Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Nov 3;73(Pt 12):1820–1822. doi: 10.1107/S2056989017015778

Crystal structure of N-[6-amino-5-(benzo[d]thia­zol-2-yl)-3-cyano-4-methyl­sulfanyl-2-oxo-1,2-di­hydro­pyridin-1-yl]-4-methyl­benzene­sulfonamide di­methyl­formamide monosolvate

Rasha A Azzam a, Galal H Elgemeie a, Rasha E Elsayed a, Peter G Jones b,*
PMCID: PMC5730231  PMID: 29250394

In the title compound, the toluene­sulfonamide ring and the combined ring system involving the pyridone and benzo­thia­zole rings subtend an inter­planar angle of 39.86 (4)°. The pyridone and benzo­thiazyl rings are linked by an intra­molecular N—Hamine⋯Nthia­zole hydrogen bond. The mol­ecules are linked by hydrogen bonds and an S⋯O contact to form layers parallel to the bc plane.

Keywords: crystal structure, 2-pyridone, benzo­thia­zole, di­methyl­formamide

Abstract

In the title compound, C21H17N5O3S3·C3H7NO, the toluene­sulfonamide ring and the combined ring system involving the pyridone and benzo­thia­zole rings subtend an inter­planar angle of 39.86 (4)°. The pyridone and benzo­thiazyl rings are linked by the intra­molecular hydrogen bond N—Hamine⋯Nthia­zole. The DMF O atom accepts two classical hydrogen bonds. The mol­ecules are linked by hydrogen bonds and an S⋯O contact to form layers parallel to the bc plane.

Chemical context  

Cyano­ketene di­thio­acetals are versatile synthetic inter­mediates (Elgemeie et al., 2003a , 2015) that have been utilized as building blocks for the synthesis of a wide range of heterocyclic compounds (Elgemeie et al., 2009, 2017a ); they are also of general inter­est in pharmaceutical chemistry (Elgemeie & Abou-Zeid, 2015; Elgemeie et al., 2016). Recently, we have described the synthesis of various anti­metabolites starting from cyano­ketene di­thio­acetals and related compounds, viz. cyano­ketene S,S-acetals (Elgemeie, Mohamed, 2006), cyano­ketene N,S-acetals (Elgemeie et al. 2017b ), and cyano­ketene N,N-acetals (Elgemeie et al., 2003b ). As a part of this programme, the reaction of 2-(benzo[d]thia­zol-2-yl)-3,3-bis­(methyl­thio)­acrylo­nitrile (1) with N-(2-cyano­acet­yl)-4-methyl­benzene­sulfono­hydrazide (2) was investigated. The reaction between 1 and 2 in KOH–DMF gives an adduct for which four possible isomeric structures were considered (structures 36). Spectroscopic methods did not allow us to identify the product unambiguously and therefore the X-ray crystal structure was determined, confirming the exclusive presence of structure 6 in the solid state. The formation of 6 from the reaction of 1 and 2 is assumed to proceed via initial addition of the active methyl­ene carbon atom of 2 to the double bond of 1, followed by elimination of CH3SH and cyclization via addition of the NH group to the cyano group of benzo­thia­zole to give the favoured, kinetically and thermodynamically controlled product 6. The 1H NMR spectra of the product revealed the presence of an amino group at δ = 8.84 p.p.m. and a pyridine methyl­thio group at δ = 2.45 p.p.m. in solution. Compound 6 and its derivatives showed inter­esting preclinical biological results and are currently being patented (Elgemeie et al., 2017c ).graphic file with name e-73-01820-scheme1.jpg

Structural commentary  

The solid-state structure of 6 is shown in Fig. 1, the structure analysis thereby confirming the nature of the product. The mol­ecule essentially consists of two planes; the toluene­sulfonamide ring and the combined ring system involving the pyridone and benzo­thia­zole rings. The former has a r.m.s. deviation of 0.04 Å and the latter of 0.01 Å (including all direct substituents), and the inter­planar angle is 39.86 (4)°. The pyridone and benzo­thiazyl rings are held coplanar by the intra­molecular hydrogen bond N4—H03⋯N3 (Table 1). The contact N4—H02⋯N1 might also be classified as a hydrogen bond, with H⋯N 2.24 (2) Å, but its angle is only 105.7 (15)°. The nitro­gen N4 is planar (angle sum 359.7°) but N1 is pyramidalized (343.9°).

Figure 1.

Figure 1

The structure of the title compound in the crystal. Displacement ellipsoids represent 50% probability levels.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H01⋯O99i 0.888 (18) 1.872 (18) 2.7583 (13) 175.7 (16)
N4—H02⋯O99 0.84 (2) 2.05 (2) 2.8334 (14) 154.6 (18)
N4—H03⋯N3 0.86 (2) 1.86 (2) 2.5760 (15) 139.9 (17)
N4—H02⋯N1 0.84 (2) 2.237 (19) 2.5932 (14) 105.7 (15)
C7—H7⋯O3ii 0.95 2.54 3.3161 (16) 139
C20—H20⋯O2iii 0.95 2.64 3.5605 (16) 164
C97—H97C⋯N5iv 0.98 2.59 3.504 (2) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Supra­molecular features  

The oyxgen atom of the di­methyl­formamide accepts two classical hydrogen bonds. The clearest packing feature is the formation of layers parallel to the bc plane (Fig. 2), in which the hydrogen bonds H02⋯O99, H7⋯O3ii and H97C⋯N5iv are involved (Table 1), together with the short contact S1⋯O3(x, 1 + y, z) 3.2662 (10) Å. The hydrogen bond H01⋯O99i connects the layers in the third dimension.

Figure 2.

Figure 2

Packing diagram of the title compound viewed perpendicular to the bc plane. Dashed lines indicate classical hydrogen bonds (thick) or C—H⋯X and S⋯O inter­actions (thin).

Database survey  

The 2-pyridone ring displays the usual features of a narrow angle at nitro­gen and a wide angle at the carbonyl carbon (Table 2). A database search gave 555 hits (745 values) for the 2-pyridone ring, with average angles of 123.9° at nitro­gen and 115.3° at C=O. No other structures could be found in which a 2-pyridone ring is attached at the 5-position to the C2 atom of a thia­zol ring.

Table 2. Selected bond angles (°).

N2—C11—C10 113.44 (10) C12—N2—C11 125.63 (10)

Synthesis and crystallization  

2-(Benzo[d]thia­zol-2-yl)-3,3-bis­(methyl­thio)­acrylo­nitrile (1) (2.78 g, 0.01 mol) was added to a solution of N-(2-cyano­acet­yl)-4-methyl­benzene­sulfono­hydrazide (2) (2.53 g., 0.01 mol) in dry DMF (30 ml) containing pulverized potassium hydrox­ide (0.56 g, 0.01 mol). The reaction mixture was refluxed with stirring for 2 h (TLC monitoring). After cooling, the reaction mixture was poured into ice-cold water and neutralized with HCl. The solid product was filtered off, washed with water, and dried. It was further purified from hot ethyl acetate: petroleum ether (1:1). The precipitated solid was crystallized from DMF to give yellow crystals, m.p. = 494 K, yield 78%.

IR (KBr, cm−1): ν 3393, 3208 (NH, NH2), 3072 (ArCH), 2922 (CH3), 2210 (CN), 1677 (CO), 1594 (C=N), 1350, 1170 (O=S=O); 1H NMR (400 MHz, DMSO-d 6): δ 2.42 (s, 3H, CH3), 2.45 (s, 3H, SCH3), 7.42 (d, J = 8 Hz, 2H, C6H4), 7.49 (t, J = 8 Hz, 1H, benzo­thia­zole H), 7.56 (t, J = 8 Hz, 1H, benzo­thia­zole H), 7.71 (d, J = 8 Hz, 2H, C6H4), 8.06 (d, J = 8 Hz, 1H, benzo­thia­zole H), 8.13 (d, J = 8 Hz, 1H, benzo­thia­zole H), 8.84 (br, 2H, NH2), 11.44 (s, 1H, NH). Analysis calculated for C21H17N5O3S3 (483.59): C 52.16, H 3.54, N 14.48%; found: C 52.11; H 3.48; N 14.50%; MS m/z (%): 484 (M+1, 1.03%), 384 (84%), 356 (100%), 283 (60%), 117 (77%).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. NH hydrogen atoms were refined freely. Methyl hydrogen atoms were refined as idealized rigid groups allowed to rotate but not tip (AFIX 137), with C—H 0.98 Å and H—C—H 109.5°. Other hydrogen atoms were included using a riding model starting from calculated positions (C—Haromatic 0.95, C—Hmethine 1.00 Å) with U iso(H) = 1.5U eq(C) for methyl H atoms and 1.2U eq(C) for all others.

Table 3. Experimental details.

Crystal data
Chemical formula C21H17N5O3S3·C3H7NO
M r 556.67
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 100
a, b, c (Å) 9.9916 (5), 11.7805 (6), 11.9776 (6)
α, β, γ (°) 88.809 (4), 79.159 (4), 67.245 (5)
V3) 1274.80 (12)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.34
Crystal size (mm) 0.5 × 0.4 × 0.2
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015)
T min, T max 0.972, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 68326, 7630, 6682
R int 0.036
(sin θ/λ)max−1) 0.726
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.033, 0.082, 1.04
No. of reflections 7630
No. of parameters 350
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.61, −0.36

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXS97 and SHELXL97 (Sheldrick, 2008), SHELXL2017 (Sheldrick, 2015) and XP (Siemens, 1994).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989017015778/hg5500sup1.cif

e-73-01820-sup1.cif (1.9MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017015778/hg5500Isup2.hkl

e-73-01820-Isup2.hkl (605.9KB, hkl)

CCDC reference: 1582798

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C21H17N5O3S3·C3H7NO Z = 2
Mr = 556.67 F(000) = 580
Triclinic, P1 Dx = 1.450 Mg m3
a = 9.9916 (5) Å Mo Kα radiation, λ = 0.71073 Å
b = 11.7805 (6) Å Cell parameters from 19857 reflections
c = 11.9776 (6) Å θ = 2.3–30.6°
α = 88.809 (4)° µ = 0.34 mm1
β = 79.159 (4)° T = 100 K
γ = 67.245 (5)° Tablet, yellow
V = 1274.80 (12) Å3 0.5 × 0.4 × 0.2 mm

Data collection

Oxford Diffraction Xcalibur Eos diffractometer 7630 independent reflections
Radiation source: fine-focus sealed X-ray tube 6682 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1 Rint = 0.036
ω–scan θmax = 31.1°, θmin = 2.3°
Absorption correction: multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015) h = −14→14
Tmin = 0.972, Tmax = 1.000 k = −16→16
68326 measured reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: mixed
wR(F2) = 0.082 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0337P)2 + 0.772P] where P = (Fo2 + 2Fc2)/3
7630 reflections (Δ/σ)max = 0.001
350 parameters Δρmax = 0.61 e Å3
0 restraints Δρmin = −0.36 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.20917 (3) 1.05419 (3) 0.44384 (2) 0.01311 (6)
C2 0.17424 (12) 0.91906 (10) 0.43367 (10) 0.0117 (2)
N3 0.13892 (11) 0.90316 (9) 0.33646 (8) 0.01298 (18)
C3A 0.13978 (12) 0.99549 (11) 0.26319 (10) 0.0130 (2)
C4 0.10933 (14) 1.00118 (12) 0.15352 (10) 0.0165 (2)
H4 0.086143 0.938809 0.122941 0.020*
C5 0.11382 (14) 1.10006 (12) 0.09052 (11) 0.0183 (2)
H5 0.094063 1.105310 0.015622 0.022*
C6 0.14719 (14) 1.19255 (12) 0.13597 (11) 0.0185 (2)
H6 0.148137 1.260042 0.091474 0.022*
C7 0.17885 (14) 1.18784 (11) 0.24436 (11) 0.0167 (2)
H7 0.201612 1.250566 0.274740 0.020*
C7A 0.17590 (13) 1.08692 (11) 0.30715 (10) 0.0134 (2)
C8 0.18455 (12) 0.82947 (10) 0.52233 (10) 0.0113 (2)
C9 0.21641 (12) 0.84103 (10) 0.63037 (10) 0.0119 (2)
C10 0.22112 (13) 0.75420 (11) 0.71150 (10) 0.0130 (2)
C11 0.19296 (13) 0.64662 (11) 0.69151 (10) 0.0126 (2)
C12 0.16105 (12) 0.72035 (10) 0.49822 (9) 0.0112 (2)
C13 0.25168 (14) 0.76681 (11) 0.82143 (11) 0.0161 (2)
C14 0.44732 (16) 0.90452 (15) 0.64337 (18) 0.0375 (4)
H14A 0.482909 0.832100 0.688175 0.056*
H14B 0.484276 0.965711 0.663453 0.056*
H14C 0.483227 0.879848 0.562098 0.056*
S2 0.28523 (3) 0.39958 (3) 0.51130 (2) 0.01363 (7)
S3 0.24867 (3) 0.97028 (3) 0.67335 (3) 0.01445 (7)
O1 0.18556 (10) 0.56948 (8) 0.75942 (7) 0.01650 (17)
O2 0.39814 (10) 0.43053 (8) 0.44172 (8) 0.01993 (19)
O3 0.22015 (11) 0.32617 (8) 0.46616 (8) 0.01989 (19)
N1 0.14142 (11) 0.53246 (9) 0.55209 (8) 0.01215 (18)
H01 0.0686 (19) 0.5236 (16) 0.6018 (15) 0.024 (4)*
N2 0.17243 (11) 0.63362 (9) 0.57965 (8) 0.01120 (18)
N4 0.13014 (12) 0.69607 (10) 0.40197 (9) 0.01497 (19)
H02 0.116 (2) 0.6318 (18) 0.3914 (16) 0.031 (5)*
H03 0.118 (2) 0.7536 (18) 0.3545 (16) 0.030 (5)*
N5 0.27764 (14) 0.77140 (11) 0.91037 (10) 0.0249 (2)
C15 0.35093 (13) 0.32693 (11) 0.63125 (10) 0.0142 (2)
C16 0.27838 (14) 0.25780 (11) 0.69169 (11) 0.0162 (2)
H16 0.196647 0.250018 0.667958 0.019*
C17 0.32777 (14) 0.20066 (11) 0.78708 (11) 0.0174 (2)
H17 0.278268 0.154275 0.829314 0.021*
C18 0.44894 (14) 0.21006 (11) 0.82216 (11) 0.0173 (2)
C19 0.51825 (14) 0.28051 (12) 0.76017 (11) 0.0184 (2)
H19 0.600293 0.288172 0.783499 0.022*
C20 0.46997 (13) 0.33974 (11) 0.66507 (11) 0.0168 (2)
H20 0.517566 0.388092 0.623997 0.020*
C21 0.50385 (16) 0.14328 (14) 0.92318 (12) 0.0247 (3)
H21A 0.419338 0.152364 0.984240 0.037*
H21B 0.567230 0.178318 0.950152 0.037*
H21C 0.560779 0.055639 0.901004 0.037*
C97 0.20835 (19) 0.51005 (15) −0.00331 (12) 0.0303 (3)
H97A 0.105803 0.547512 −0.014305 0.045*
H97B 0.258431 0.429728 −0.045575 0.045*
H97C 0.259893 0.563981 −0.031259 0.045*
C98 0.35300 (17) 0.44892 (18) 0.15100 (14) 0.0356 (4)
H98A 0.339323 0.441322 0.233601 0.053*
H98B 0.400502 0.507200 0.129860 0.053*
H98C 0.415656 0.368141 0.112343 0.053*
C99 0.08612 (15) 0.51648 (12) 0.19300 (11) 0.0186 (2)
H99 −0.003677 0.541604 0.165524 0.022*
N99 0.20970 (13) 0.49363 (11) 0.11715 (9) 0.0198 (2)
O99 0.07862 (10) 0.50763 (9) 0.29665 (7) 0.01853 (18)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01528 (13) 0.01090 (13) 0.01511 (13) −0.00706 (10) −0.00348 (10) 0.00176 (10)
C2 0.0104 (5) 0.0097 (5) 0.0145 (5) −0.0042 (4) −0.0008 (4) 0.0002 (4)
N3 0.0147 (4) 0.0121 (4) 0.0126 (4) −0.0060 (4) −0.0022 (3) 0.0015 (3)
C3A 0.0114 (5) 0.0121 (5) 0.0137 (5) −0.0038 (4) −0.0004 (4) 0.0013 (4)
C4 0.0173 (5) 0.0168 (5) 0.0156 (5) −0.0069 (4) −0.0032 (4) 0.0016 (4)
C5 0.0184 (6) 0.0200 (6) 0.0148 (5) −0.0059 (5) −0.0029 (4) 0.0046 (4)
C6 0.0188 (6) 0.0156 (6) 0.0195 (6) −0.0062 (5) −0.0020 (5) 0.0059 (4)
C7 0.0174 (5) 0.0130 (5) 0.0198 (6) −0.0067 (4) −0.0021 (4) 0.0038 (4)
C7A 0.0124 (5) 0.0122 (5) 0.0143 (5) −0.0042 (4) −0.0013 (4) 0.0020 (4)
C8 0.0114 (5) 0.0092 (5) 0.0130 (5) −0.0041 (4) −0.0016 (4) −0.0003 (4)
C9 0.0108 (5) 0.0108 (5) 0.0139 (5) −0.0041 (4) −0.0017 (4) −0.0015 (4)
C10 0.0140 (5) 0.0127 (5) 0.0123 (5) −0.0049 (4) −0.0032 (4) −0.0008 (4)
C11 0.0133 (5) 0.0126 (5) 0.0108 (5) −0.0039 (4) −0.0023 (4) −0.0005 (4)
C12 0.0115 (5) 0.0105 (5) 0.0113 (5) −0.0044 (4) −0.0007 (4) 0.0004 (4)
C13 0.0178 (5) 0.0139 (5) 0.0172 (6) −0.0060 (4) −0.0053 (4) 0.0001 (4)
C14 0.0149 (6) 0.0276 (8) 0.0685 (12) −0.0089 (6) −0.0016 (7) −0.0143 (8)
S2 0.01854 (14) 0.00982 (12) 0.01155 (13) −0.00509 (10) −0.00151 (10) −0.00011 (9)
S3 0.01584 (13) 0.01206 (13) 0.01707 (14) −0.00662 (10) −0.00418 (10) −0.00170 (10)
O1 0.0234 (4) 0.0140 (4) 0.0126 (4) −0.0076 (3) −0.0040 (3) 0.0024 (3)
O2 0.0211 (4) 0.0179 (4) 0.0164 (4) −0.0061 (4) 0.0033 (3) 0.0016 (3)
O3 0.0315 (5) 0.0121 (4) 0.0181 (4) −0.0088 (4) −0.0089 (4) −0.0005 (3)
N1 0.0155 (5) 0.0092 (4) 0.0131 (4) −0.0067 (4) −0.0018 (4) 0.0001 (3)
N2 0.0153 (4) 0.0090 (4) 0.0108 (4) −0.0063 (3) −0.0028 (3) 0.0000 (3)
N4 0.0237 (5) 0.0127 (5) 0.0129 (5) −0.0107 (4) −0.0062 (4) 0.0025 (4)
N5 0.0317 (6) 0.0252 (6) 0.0212 (6) −0.0117 (5) −0.0121 (5) 0.0009 (5)
C15 0.0168 (5) 0.0100 (5) 0.0139 (5) −0.0038 (4) −0.0017 (4) 0.0002 (4)
C16 0.0190 (6) 0.0137 (5) 0.0177 (6) −0.0080 (4) −0.0046 (4) 0.0019 (4)
C17 0.0210 (6) 0.0139 (5) 0.0172 (6) −0.0073 (5) −0.0030 (4) 0.0025 (4)
C18 0.0171 (5) 0.0147 (5) 0.0152 (5) −0.0013 (4) −0.0026 (4) −0.0005 (4)
C19 0.0130 (5) 0.0194 (6) 0.0208 (6) −0.0040 (4) −0.0030 (4) −0.0009 (5)
C20 0.0145 (5) 0.0151 (5) 0.0190 (6) −0.0054 (4) 0.0001 (4) −0.0003 (4)
C21 0.0214 (6) 0.0284 (7) 0.0198 (6) −0.0041 (5) −0.0063 (5) 0.0065 (5)
C97 0.0417 (9) 0.0361 (8) 0.0130 (6) −0.0163 (7) −0.0027 (6) 0.0032 (5)
C98 0.0233 (7) 0.0561 (11) 0.0247 (7) −0.0136 (7) −0.0018 (6) −0.0001 (7)
C99 0.0228 (6) 0.0182 (6) 0.0164 (6) −0.0094 (5) −0.0045 (5) 0.0006 (4)
N99 0.0238 (5) 0.0229 (5) 0.0126 (5) −0.0098 (4) −0.0021 (4) 0.0011 (4)
O99 0.0248 (5) 0.0228 (5) 0.0127 (4) −0.0153 (4) −0.0016 (3) −0.0004 (3)

Geometric parameters (Å, º)

S1—C7A 1.7375 (12) S2—N1 1.6678 (10)
S1—C2 1.7677 (12) S2—C15 1.7597 (12)
C2—N3 1.3153 (15) N1—N2 1.4020 (13)
C2—C8 1.4706 (15) N1—H01 0.888 (18)
N3—C3A 1.3848 (14) N4—H02 0.84 (2)
C3A—C4 1.3977 (17) N4—H03 0.86 (2)
C3A—C7A 1.4013 (17) C15—C20 1.3872 (17)
C4—C5 1.3855 (17) C15—C16 1.3955 (17)
C4—H4 0.9500 C16—C17 1.3875 (17)
C5—C6 1.4031 (19) C16—H16 0.9500
C5—H5 0.9500 C17—C18 1.3970 (18)
C6—C7 1.3880 (18) C17—H17 0.9500
C6—H6 0.9500 C18—C19 1.3948 (18)
C7—C7A 1.4005 (16) C18—C21 1.5034 (18)
C7—H7 0.9500 C19—C20 1.3894 (18)
C8—C9 1.4108 (16) C19—H19 0.9500
C8—C12 1.4372 (15) C20—H20 0.9500
C9—C10 1.3897 (16) C21—H21A 0.9800
C9—S3 1.7781 (12) C21—H21B 0.9800
C10—C13 1.4295 (16) C21—H21C 0.9800
C10—C11 1.4340 (16) C97—N99 1.4536 (17)
C11—O1 1.2213 (14) C97—H97A 0.9800
C11—N2 1.4132 (14) C97—H97B 0.9800
C12—N4 1.3124 (15) C97—H97C 0.9800
C12—N2 1.3851 (14) C98—N99 1.4554 (19)
C13—N5 1.1499 (17) C98—H98A 0.9800
C14—S3 1.7952 (15) C98—H98B 0.9800
C14—H14A 0.9800 C98—H98C 0.9800
C14—H14B 0.9800 C99—O99 1.2343 (15)
C14—H14C 0.9800 C99—N99 1.3242 (17)
S2—O3 1.4317 (10) C99—H99 0.9500
S2—O2 1.4326 (9)
C7A—S1—C2 89.58 (6) N2—N1—S2 117.20 (8)
N3—C2—C8 121.49 (10) N2—N1—H01 113.6 (11)
N3—C2—S1 113.55 (8) S2—N1—H01 113.1 (11)
C8—C2—S1 124.95 (9) C12—N2—N1 115.94 (9)
C2—N3—C3A 112.58 (10) C12—N2—C11 125.63 (10)
N3—C3A—C4 125.08 (11) N1—N2—C11 117.88 (9)
N3—C3A—C7A 114.40 (10) C12—N4—H02 121.2 (13)
C4—C3A—C7A 120.52 (11) C12—N4—H03 114.9 (13)
C5—C4—C3A 118.33 (12) H02—N4—H03 123.6 (18)
C5—C4—H4 120.8 C20—C15—C16 121.33 (11)
C3A—C4—H4 120.8 C20—C15—S2 120.72 (9)
C4—C5—C6 120.82 (12) C16—C15—S2 117.94 (9)
C4—C5—H5 119.6 C17—C16—C15 118.80 (12)
C6—C5—H5 119.6 C17—C16—H16 120.6
C7—C6—C5 121.60 (11) C15—C16—H16 120.6
C7—C6—H6 119.2 C16—C17—C18 121.22 (12)
C5—C6—H6 119.2 C16—C17—H17 119.4
C6—C7—C7A 117.34 (12) C18—C17—H17 119.4
C6—C7—H7 121.3 C19—C18—C17 118.44 (11)
C7A—C7—H7 121.3 C19—C18—C21 121.38 (12)
C7—C7A—C3A 121.37 (11) C17—C18—C21 120.17 (12)
C7—C7A—S1 128.74 (10) C20—C19—C18 121.46 (12)
C3A—C7A—S1 109.88 (8) C20—C19—H19 119.3
C9—C8—C12 116.48 (10) C18—C19—H19 119.3
C9—C8—C2 125.41 (10) C15—C20—C19 118.73 (11)
C12—C8—C2 118.11 (10) C15—C20—H20 120.6
C10—C9—C8 122.53 (10) C19—C20—H20 120.6
C10—C9—S3 115.37 (9) C18—C21—H21A 109.5
C8—C9—S3 122.08 (9) C18—C21—H21B 109.5
C9—C10—C13 122.46 (11) H21A—C21—H21B 109.5
C9—C10—C11 122.30 (10) C18—C21—H21C 109.5
C13—C10—C11 115.24 (10) H21A—C21—H21C 109.5
O1—C11—N2 119.46 (11) H21B—C21—H21C 109.5
O1—C11—C10 127.10 (11) N99—C97—H97A 109.5
N2—C11—C10 113.44 (10) N99—C97—H97B 109.5
N4—C12—N2 116.83 (10) H97A—C97—H97B 109.5
N4—C12—C8 123.94 (11) N99—C97—H97C 109.5
N2—C12—C8 119.23 (10) H97A—C97—H97C 109.5
N5—C13—C10 176.92 (13) H97B—C97—H97C 109.5
S3—C14—H14A 109.5 N99—C98—H98A 109.5
S3—C14—H14B 109.5 N99—C98—H98B 109.5
H14A—C14—H14B 109.5 H98A—C98—H98B 109.5
S3—C14—H14C 109.5 N99—C98—H98C 109.5
H14A—C14—H14C 109.5 H98A—C98—H98C 109.5
H14B—C14—H14C 109.5 H98B—C98—H98C 109.5
O3—S2—O2 121.42 (6) O99—C99—N99 125.03 (13)
O3—S2—N1 102.99 (5) O99—C99—H99 117.5
O2—S2—N1 106.32 (5) N99—C99—H99 117.5
O3—S2—C15 106.76 (6) C99—N99—C97 121.56 (12)
O2—S2—C15 109.03 (6) C99—N99—C98 121.18 (12)
N1—S2—C15 109.88 (5) C97—N99—C98 117.25 (12)
C9—S3—C14 98.98 (6)
C7A—S1—C2—N3 −0.89 (9) C2—C8—C12—N4 −0.37 (17)
C7A—S1—C2—C8 178.19 (10) C9—C8—C12—N2 −0.79 (15)
C8—C2—N3—C3A −178.06 (10) C2—C8—C12—N2 179.01 (10)
S1—C2—N3—C3A 1.06 (13) C10—C9—S3—C14 83.40 (11)
C2—N3—C3A—C4 178.78 (11) C8—C9—S3—C14 −98.15 (12)
C2—N3—C3A—C7A −0.70 (14) O3—S2—N1—N2 −167.59 (8)
N3—C3A—C4—C5 179.67 (11) O2—S2—N1—N2 −38.90 (9)
C7A—C3A—C4—C5 −0.89 (17) C15—S2—N1—N2 78.95 (9)
C3A—C4—C5—C6 −0.39 (18) N4—C12—N2—N1 −3.39 (15)
C4—C5—C6—C7 0.93 (19) C8—C12—N2—N1 177.19 (10)
C5—C6—C7—C7A −0.15 (18) N4—C12—N2—C11 −174.61 (10)
C6—C7—C7A—C3A −1.15 (17) C8—C12—N2—C11 5.97 (17)
C6—C7—C7A—S1 −179.72 (9) S2—N1—N2—C12 103.12 (10)
N3—C3A—C7A—C7 −178.80 (11) S2—N1—N2—C11 −84.95 (11)
C4—C3A—C7A—C7 1.70 (17) O1—C11—N2—C12 172.21 (11)
N3—C3A—C7A—S1 0.01 (13) C10—C11—N2—C12 −7.76 (16)
C4—C3A—C7A—S1 −179.49 (9) O1—C11—N2—N1 1.15 (16)
C2—S1—C7A—C7 179.17 (12) C10—C11—N2—N1 −178.82 (9)
C2—S1—C7A—C3A 0.47 (9) O3—S2—C15—C20 152.17 (10)
N3—C2—C8—C9 −177.62 (11) O2—S2—C15—C20 19.34 (12)
S1—C2—C8—C9 3.36 (16) N1—S2—C15—C20 −96.82 (10)
N3—C2—C8—C12 2.61 (16) O3—S2—C15—C16 −28.68 (11)
S1—C2—C8—C12 −176.41 (8) O2—S2—C15—C16 −161.51 (9)
C12—C8—C9—C10 −1.79 (16) N1—S2—C15—C16 82.33 (10)
C2—C8—C9—C10 178.44 (11) C20—C15—C16—C17 −0.33 (18)
C12—C8—C9—S3 179.88 (8) S2—C15—C16—C17 −179.47 (9)
C2—C8—C9—S3 0.10 (16) C15—C16—C17—C18 −0.79 (19)
C8—C9—C10—C13 −179.23 (11) C16—C17—C18—C19 1.19 (18)
S3—C9—C10—C13 −0.79 (15) C16—C17—C18—C21 −177.66 (12)
C8—C9—C10—C11 −0.40 (18) C17—C18—C19—C20 −0.49 (19)
S3—C9—C10—C11 178.04 (9) C21—C18—C19—C20 178.35 (12)
C9—C10—C11—O1 −175.15 (12) C16—C15—C20—C19 1.01 (18)
C13—C10—C11—O1 3.76 (18) S2—C15—C20—C19 −179.87 (9)
C9—C10—C11—N2 4.82 (16) C18—C19—C20—C15 −0.59 (19)
C13—C10—C11—N2 −176.27 (10) O99—C99—N99—C97 −178.03 (13)
C9—C8—C12—N4 179.84 (11) O99—C99—N99—C98 3.0 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H01···O99i 0.888 (18) 1.872 (18) 2.7583 (13) 175.7 (16)
N4—H02···O99 0.84 (2) 2.05 (2) 2.8334 (14) 154.6 (18)
N4—H03···N3 0.86 (2) 1.86 (2) 2.5760 (15) 139.9 (17)
N4—H02···N1 0.84 (2) 2.237 (19) 2.5932 (14) 105.7 (15)
C7—H7···O3ii 0.95 2.54 3.3161 (16) 139
C20—H20···O2iii 0.95 2.64 3.5605 (16) 164
C97—H97C···N5iv 0.98 2.59 3.504 (2) 155

Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, y+1, z; (iii) −x+1, −y+1, −z+1; (iv) x, y, z−1.

References

  1. Elgemeie, G. H. & Abou-Zeid, M. (2015). Nucleosides Nucleotides Nucleic Acids, 34, 834–847. [DOI] [PubMed]
  2. Elgemeie, G. H., Abou-Zeid, M., Alsaid, S., Hebishy, A. & Essa, H. (2015). Nucleosides Nucleotides Nucleic Acids, 34, 659–673. [DOI] [PubMed]
  3. Elgemeie, G. H., Abou-Zeid, M. & Azzam, R. (2016). Nucleosides Nucleotides Nucleic Acids, 35, 211–222. [DOI] [PubMed]
  4. Elgemeie, G. H., Azzam, R. A. & Elsayed, R. E. (2017c). Patent No. 1554/2017. Egyptian Academy of Scientific Research.
  5. Elgemeie, G. H., El-Ezbawy, S. R. & Sood, S. A. (2003a). Synth. Commun. 33, 2095–2101.
  6. Elgemeie, G. H., Elghandour, A. H. & Abd Elaziz, G. W. (2003b). Synth. Commun. 33, 1659–1664.
  7. Elgemeie, G. H., Elsayed, S. H. & Hassan, A. S. (2009). Synth. Commun. 39, 1781–1792.
  8. Elgemeie, G. H., Fathy, N., Zaghary, W. & Farag, A. (2017b). Nucleosides Nucleotides Nucleic Acids, 36, 198–212. [DOI] [PubMed]
  9. Elgemeie, G. H. & Mohamed, M. A. (2006). Synth. Commun. 36, 1025–1038.
  10. Elgemeie, G. H., Salah, A. M., Abbas, N. S., Hussein, H. A. & Mohamed, R. A. (2017a). Nucleosides Nucleotides Nucleic Acids, 36, 213–223. [DOI] [PubMed]
  11. Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Abingdon, UK.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  14. Siemens (1994). XP. Siemens Analytical X–Ray Instruments, Madison, Wisconsin, Wisconsin USA.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989017015778/hg5500sup1.cif

e-73-01820-sup1.cif (1.9MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017015778/hg5500Isup2.hkl

e-73-01820-Isup2.hkl (605.9KB, hkl)

CCDC reference: 1582798

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES