Abstract
The first synthesis of pure Rh1−xCux solid‐solution nanoparticles is reported. In contrast to the bulk state, the solid‐solution phase was stable up to 750 °C. Based on facile density‐functional calculations, we made a prediction that the catalytic activity of Rh1−xCux can be maintained even with 50 at % replacement of Rh with Cu. The prediction was confirmed for the catalytic activities on CO and NOx conversions.
Keywords: copper, density-functional calculations, heterogeneous catalysis, nanoparticles, rhodium
Supporting information
T. Komatsu, H. Kobayashi, K. Kusada, Y. Kubota, M. Takata, T. Yamamoto, S. Matsumura, K. Sato, K. Nagaoka, H. Kitagawa, Chem. Eur. J. 2017, 23, 57.
Contributor Information
Dr. Tokutaro Komatsu, Email: komatsu.tokutaro@nihon-u.ac.jp
Prof. Dr. Hiroshi Kitagawa, Email: kitagawa@kuchem.kyoto-u.ac.jp
References
- 1. Kobayashi H., Kusada K., Kitagawa H., Acc. Chem. Res. 2015, 48, 1551–1559. [DOI] [PubMed] [Google Scholar]
- 2. Gonzalez S., Sousa C., Illas F., Int. J. Mod. Phys. B 2010, 24, 5128–5138. [Google Scholar]
- 3.
- 3a. Foord J. S., Jones P. D., Surf. Sci. 1985, 152–153, [Google Scholar]; Part 1, 487–495; [Google Scholar]
- 3b. Campbell C. T., Annu. Rev. Phys. Chem. 1990, 41, 775–837; [Google Scholar]
- 3c. Gonzalez S., Sousa C., Illas F., J. Catal. 2006, 239, 431–440. [Google Scholar]
- 4.
- 4a. Kacimi S., Barbier J., Taha R., Duprez D., Catal. Lett. 1993, 22, 343–350; [Google Scholar]
- 4b. Reyes P., Pecchi G., Fierro J. L. G., Langmuir 2001, 17, 522–527; [Google Scholar]
- 4c. Coq B., Dutartre R., Figueras F., Rouco A., J. Phys. Chem. 1989, 93, 4904–4908; [Google Scholar]
- 4d. Chou S.-C., Yeh C.-T., Chang T.-H., J. Phys. Chem. B 1997, 101, 5828–5833; [Google Scholar]
- 4e. Meitzner G., J. Chem. Phys. 1983, 78, 882; [Google Scholar]
- 4f. Fernández-García M., Martínez-Arias A., Rodríguez-Ramos I., Ferreira-Aparicio P., Guerrero-Ruiz A., Langmuir 1999, 15, 5295–5302. [Google Scholar]
- 5. Chakrabarti D. J., Laughlin D. E., Bull. of Alloy Phase Diagr. 1982, 2, 460–462. [Google Scholar]
- 6. Priya S., Jacob K. T., J. Phase Equilib. 2000, 21, 342–349. [Google Scholar]
- 7. Fritz A., Pitchon V., Appl. Catal. B 1997, 13, 1–25. [Google Scholar]
- 8. Roy S., Hegde M. S., Madras G., Appl. Energy 2009, 86, 2283–2297. [Google Scholar]
- 9. Garin F., Appl. Catal. A 2001, 222, 183–219. [Google Scholar]
- 10. Choi K. I., Vannice M. A., J. Catal. 1991, 131, 22–35. [Google Scholar]
- 11. Mendes F. M. T., Schmal M., Appl. Catal. A 1997, 163, 153–164. [Google Scholar]
- 12.
- 12a. Hoffmann R., Rev. Mod. Phys. 1988, 60, 601–628; [Google Scholar]
- 12b. Cohen M. H., Ganduglia-Pirovano M. V., Kudrnovský J., Phys. Rev. Lett. 1994, 72, 3222–3225; [DOI] [PubMed] [Google Scholar]
- 12c. Gonzalez S., Illas F., Surf. Sci. 2005, 598, 144–155. [Google Scholar]
- 13.
- 13a. Hammer B., Nørskov J. K. in Theoretical surface science and catalysis—calculations and concepts, Vol. 45 Academic Press, 2000, pp. 71–129; [Google Scholar]
- 13b. Hammer B., Morikawa Y., Nørskov J. K., Phys. Rev. Lett. 1996, 76, 2141–2144; [DOI] [PubMed] [Google Scholar]
- 13c. Illas F., López N., Ricart J. M., Clotet A., Conesa J. C., Fernández-García M., J. Phys. Chem. B 1998, 102, 8017–8023; [Google Scholar]
- 13d. Nørskov J. K., Bligaard T., Rossmeisl J., Christensen C. H., Nat. Chem. 2009, 1, 37–46; [DOI] [PubMed] [Google Scholar]
- 13e. Hammer B., Scheffler M., Phys. Rev. Lett. 1995, 74, 3487–3490. [DOI] [PubMed] [Google Scholar]
- 14. Huey-Lin L., Duwez P., J. Less-Common Met. 1964, 6, 248–249. [Google Scholar]
- 15. Sharif M. J., Yamazoe S., Tsukuda T., Top. Catal. 2014, 57, 1049–1053. [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.