Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Nov 7;73(Pt 12):1835–1839. doi: 10.1107/S2056989017015985

Crystal structures of (E)-1-{3-[(5-fluoro-2-hy­droxy­benzyl­idene)amino]­phen­yl}ethanone and of a fourth polymorph of (E)-1-{3-[(2-hy­droxy-3-meth­oxy­benzyl­idene)amino]­phen­yl}ethanone

Marisiddaiah Girisha a, Hemmige S Yathirajan a,*, Ravindranath S Rathore b, Christopher Glidewell c,*
PMCID: PMC5730235  PMID: 29250398

The mol­ecules of the title compounds are effectively planar, apart from the methyl H atoms. In the crystals, C—H⋯O hydrogen bonds link the mol­ecules into chains in one compound and into sheets in the other.

Keywords: crystal structure, mol­ecular conformation, hydrogen bonding, polymorphism

Abstract

In the mol­ecules of both (E)-1-{3-[(5-fluoro-2-hy­droxy­benzyl­idene)amino]­phen­yl}ethanone, C15H12FNO2, (I), and (E)-1-{3-[(2-hy­droxy-3-meth­oxy­benzyl­idene)amino]­phen­yl}ethanone, C16H15NO3, (II), which crystallizes with Z′ = 2 in space group Pca21, there are intra­molecular O—H⋯N hydrogen bonds, and the non-H atoms in each mol­ecule are essentially coplanar. In the crystal of (I), mol­ecules are linked by a single C—H⋯O hydrogen bond to form a C(8) chain, whereas in the crystal of (II), mol­ecules are linked by three C—H⋯O hydrogen bonds to form sheets within which orthogonal C 2 2(16) and C 2 2(17) chains can be identified. Comparisons are made with some related structures.

Chemical context  

Schiff bases of general type RR′C=NR′′ can exhibit very wide structural diversity and have found a wide range of applications (Jia & Li, 2015), ranging from anti-bacterial, anti-fungal and anti-tumour activity (Rani et al., 2015), via catalysis (Kumar et al., 2009), to use as organic photovoltaic materials (Jeevadason et al., 2014). The extensive patent literature on their medicinal applications has recently been reviewed (Hameed et al., 2017). With this great diversity of use in mind, we report herein on the mol­ecular and supra­molecular structures of two closely related Schiff bases,(E)-1-{3-[(5-fluoro-2-hy­droxy­benzyl­idene)amino]­phen­yl}ethanone (I) and (E)-1-{3-[(2-hy­droxy-3-meth­oxy­benzyl­idene)amino]­phen­yl}ethanone (II). Compounds (I) and (II) were prepared by straightforward condensation reactions between 3-acetyl­aniline (3-amino­aceto­phenone) and the appropriately substituted salicyl­aldehydes. Their mol­ecular constitutions differ only in the identity and location of a single substituent, 5-fluoro in (I) versus 3-meth­oxy in (II), but their crystallization behaviour is different. Compound (I) crystallizes in the monoclinic space group P21/n with Z′ = 1 (Fig. 1), while compound (II) crystallizes in the ortho­rhom­bic space group Pca21 with Z′ = 2 (Figs. 2 and 3), and it will be convenient to refer to the mol­ecules of (II) which contain the atoms N11 and N21 as mol­ecules of types 1 and 2, respectively. Compound (II), in fact, represents the fourth polymorphic form of this compound to be identified. Three other forms, one in Pna21 with Z′ = 2, and two others in P212121, each with Z′ = 1, have recently been reported (Zbačnik et al., 2015).graphic file with name e-73-01835-scheme1.jpg

Figure 1.

Figure 1

The mol­ecular structure of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2.

Figure 2

The structure of mol­ecule 1 in compound (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 3.

Figure 3

The structure of mol­ecule 2 in compound (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Structural commentary  

In each of compounds (I) (Fig. 1) and (II) (Figs. 2 and 3), the non-H atoms are almost coplanar. Thus in (I), the r.m.s. deviation of the non-H atoms from their mean plane is only 0.085 Å, with a maximum individual deviation from the plane of 0.196 (2) Å for the acetyl atom C18. Similarly, in compound (II), the r.m.s. deviations of the non-H atoms from the mean planes of the two mol­ecules are 0.086 and 0.071 Å for mol­ecules 1 and 2, respectively, with corresponding maximum deviations of 0.225 (5) and 0.211 (5) Å for atoms C118 and C218, respectively. In all of the mol­ecules there is an intra­molecular O—H⋯N hydrogen bond (Tables 1 and 2); although this probably influences the orientation of the hy­droxy­lated ring relative to the central spacer unit, it will not have any influence on the orientation of the acetyl­phenyl ring relative to the rest of the mol­ecule. In the two mol­ecules of (II), the deviation of the meth­oxy C atoms C128 and C228 from the planes of their adjacent aryl rings are 0.107 (9) and 0.049 (11) Å, respectively. Consistent with this, the pair of exocyclic C—C—O angles at each of the atoms C123 and C223 differ by ca 10°, as is generally observed in planar alk­oxy­arene derivatives (Seip & Seip, 1973; Ferguson et al., 1996). The dihedral angle between the mean planes of the two mol­ecules in (II) is 80.74 (3)°.

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

D—H⋯A D—H H⋯A DA D—H⋯A
O22—H22⋯N1 0.98 (3) 1.72 (3) 2.607 (2) 148 (3)
C27—H27⋯O17i 0.93 2.58 3.475 (3) 163

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
O122—H122⋯N11 1.06 (6) 1.68 (6) 2.604 (4) 142 (5)
O222—H222⋯N21 0.92 (6) 1.79 (6) 2.603 (5) 147 (5)
C116—H116⋯O223i 0.93 2.50 3.347 (6) 152
C127—H127⋯O217 0.93 2.59 3.496 (5) 164
C227—H227⋯O117ii 0.93 2.58 3.487 (5) 164

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Supra­molecular features  

The supra­molecular assembly in compound (I) is very simple, as shown in Fig. 4. In addition to the intra­molecular hydrogen bond noted above, there is a single C—H⋯O hydrogen bond (Table 1), which links mol­ecules related by a 21 screw axis into C(8)chains running parallel to the [010] direction. Two chains of this type, related to one another by inversion, pass through each unit cell, but there are no direction-specific inter­actions between adjacent chains.

Figure 4.

Figure 4

Part of the crystal structure of compound (I), showing the formation of a hydrogen-bonded C(8) chain running parallel to the [010] direction. For the sake of clarity, the H atoms not involved in the motif shown have been omitted. Hydrogen bonds are drawn as dashed lines and the atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (Inline graphic − x, −Inline graphic + y, Inline graphic − z) and (Inline graphic − x, Inline graphic + y, Inline graphic − z), respectively.

There are three C—H⋯O hydrogen bonds in the structure of compound (II) (Table 2): one of these links the two mol­ecules within the selected asymmetric unit and the two others link these bimolecular aggregates into complex sheets, whose formation is readily analysed in terms of two one-dimensional sub-structures (Ferguson et al., 1998a ,b ; Gregson et al., 2000). The hydrogen bond having atom C227 as the donor links bimolecular aggregates related by translation to form a Inline graphic(16) chain running parallel to the [010] direction (Fig. 5), and that having atom C116 as the donor links aggregates related by a 21 screw axis into Inline graphic(17) chains running parallel to the [001] direction (Fig. 6). The combination of the orthogonal chains along [010] and [001] generates a sheet lying parallel to (100). Two sheets of this type, related to one another by the glide planes, pass through each unit cell but there are no direction-specific inter­actions between adjacent sheets.

Figure 5.

Figure 5

Part of the crystal structure of compound (II), showing the formation of a hydrogen-bonded Inline graphic(16) chain running parallel to the [010] direction. For the sake of clarity, the H atoms not involved in the motif shown have been omitted, and the hydrogen bonds are drawn as dashed lines.

Figure 6.

Figure 6

Part of the crystal structure of compound (II), showing the formation of a hydrogen-bonded Inline graphic(17) chain running parallel to the [001] direction. For the sake of clarity, the H atoms not involved in the motif shown have been omitted, and the hydrogen bonds are drawn as dashed lines.

Database survey  

The structures of Schiff bases derived from hydroxyaryl aldehydes have recently been the subject of a general survey, in which a number of structural errors, often involving misplaced H atoms, were pointed out (Blagus et al., 2010). Closely related to the present structures are those of (E)-1-{3-[(2-hy­droxy-3-meth­oxy­benzyl­idene)amino]­phen­yl}ethanone (III) (De et al., 2009), and of the previously recorded polymorphs of (II) (Zbačnik et al., 2015).

Compound (III) is isomorphous with compound (I): as in (I), the structure of (III) contains an intra­molecular O—H⋯N hydrogen bond and the non-H atoms are effectively coplanar. The structure of (III) also contains an inter­molecular C—H⋯O hydrogen bond, although this is nowhere mentioned in the original report (De et al., 2009); this inter­action forms C(8) chains along [010], exactly the same as those in the structure of (I), so that (I) and (III) are, in fact, isostructural despite their different patterns of substitution.

Three other polymorphic forms of compound (II) have recently been reported and are described as forms I, II and II,I respectively (Zbačnik et al., 2015). Form I is ortho­rhom­bic in space group Pna21 with Z′ = 2, and forms II and III both crystallize in space group P212121 with Z′ = 1, so that the Pca21 form reported here can be regarded as form IV. All three forms, I–III, can be crystallized from ethanol solutions under different conditions and a crucial factor in determining which polymorph is obtained appears to be the filtration process used prior to crystallization. By contrast, the form described here was crystallized from a solution in di­chloro­methane. In all of the mol­ecules in forms I–III, there is an intra­molecular O—H⋯N hydrogen bond and, in every case, the non-H atoms are effectively co-planar as found here for (I) and (II). The supra­molecular assembly differs in all three polymorphs I–III: form II contains no inter­molecular hydrogen bonds; in form III two C—H⋯O hydrogen bonds generate a C(8)C(10)[Inline graphic(6)] chain of rings; and in form I, three C—H⋯O hydrogen bonds generate sheets in which the component sub-structures both involve mol­ecules related by an n-glide plane, in contrast to the sheets found for form IV reported here.

Synthesis and crystallization  

For the synthesis of compounds (I) and (II), 3-acetyl aniline (0.740 mmol) and a catalytic qu­antity of acetic acid were added to solution of the appropriate aldehyde, 5-fluoro­salicyl­aldehyde for (I) or 3-meth­oxy­salicyl­aldehyde for (II) (0.740 mmol) in ethanol (20 cm3), and these mixtures were then heated under reflux for 5 h. The mixtures were then cooled to ambient temperature and the solvent was removed under reduced pressure. The solid residues were then washed with cold ethanol and dried under reduced pressure. Crystals suitable for single crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in the presence of air, of solutions in di­methyl­sulfoxide for (I) and in di­chloro­methane for (II): m.p. for (I) 362–364 K and m.p. for (II) 352–354 K.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. For compound (II), one bad outlier reflection (8,1,3) was omitted from the data set before the final refinements. All H atoms were located in difference-Fourier maps. The C-bound H atoms were subsequently treated as riding atoms in geometrically idealized positions: C—H 0.93–0.96 Å with U iso(H) = 1.5U eq(C-meth­yl) and 1.2U eq(C) for other C-bound H atoms. The methyl groups were permitted to rotate but not to tilt. For the H atoms bonded to O atoms, the atomic coordinates were refined with U iso(H) = 1.5U eq(O), giving the O—H distances shown in Tables 1 and 2. The correct orientation of the structure of (II) relative to the polar axis direction was established by means of the Flack x parameter (Flack, 1983), x = −0.04 (16) calculated (Parsons et al., 2013) using 1493 quotients of the type [(I +)−(I )]/[(I +)+(I )], and by means of the Hooft y parameter (Hooft et al., 2010), y = −0.03 (16). In the final analysis of variance for (I) there was a large value, 1.859, of K = [mean(F o 2)/mean(F c 2)] for the group of 4258 very weak reflections having F c/F c(max) in the range 0.000 < F c/F c(max) < 0.008; the corresponding value for (II) was 2.1539 for 565 reflections having F c/F c(max) in the range 0.000 < F c/F c(max) < 0.009.

Table 3. Experimental details.

  (I) (II)
Crystal data
Chemical formula C15H12FNO2 C16H15NO3
M r 257.26 269.29
Crystal system, space group Monoclinic, P21/n Orthorhombic, P c a21
Temperature (K) 294 294
a, b, c (Å) 14.9527 (5), 5.5152 (2), 16.6918 (5) 19.1904 (4), 5.33856 (12), 26.5678 (6)
α, β, γ (°) 90, 114.739 (2), 90 90, 90, 90
V3) 1250.19 (7) 2721.85 (10)
Z 4 8
Radiation type Cu Kα Cu Kα
μ (mm−1) 0.84 0.75
Crystal size (mm) 0.15 × 0.15 × 0.10 0.10 × 0.10 × 0.05
 
Data collection
Diffractometer Bruker APEX3 Bruker APEX3
Absorption correction Multi-scan (SADABS; Bruker, 2016) Multi-scan (SADABS; Bruker, 2016)
T min, T max 0.848, 0.919 0.907, 0.963
No. of measured, independent and observed [I > 2σ(I)] reflections 15703, 2452, 1764 51776, 5393, 3796
R int 0.041 0.117
(sin θ/λ)max−1) 0.619 0.619
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.046, 0.122, 1.04 0.048, 0.113, 1.02
No. of reflections 2452 5393
No. of parameters 176 371
No. of restraints 0 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.15, −0.12 0.11, −0.13
Absolute structure Flack x determined using 1493 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter −0.04 (16)

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT2014 (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989017015985/su5402sup1.cif

e-73-01835-sup1.cif (2.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017015985/su5402Isup2.hkl

e-73-01835-Isup2.hkl (196.5KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989017015985/su5402IIsup3.hkl

e-73-01835-IIsup3.hkl (429.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017015985/su5402Isup4.cml

Supporting information file. DOI: 10.1107/S2056989017015985/su5402IIsup5.cml

CCDC references: 1583686, 1583685

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

MG thanks the UGC (India) for the award of a Rajeev Gandhi fellowship and HSY thanks the University of Mysore for research facilities.

supplementary crystallographic information

(E)-1-{3-[(5-Fluoro-2-hydroxybenzylidene)amino]phenyl}ethanone (I) . Crystal data

C15H12FNO2 F(000) = 536
Mr = 257.26 Dx = 1.367 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54178 Å
a = 14.9527 (5) Å Cell parameters from 2452 reflections
b = 5.5152 (2) Å θ = 3.3–72.5°
c = 16.6918 (5) Å µ = 0.84 mm1
β = 114.739 (2)° T = 294 K
V = 1250.19 (7) Å3 Block, yellow
Z = 4 0.15 × 0.15 × 0.10 mm

(E)-1-{3-[(5-Fluoro-2-hydroxybenzylidene)amino]phenyl}ethanone (I) . Data collection

Bruker APEX3 diffractometer 2452 independent reflections
Radiation source: microfocus sealed tube 1764 reflections with I > 2σ(I)
Multilayer mirror monochromator Rint = 0.041
φ and ω scans θmax = 72.5°, θmin = 3.3°
Absorption correction: multi-scan (SADABS; Bruker, 2016) h = −18→18
Tmin = 0.848, Tmax = 0.919 k = −6→6
15703 measured reflections l = −20→20

(E)-1-{3-[(5-Fluoro-2-hydroxybenzylidene)amino]phenyl}ethanone (I) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: mixed
wR(F2) = 0.122 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0427P)2 + 0.3677P] where P = (Fo2 + 2Fc2)/3
2452 reflections (Δ/σ)max < 0.001
176 parameters Δρmax = 0.15 e Å3
0 restraints Δρmin = −0.12 e Å3

(E)-1-{3-[(5-Fluoro-2-hydroxybenzylidene)amino]phenyl}ethanone (I) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(E)-1-{3-[(5-Fluoro-2-hydroxybenzylidene)amino]phenyl}ethanone (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.35562 (11) 0.5843 (3) 0.53906 (9) 0.0566 (4)
C11 0.39602 (12) 0.7592 (3) 0.60710 (11) 0.0529 (4)
C12 0.36799 (12) 0.7897 (3) 0.67598 (11) 0.0539 (4)
H12 0.3219 0.6851 0.6812 0.065*
C13 0.40781 (12) 0.9740 (3) 0.73703 (11) 0.0551 (4)
C14 0.47738 (14) 1.1282 (4) 0.72986 (13) 0.0672 (5)
H14 0.5041 1.2531 0.7704 0.081*
C15 0.50686 (15) 1.0962 (4) 0.66268 (14) 0.0750 (6)
H15 0.5540 1.1987 0.6583 0.090*
C16 0.46702 (14) 0.9138 (4) 0.60227 (12) 0.0655 (5)
H16 0.4878 0.8932 0.5574 0.079*
C17 0.37489 (14) 0.9972 (4) 0.80988 (12) 0.0635 (5)
O17 0.31869 (12) 0.8495 (3) 0.81717 (10) 0.0859 (5)
C18 0.41085 (18) 1.2043 (5) 0.87234 (15) 0.0900 (7)
H18A 0.3840 1.1931 0.9153 0.135*
H18B 0.3903 1.3539 0.8404 0.135*
H18C 0.4814 1.1995 0.9016 0.135*
C27 0.29372 (13) 0.4249 (3) 0.53959 (10) 0.0554 (4)
H27 0.2759 0.4216 0.5867 0.066*
C21 0.25071 (13) 0.2505 (3) 0.46968 (10) 0.0541 (4)
C22 0.27440 (15) 0.2459 (4) 0.39638 (12) 0.0632 (5)
O22 0.33757 (13) 0.4080 (3) 0.38812 (10) 0.0858 (5)
H22 0.361 (2) 0.512 (5) 0.4408 (19) 0.129*
C23 0.23177 (18) 0.0728 (4) 0.33148 (13) 0.0774 (6)
H23 0.2473 0.0695 0.2830 0.093*
C24 0.16706 (17) −0.0935 (4) 0.33765 (13) 0.0776 (6)
H24 0.1386 −0.2094 0.2938 0.093*
C25 0.14467 (15) −0.0872 (4) 0.40930 (13) 0.0701 (5)
F25 0.08044 (11) −0.2522 (3) 0.41531 (9) 0.1050 (5)
C26 0.18467 (14) 0.0810 (4) 0.47482 (11) 0.0631 (5)
H26 0.1678 0.0819 0.5225 0.076*

(E)-1-{3-[(5-Fluoro-2-hydroxybenzylidene)amino]phenyl}ethanone (I) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0650 (9) 0.0630 (9) 0.0489 (8) 0.0097 (7) 0.0308 (7) 0.0060 (7)
C11 0.0543 (9) 0.0585 (10) 0.0503 (9) 0.0096 (8) 0.0263 (7) 0.0124 (8)
C12 0.0550 (9) 0.0571 (10) 0.0556 (9) −0.0021 (8) 0.0290 (8) 0.0028 (8)
C13 0.0542 (9) 0.0569 (10) 0.0556 (10) 0.0015 (8) 0.0243 (8) 0.0026 (8)
C14 0.0680 (12) 0.0636 (11) 0.0681 (11) −0.0095 (9) 0.0266 (9) 0.0000 (9)
C15 0.0710 (13) 0.0798 (14) 0.0795 (13) −0.0147 (11) 0.0366 (11) 0.0115 (12)
C16 0.0664 (11) 0.0795 (13) 0.0614 (11) 0.0038 (10) 0.0372 (9) 0.0150 (10)
C17 0.0646 (11) 0.0673 (12) 0.0634 (11) 0.0009 (10) 0.0314 (9) −0.0068 (9)
O17 0.1074 (11) 0.0916 (11) 0.0868 (10) −0.0230 (9) 0.0682 (9) −0.0232 (8)
C18 0.0975 (16) 0.0946 (17) 0.0870 (15) −0.0151 (14) 0.0476 (13) −0.0330 (13)
C27 0.0641 (10) 0.0641 (11) 0.0434 (8) 0.0101 (9) 0.0279 (8) 0.0076 (8)
C21 0.0636 (10) 0.0573 (10) 0.0416 (8) 0.0157 (8) 0.0222 (7) 0.0076 (7)
C22 0.0782 (12) 0.0663 (11) 0.0528 (10) 0.0190 (10) 0.0349 (9) 0.0058 (9)
O22 0.1131 (12) 0.0961 (11) 0.0753 (9) −0.0030 (9) 0.0660 (9) −0.0058 (8)
C23 0.1021 (16) 0.0819 (14) 0.0559 (11) 0.0201 (13) 0.0406 (11) −0.0040 (11)
C24 0.0948 (15) 0.0731 (13) 0.0556 (11) 0.0175 (12) 0.0222 (10) −0.0091 (10)
C25 0.0775 (13) 0.0646 (12) 0.0601 (11) 0.0036 (10) 0.0209 (10) 0.0051 (10)
F25 0.1246 (11) 0.1000 (10) 0.0836 (9) −0.0353 (9) 0.0367 (8) −0.0144 (8)
C26 0.0735 (12) 0.0698 (12) 0.0454 (9) 0.0064 (10) 0.0245 (8) 0.0051 (9)

(E)-1-{3-[(5-Fluoro-2-hydroxybenzylidene)amino]phenyl}ethanone (I) . Geometric parameters (Å, º)

N1—C27 1.279 (2) C18—H18B 0.9600
N1—C11 1.418 (2) C18—H18C 0.9600
C11—C12 1.389 (2) C27—C21 1.440 (2)
C11—C16 1.390 (2) C27—H27 0.9300
C12—C13 1.385 (2) C21—C26 1.388 (3)
C12—H12 0.9300 C21—C22 1.409 (2)
C13—C14 1.387 (2) C22—O22 1.349 (2)
C13—C17 1.496 (2) C22—C23 1.383 (3)
C14—C15 1.377 (3) O22—H22 0.98 (3)
C14—H14 0.9300 C23—C24 1.368 (3)
C15—C16 1.371 (3) C23—H23 0.9300
C15—H15 0.9300 C24—C25 1.371 (3)
C16—H16 0.9300 C24—H24 0.9300
C17—O17 1.213 (2) C25—F25 1.357 (2)
C17—C18 1.487 (3) C25—C26 1.366 (3)
C18—H18A 0.9600 C26—H26 0.9300
C27—N1—C11 121.93 (14) C17—C18—H18C 109.5
C12—C11—C16 118.43 (17) H18A—C18—H18C 109.5
C12—C11—N1 124.77 (15) H18B—C18—H18C 109.5
C16—C11—N1 116.78 (15) N1—C27—C21 122.19 (15)
C13—C12—C11 120.82 (16) N1—C27—H27 118.9
C13—C12—H12 119.6 C21—C27—H27 118.9
C11—C12—H12 119.6 C26—C21—C22 119.03 (17)
C12—C13—C14 119.56 (16) C26—C21—C27 119.20 (15)
C12—C13—C17 118.34 (16) C22—C21—C27 121.76 (17)
C14—C13—C17 122.09 (17) O22—C22—C23 119.35 (17)
C15—C14—C13 119.92 (19) O22—C22—C21 121.21 (17)
C15—C14—H14 120.0 C23—C22—C21 119.4 (2)
C13—C14—H14 120.0 C22—O22—H22 107.5 (17)
C16—C15—C14 120.28 (18) C24—C23—C22 120.82 (18)
C16—C15—H15 119.9 C24—C23—H23 119.6
C14—C15—H15 119.9 C22—C23—H23 119.6
C15—C16—C11 120.97 (17) C23—C24—C25 119.2 (2)
C15—C16—H16 119.5 C23—C24—H24 120.4
C11—C16—H16 119.5 C25—C24—H24 120.4
O17—C17—C18 120.53 (17) F25—C25—C26 118.85 (18)
O17—C17—C13 120.10 (17) F25—C25—C24 119.1 (2)
C18—C17—C13 119.37 (18) C26—C25—C24 122.1 (2)
C17—C18—H18A 109.5 C25—C26—C21 119.48 (17)
C17—C18—H18B 109.5 C25—C26—H26 120.3
H18A—C18—H18B 109.5 C21—C26—H26 120.3
C27—N1—C11—C12 −5.5 (3) C11—N1—C27—C21 178.53 (15)
C27—N1—C11—C16 176.20 (16) N1—C27—C21—C26 179.41 (16)
C16—C11—C12—C13 1.8 (2) N1—C27—C21—C22 −0.1 (3)
N1—C11—C12—C13 −176.54 (16) C26—C21—C22—O22 179.49 (17)
C11—C12—C13—C14 −0.7 (3) C27—C21—C22—O22 −1.0 (3)
C11—C12—C13—C17 −179.86 (16) C26—C21—C22—C23 −0.2 (3)
C12—C13—C14—C15 −0.5 (3) C27—C21—C22—C23 179.31 (17)
C17—C13—C14—C15 178.60 (18) O22—C22—C23—C24 −179.71 (18)
C13—C14—C15—C16 0.6 (3) C21—C22—C23—C24 0.0 (3)
C14—C15—C16—C11 0.4 (3) C22—C23—C24—C25 0.0 (3)
C12—C11—C16—C15 −1.6 (3) C23—C24—C25—F25 179.98 (19)
N1—C11—C16—C15 176.83 (17) C23—C24—C25—C26 0.3 (3)
C12—C13—C17—O17 3.8 (3) F25—C25—C26—C21 179.80 (16)
C14—C13—C17—O17 −175.26 (19) C24—C25—C26—C21 −0.5 (3)
C12—C13—C17—C18 −175.50 (18) C22—C21—C26—C25 0.5 (3)
C14—C13—C17—C18 5.4 (3) C27—C21—C26—C25 −179.09 (16)

(E)-1-{3-[(5-Fluoro-2-hydroxybenzylidene)amino]phenyl}ethanone (I) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O22—H22···N1 0.98 (3) 1.72 (3) 2.607 (2) 148 (3)
C27—H27···O17i 0.93 2.58 3.475 (3) 163

Symmetry code: (i) −x+1/2, y−1/2, −z+3/2.

(E)-1-{3-[(2-Hydroxy-3-methoxybenzylidene)amino]phenyl}ethanone (II) . Crystal data

C16H15NO3 Dx = 1.314 Mg m3
Mr = 269.29 Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, Pca21 Cell parameters from 5394 reflections
a = 19.1904 (4) Å θ = 3.3–72.6°
b = 5.33856 (12) Å µ = 0.75 mm1
c = 26.5678 (6) Å T = 294 K
V = 2721.85 (10) Å3 Block, yellow
Z = 8 0.10 × 0.10 × 0.05 mm
F(000) = 1136

(E)-1-{3-[(2-Hydroxy-3-methoxybenzylidene)amino]phenyl}ethanone (II) . Data collection

Bruker APEX3 diffractometer 5393 independent reflections
Radiation source: microfocus sealed tube 3796 reflections with I > 2σ(I)
Multilayer mirror monochromator Rint = 0.117
φ and ω scans θmax = 72.6°, θmin = 3.3°
Absorption correction: multi-scan (SADABS; Bruker, 2016) h = −23→23
Tmin = 0.907, Tmax = 0.963 k = −6→6
51776 measured reflections l = −32→32

(E)-1-{3-[(2-Hydroxy-3-methoxybenzylidene)amino]phenyl}ethanone (II) . Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.048 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0463P)2 + 0.4368P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
5393 reflections Δρmax = 0.11 e Å3
371 parameters Δρmin = −0.13 e Å3
1 restraint Absolute structure: Flack x determined using 1493 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methods Absolute structure parameter: −0.04 (16)

(E)-1-{3-[(2-Hydroxy-3-methoxybenzylidene)amino]phenyl}ethanone (II) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(E)-1-{3-[(2-Hydroxy-3-methoxybenzylidene)amino]phenyl}ethanone (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N11 0.73276 (17) 0.3158 (7) 0.39187 (12) 0.0502 (8)
C111 0.6779 (2) 0.4896 (8) 0.38707 (15) 0.0466 (10)
C112 0.6379 (2) 0.5213 (8) 0.34388 (15) 0.0475 (10)
H112 0.6453 0.4169 0.3164 0.057*
C113 0.5874 (2) 0.7053 (8) 0.34117 (15) 0.0485 (10)
C114 0.5762 (3) 0.8623 (9) 0.38243 (18) 0.0610 (11)
H114 0.5431 0.9893 0.3807 0.073*
C115 0.6145 (3) 0.8276 (10) 0.42579 (18) 0.0673 (13)
H115 0.6066 0.9297 0.4536 0.081*
C116 0.6641 (2) 0.6437 (9) 0.42814 (17) 0.0613 (12)
H116 0.6891 0.6212 0.4578 0.074*
C117 0.5463 (2) 0.7282 (9) 0.29372 (17) 0.0535 (11)
O117 0.55324 (18) 0.5744 (7) 0.26015 (13) 0.0739 (10)
C118 0.4965 (3) 0.9408 (11) 0.28736 (19) 0.0750 (15)
H11A 0.4741 0.9280 0.2552 0.112*
H11B 0.5214 1.0965 0.2893 0.112*
H11C 0.4620 0.9346 0.3135 0.112*
C127 0.7464 (2) 0.1542 (8) 0.35777 (15) 0.0495 (10)
H127 0.7185 0.1499 0.3292 0.059*
C121 0.8030 (2) −0.0210 (8) 0.36174 (14) 0.0453 (10)
C122 0.8458 (2) −0.0276 (8) 0.40460 (14) 0.0459 (9)
C123 0.8976 (2) −0.2119 (9) 0.40885 (15) 0.0520 (11)
C124 0.9068 (2) −0.3823 (9) 0.37035 (16) 0.0577 (11)
H124 0.9407 −0.5059 0.3733 0.069*
C125 0.8660 (2) −0.3715 (9) 0.32720 (17) 0.0584 (11)
H125 0.8737 −0.4843 0.3011 0.070*
C126 0.8145 (2) −0.1951 (8) 0.32308 (16) 0.0555 (11)
H126 0.7870 −0.1906 0.2943 0.067*
O122 0.83809 (16) 0.1383 (6) 0.44236 (10) 0.0596 (8)
H122 0.798 (3) 0.267 (10) 0.433 (2) 0.089*
O123 0.93514 (16) −0.2049 (7) 0.45239 (12) 0.0740 (10)
C128 0.9848 (3) −0.3972 (10) 0.4596 (2) 0.0769 (15)
H12A 0.9620 −0.5571 0.4583 0.115*
H12B 1.0068 −0.3765 0.4917 0.115*
H12C 1.0193 −0.3886 0.4335 0.115*
N21 0.49089 (17) −0.1872 (7) 0.10711 (13) 0.0520 (9)
C211 0.5456 (2) −0.0084 (9) 0.11255 (15) 0.0477 (10)
C212 0.58545 (19) 0.0190 (9) 0.15570 (15) 0.0486 (10)
H212 0.5781 −0.0874 0.1829 0.058*
C213 0.6363 (2) 0.2045 (8) 0.15866 (15) 0.0482 (10)
C214 0.6471 (2) 0.3607 (9) 0.11801 (17) 0.0579 (11)
H214 0.6803 0.4875 0.1199 0.069*
C215 0.6087 (2) 0.3286 (9) 0.07452 (17) 0.0634 (12)
H215 0.6170 0.4309 0.0468 0.076*
C216 0.5582 (2) 0.1458 (9) 0.07194 (17) 0.0589 (12)
H216 0.5324 0.1262 0.0426 0.071*
C217 0.6772 (2) 0.2248 (9) 0.20644 (17) 0.0540 (11)
O217 0.67061 (18) 0.0695 (7) 0.23932 (13) 0.0769 (10)
C218 0.7275 (3) 0.4370 (10) 0.21282 (19) 0.0759 (15)
H21A 0.7023 0.5924 0.2138 0.114*
H21B 0.7595 0.4390 0.1851 0.114*
H21C 0.7528 0.4158 0.2437 0.114*
C227 0.4769 (2) −0.3452 (9) 0.14214 (16) 0.0494 (11)
H227 0.5037 −0.3431 0.1713 0.059*
C221 0.4212 (2) −0.5259 (9) 0.13805 (15) 0.0483 (10)
C222 0.3792 (2) −0.5367 (9) 0.09519 (15) 0.0544 (11)
C223 0.3269 (2) −0.7193 (10) 0.09223 (16) 0.0629 (13)
C224 0.3180 (3) −0.8857 (9) 0.13109 (18) 0.0626 (13)
H224 0.2842 −1.0098 0.1286 0.075*
C225 0.3588 (2) −0.8708 (9) 0.17392 (18) 0.0600 (12)
H225 0.3517 −0.9833 0.2002 0.072*
C226 0.4092 (2) −0.6926 (8) 0.17789 (17) 0.0553 (11)
H226 0.4358 −0.6813 0.2071 0.066*
O222 0.38787 (19) −0.3768 (8) 0.05600 (12) 0.0797 (12)
H222 0.425 (3) −0.274 (12) 0.063 (2) 0.119*
O223 0.28893 (19) −0.7128 (8) 0.04865 (12) 0.0957 (14)
C228 0.2377 (3) −0.9052 (14) 0.0424 (2) 0.109 (2)
H22A 0.2603 −1.0655 0.0410 0.163*
H22B 0.2125 −0.8774 0.0117 0.163*
H22C 0.2059 −0.9018 0.0703 0.163*

(E)-1-{3-[(2-Hydroxy-3-methoxybenzylidene)amino]phenyl}ethanone (II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N11 0.0449 (19) 0.061 (2) 0.0451 (19) −0.0023 (18) −0.0030 (15) 0.0026 (18)
C111 0.038 (2) 0.052 (3) 0.050 (2) −0.003 (2) 0.0001 (16) 0.0036 (19)
C112 0.051 (3) 0.048 (2) 0.044 (2) 0.001 (2) −0.0012 (17) 0.0011 (18)
C113 0.046 (2) 0.046 (2) 0.054 (2) −0.0002 (19) 0.0016 (18) 0.004 (2)
C114 0.062 (3) 0.054 (3) 0.067 (3) 0.008 (2) 0.003 (2) −0.008 (2)
C115 0.071 (3) 0.072 (3) 0.059 (3) 0.002 (3) 0.002 (2) −0.024 (2)
C116 0.060 (3) 0.075 (3) 0.049 (2) −0.007 (3) −0.005 (2) −0.007 (2)
C117 0.050 (2) 0.051 (3) 0.060 (3) 0.006 (2) 0.001 (2) 0.005 (2)
O117 0.090 (2) 0.069 (2) 0.063 (2) 0.0239 (19) −0.0219 (17) −0.0097 (19)
C118 0.077 (3) 0.075 (4) 0.074 (3) 0.024 (3) −0.004 (3) 0.004 (3)
C127 0.045 (2) 0.056 (3) 0.047 (2) −0.004 (2) −0.0084 (18) 0.005 (2)
C121 0.043 (2) 0.048 (2) 0.045 (2) −0.008 (2) −0.0013 (17) 0.006 (2)
C122 0.045 (2) 0.053 (2) 0.040 (2) −0.006 (2) 0.0003 (16) 0.0062 (18)
C123 0.043 (2) 0.065 (3) 0.047 (2) −0.003 (2) −0.0026 (18) 0.011 (2)
C124 0.049 (2) 0.062 (3) 0.062 (3) 0.004 (2) 0.004 (2) 0.010 (2)
C125 0.059 (3) 0.057 (3) 0.059 (3) −0.004 (2) 0.001 (2) −0.002 (2)
C126 0.052 (2) 0.062 (3) 0.053 (3) −0.008 (2) −0.007 (2) −0.001 (2)
O122 0.0591 (18) 0.075 (2) 0.0451 (16) 0.0062 (16) −0.0082 (14) −0.0004 (15)
O123 0.069 (2) 0.097 (3) 0.0564 (19) 0.024 (2) −0.0184 (17) 0.0036 (18)
C128 0.065 (3) 0.089 (4) 0.077 (4) 0.016 (3) −0.018 (3) 0.014 (3)
N21 0.0439 (19) 0.062 (2) 0.050 (2) −0.0086 (18) −0.0011 (15) −0.0127 (18)
C211 0.042 (2) 0.053 (3) 0.048 (2) 0.003 (2) −0.0002 (17) −0.0074 (19)
C212 0.041 (2) 0.058 (3) 0.046 (2) −0.001 (2) 0.0011 (17) −0.0033 (19)
C213 0.044 (2) 0.053 (2) 0.048 (2) 0.003 (2) −0.0008 (17) −0.0063 (19)
C214 0.053 (3) 0.055 (3) 0.065 (3) −0.006 (2) 0.001 (2) 0.001 (2)
C215 0.065 (3) 0.063 (3) 0.063 (3) −0.002 (3) −0.004 (2) 0.010 (2)
C216 0.054 (3) 0.069 (3) 0.054 (3) 0.000 (2) −0.009 (2) −0.002 (2)
C217 0.052 (2) 0.055 (3) 0.054 (3) −0.007 (2) −0.003 (2) −0.012 (2)
O217 0.088 (3) 0.078 (2) 0.064 (2) −0.023 (2) −0.0262 (18) 0.005 (2)
C218 0.082 (4) 0.078 (3) 0.067 (3) −0.031 (3) −0.010 (3) −0.011 (3)
C227 0.038 (2) 0.059 (3) 0.051 (3) 0.006 (2) −0.0052 (18) −0.008 (2)
C221 0.039 (2) 0.058 (3) 0.047 (2) 0.002 (2) 0.0019 (17) −0.010 (2)
C222 0.047 (2) 0.073 (3) 0.043 (2) −0.015 (2) 0.0048 (17) −0.007 (2)
C223 0.055 (3) 0.089 (4) 0.044 (2) −0.021 (3) 0.005 (2) −0.015 (2)
C224 0.060 (3) 0.067 (3) 0.061 (3) −0.016 (2) 0.012 (2) −0.010 (2)
C225 0.061 (3) 0.058 (3) 0.061 (3) −0.001 (2) 0.005 (2) 0.004 (2)
C226 0.052 (2) 0.059 (3) 0.054 (2) 0.007 (2) −0.007 (2) −0.001 (2)
O222 0.079 (2) 0.117 (3) 0.0437 (17) −0.045 (2) −0.0040 (16) 0.004 (2)
O223 0.093 (3) 0.143 (4) 0.0508 (18) −0.067 (3) −0.0126 (18) 0.000 (2)
C228 0.097 (4) 0.151 (6) 0.078 (4) −0.070 (4) −0.010 (3) −0.022 (4)

(E)-1-{3-[(2-Hydroxy-3-methoxybenzylidene)amino]phenyl}ethanone (II) . Geometric parameters (Å, º)

N11—C127 1.278 (5) N21—C227 1.285 (5)
N11—C111 1.409 (5) N21—C211 1.427 (5)
C111—C112 1.391 (5) C211—C216 1.378 (6)
C111—C116 1.392 (6) C211—C212 1.386 (5)
C112—C113 1.382 (6) C212—C213 1.393 (6)
C112—H112 0.9300 C212—H212 0.9300
C113—C114 1.397 (6) C213—C214 1.380 (6)
C113—C117 1.492 (6) C213—C217 1.497 (6)
C114—C115 1.379 (7) C214—C215 1.381 (6)
C114—H114 0.9300 C214—H214 0.9300
C115—C116 1.369 (6) C215—C216 1.378 (6)
C115—H115 0.9300 C215—H215 0.9300
C116—H116 0.9300 C216—H216 0.9300
C117—O117 1.219 (5) C217—O217 1.211 (5)
C117—C118 1.494 (7) C217—C218 1.497 (6)
C118—H11A 0.9600 C218—H21A 0.9600
C118—H11B 0.9600 C218—H21B 0.9600
C118—H11C 0.9600 C218—H21C 0.9600
C127—C121 1.437 (5) C227—C221 1.443 (6)
C127—H127 0.9300 C227—H227 0.9300
C121—C126 1.403 (6) C221—C222 1.397 (6)
C121—C122 1.405 (5) C221—C226 1.402 (6)
C122—O122 1.346 (5) C222—O222 1.357 (6)
C122—C123 1.403 (6) C222—C223 1.401 (6)
C123—O123 1.363 (5) C223—O223 1.369 (5)
C123—C124 1.380 (6) C223—C224 1.373 (7)
C124—C125 1.389 (6) C224—C225 1.384 (7)
C124—H124 0.9300 C224—H224 0.9300
C125—C126 1.369 (6) C225—C226 1.361 (6)
C125—H125 0.9300 C225—H225 0.9300
C126—H126 0.9300 C226—H226 0.9300
O122—H122 1.06 (5) O222—H222 0.93 (6)
O123—C128 1.414 (5) O223—C228 1.432 (6)
C128—H12A 0.9600 C228—H22A 0.9600
C128—H12B 0.9600 C228—H22B 0.9600
C128—H12C 0.9600 C228—H22C 0.9600
C127—N11—C111 122.2 (4) C227—N21—C211 121.3 (4)
C112—C111—C116 118.0 (4) C216—C211—C212 119.2 (4)
C112—C111—N11 124.5 (4) C216—C211—N21 116.7 (4)
C116—C111—N11 117.4 (4) C212—C211—N21 124.1 (4)
C113—C112—C111 121.1 (4) C211—C212—C213 120.5 (4)
C113—C112—H112 119.4 C211—C212—H212 119.7
C111—C112—H112 119.4 C213—C212—H212 119.7
C112—C113—C114 119.6 (4) C214—C213—C212 119.4 (4)
C112—C113—C117 118.2 (4) C214—C213—C217 122.7 (4)
C114—C113—C117 122.2 (4) C212—C213—C217 117.9 (4)
C115—C114—C113 119.5 (4) C213—C214—C215 120.0 (4)
C115—C114—H114 120.3 C213—C214—H214 120.0
C113—C114—H114 120.3 C215—C214—H214 120.0
C116—C115—C114 120.4 (4) C216—C215—C214 120.3 (4)
C116—C115—H115 119.8 C216—C215—H215 119.8
C114—C115—H115 119.8 C214—C215—H215 119.8
C115—C116—C111 121.4 (4) C215—C216—C211 120.5 (4)
C115—C116—H116 119.3 C215—C216—H216 119.8
C111—C116—H116 119.3 C211—C216—H216 119.8
O117—C117—C113 120.4 (4) O217—C217—C213 120.5 (4)
O117—C117—C118 119.9 (4) O217—C217—C218 120.3 (4)
C113—C117—C118 119.7 (4) C213—C217—C218 119.3 (4)
C117—C118—H11A 109.5 C217—C218—H21A 109.5
C117—C118—H11B 109.5 C217—C218—H21B 109.5
H11A—C118—H11B 109.5 H21A—C218—H21B 109.5
C117—C118—H11C 109.5 C217—C218—H21C 109.5
H11A—C118—H11C 109.5 H21A—C218—H21C 109.5
H11B—C118—H11C 109.5 H21B—C218—H21C 109.5
N11—C127—C121 122.8 (4) N21—C227—C221 122.6 (4)
N11—C127—H127 118.6 N21—C227—H227 118.7
C121—C127—H127 118.6 C221—C227—H227 118.7
C126—C121—C122 119.0 (4) C222—C221—C226 119.7 (4)
C126—C121—C127 119.8 (4) C222—C221—C227 121.1 (4)
C122—C121—C127 121.2 (4) C226—C221—C227 119.3 (4)
O122—C122—C123 118.6 (3) O222—C222—C221 122.0 (4)
O122—C122—C121 121.5 (4) O222—C222—C223 118.8 (4)
C123—C122—C121 119.8 (4) C221—C222—C223 119.2 (4)
O123—C123—C124 125.4 (4) O223—C223—C224 125.9 (4)
O123—C123—C122 115.1 (4) O223—C223—C222 114.3 (4)
C124—C123—C122 119.5 (4) C224—C223—C222 119.8 (4)
C123—C124—C125 120.8 (4) C223—C224—C225 120.7 (4)
C123—C124—H124 119.6 C223—C224—H224 119.6
C125—C124—H124 119.6 C225—C224—H224 119.6
C126—C125—C124 120.1 (4) C226—C225—C224 120.4 (4)
C126—C125—H125 120.0 C226—C225—H225 119.8
C124—C125—H125 120.0 C224—C225—H225 119.8
C125—C126—C121 120.8 (4) C225—C226—C221 120.1 (4)
C125—C126—H126 119.6 C225—C226—H226 119.9
C121—C126—H126 119.6 C221—C226—H226 119.9
C122—O122—H122 109 (3) C222—O222—H222 108 (4)
C123—O123—C128 116.8 (4) C223—O223—C228 116.5 (4)
O123—C128—H12A 109.5 O223—C228—H22A 109.5
O123—C128—H12B 109.5 O223—C228—H22B 109.5
H12A—C128—H12B 109.5 H22A—C228—H22B 109.5
O123—C128—H12C 109.5 O223—C228—H22C 109.5
H12A—C128—H12C 109.5 H22A—C228—H22C 109.5
H12B—C128—H12C 109.5 H22B—C228—H22C 109.5
C127—N11—C111—C112 −6.6 (6) C227—N21—C211—C216 177.4 (4)
C127—N11—C111—C116 174.9 (4) C227—N21—C211—C212 −3.2 (6)
C116—C111—C112—C113 2.0 (6) C216—C211—C212—C213 1.8 (6)
N11—C111—C112—C113 −176.5 (4) N21—C211—C212—C213 −177.6 (4)
C111—C112—C113—C114 −0.1 (6) C211—C212—C213—C214 −0.4 (6)
C111—C112—C113—C117 −179.9 (4) C211—C212—C213—C217 179.7 (4)
C112—C113—C114—C115 −1.6 (7) C212—C213—C214—C215 −1.5 (7)
C117—C113—C114—C115 178.2 (4) C217—C213—C214—C215 178.5 (4)
C113—C114—C115—C116 1.2 (8) C213—C214—C215—C216 1.8 (7)
C114—C115—C116—C111 0.9 (7) C214—C215—C216—C211 −0.4 (7)
C112—C111—C116—C115 −2.4 (6) C212—C211—C216—C215 −1.4 (7)
N11—C111—C116—C115 176.2 (4) N21—C211—C216—C215 178.1 (4)
C112—C113—C117—O117 6.3 (6) C214—C213—C217—O217 −173.1 (4)
C114—C113—C117—O117 −173.5 (4) C212—C213—C217—O217 6.9 (6)
C112—C113—C117—C118 −173.7 (4) C214—C213—C217—C218 5.9 (7)
C114—C113—C117—C118 6.5 (7) C212—C213—C217—C218 −174.2 (4)
C111—N11—C127—C121 178.8 (4) C211—N21—C227—C221 179.1 (4)
N11—C127—C121—C126 179.4 (4) N21—C227—C221—C222 −0.2 (6)
N11—C127—C121—C122 1.6 (6) N21—C227—C221—C226 179.9 (4)
C126—C121—C122—O122 178.5 (4) C226—C221—C222—O222 178.8 (4)
C127—C121—C122—O122 −3.7 (6) C227—C221—C222—O222 −1.0 (7)
C126—C121—C122—C123 −2.1 (6) C226—C221—C222—C223 −1.8 (6)
C127—C121—C122—C123 175.7 (4) C227—C221—C222—C223 178.4 (4)
O122—C122—C123—O123 0.8 (6) O222—C222—C223—O223 −0.6 (7)
C121—C122—C123—O123 −178.6 (4) C221—C222—C223—O223 180.0 (4)
O122—C122—C123—C124 −179.4 (4) O222—C222—C223—C224 178.9 (5)
C121—C122—C123—C124 1.2 (6) C221—C222—C223—C224 −0.5 (7)
O123—C123—C124—C125 −179.4 (4) O223—C223—C224—C225 −178.7 (5)
C122—C123—C124—C125 0.9 (7) C222—C223—C224—C225 1.9 (7)
C123—C124—C125—C126 −2.0 (7) C223—C224—C225—C226 −1.0 (7)
C124—C125—C126—C121 1.0 (7) C224—C225—C226—C221 −1.4 (7)
C122—C121—C126—C125 1.0 (6) C222—C221—C226—C225 2.8 (7)
C127—C121—C126—C125 −176.8 (4) C227—C221—C226—C225 −177.4 (4)
C124—C123—O123—C128 −3.7 (7) C224—C223—O223—C228 −3.2 (8)
C122—C123—O123—C128 176.1 (4) C222—C223—O223—C228 176.2 (5)

(E)-1-{3-[(2-Hydroxy-3-methoxybenzylidene)amino]phenyl}ethanone (II) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O122—H122···N11 1.06 (6) 1.68 (6) 2.604 (4) 142 (5)
O222—H222···N21 0.92 (6) 1.79 (6) 2.603 (5) 147 (5)
C116—H116···O223i 0.93 2.50 3.347 (6) 152
C127—H127···O217 0.93 2.59 3.496 (5) 164
C227—H227···O117ii 0.93 2.58 3.487 (5) 164

Symmetry codes: (i) −x+1, −y, z+1/2; (ii) x, y−1, z.

References

  1. Blagus, A., Cinčić, D., Friščić, T., Kaitner, B. & Stilinović, V. (2010). Maced. J. Chem. Chem. Eng. 29, 117–138.
  2. Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. De, R. L., Mukherjee, J., Mandal, M., Roy, L., Bhowal, R. & Banerjee, I. (2009). Ind. J. Chem. 48B, 595–598.
  4. Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.
  5. Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.
  6. Ferguson, G., Glidewell, C. & Patterson, I. L. J. (1996). Acta Cryst. C52, 420–423.
  7. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  8. Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57. [DOI] [PubMed]
  9. Hameed, A., Al-Rashida, M., Uroos, M., Ali, S. A. & Khan, K. M. (2017). Expert Opin. Ther. Pat. 27, 63–79. [DOI] [PubMed]
  10. Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2010). J. Appl. Cryst. 43, 665–668.
  11. Jeevadason, A. W., Murugavel, K. & Neelakantan, M. A. (2014). Renewable Sustainable Energy Rev. 36, 220–227.
  12. Jia, Y. & Li, J. (2015). Chem. Rev. 115, 1597–1621. [DOI] [PubMed]
  13. Kumar, S., Dhar, D. N. & Saxena, P. N. (2009). J. Sci. Ind. Res. 68, 181–187.
  14. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  15. Rani, A., Kumar, M., Khare, R. & Tuli, H. S. (2015). J. Biol. Chem. Sci. 2, 62–91.
  16. Seip, H. M. & Seip, R. (1973). Acta Chem. Scand. 27, 4024–4027.
  17. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  18. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  19. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  20. Zbačnik, M., Nogalo, I., Cinčić, D. & Kaitner, B. (2015). CrystEngComm, 17, 7870–7877.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989017015985/su5402sup1.cif

e-73-01835-sup1.cif (2.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017015985/su5402Isup2.hkl

e-73-01835-Isup2.hkl (196.5KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989017015985/su5402IIsup3.hkl

e-73-01835-IIsup3.hkl (429.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017015985/su5402Isup4.cml

Supporting information file. DOI: 10.1107/S2056989017015985/su5402IIsup5.cml

CCDC references: 1583686, 1583685

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES