev. Lett. 1996, 76, 2141–2144; [DOI] [PubMed] [Google Scholar]
  • 13c. Illas F., López N., Ricart J. M., Clotet A., Conesa J. C., Fernández-García M., J. Phys. Chem. B 1998, 102, 8017–8023; [Google Scholar]
  • 13d. Nørskov J. K., Bligaard T., Rossmeisl J., Christensen C. H., Nat. Chem. 2009, 1, 37–46; [DOI] [PubMed] [Google Scholar]
  • 13e. Hammer B., Scheffler M., Phys. Rev. Lett. 1995, 74, 3487–3490. [DOI] [PubMed] [Google Scholar]
  • 14. Huey-Lin L., Duwez P., J. Less-Common Met. 1964, 6, 248–249. [Google Scholar]
  • 15. Sharif M. J., Yamazoe S., Tsukuda T., Top. Catal. 2014, 57, 1049–1053. [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re‐organized for online delivery, but are not copy‐edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.

Supplementary


Articles from Chemistry (Weinheim an Der Bergstrasse, Germany) are provided here courtesy of Wiley

RESOURCES