Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Nov 10;73(Pt 12):1845–1849. doi: 10.1107/S2056989017015973

Crystal structures of 1-hy­droxy-4-prop­yloxy-9,10-anthra­quinone and its acetyl derivative

Hidemi Nakagawa a, Chitoshi Kitamura a,*
PMCID: PMC5730237  PMID: 29250400

The title compounds were synthesized from the commercially available dye quinizarin. In both compounds, the anthra­quinone frameworks are close to planarity but there is a large difference in the conformation of the prop­yloxy group.

Keywords: crystal structure, anthra­quinone, hydrogen bonding, π–π stacking, C—H ⋯O inter­actions

Abstract

1-Hy­droxy-4-prop­yloxy-9,10-anthra­quinone, C17H14O4, (I), and its acetyl derivative, 4-acet­yloxy-4-prop­yloxy-9,10-anthra­quinone, C19H16O5, (II), were synthesized from the commercially available dye quinizarin. In both compounds, the anthra­quinone frameworks are close to planarity. There is a large difference in the conformation of the prop­yloxy group; the mol­ecule of (I) adopts a gauche conformation [O—C—C—C = −64.4 (2)°], although the mol­ecule of (II) takes a trans-planar conformation (zigzag) [O—C—C—C = 176.1 (3)°]. In the mol­ecule of (I), there is an intra­molecular O—H⋯O hydrogen bond. In both crystals, the mol­ecules are linked by C—H ⋯O hydrogen bonds. A difference in the mol­ecular arrangements of (I) and (II) is found along the stacking directions.

Chemical context  

9,10-Anthra­quinone and its derivatives are important mol­ecules as dyes and pigments. As a part of a project on the study of the substitution effects of the anthra­quinone ring on optical properties in solution as well as in the solid state, we have been synthesizing new anthra­quinone derivatives. Recently, we found that the recrystallization of 1,4-diprop­yloxy-9,10-antha­quinone from hexane solution afforded two polymorphs, red prisms and yellow needles, whose crystal structures were different from each other (Kitamura et al., 2015b ). Then we became inter­ested in the effect of the asymmetric substitution pattern of 9,10-anthra­quinone because 1,4-diprop­yloxy-9,10-anthra­quinone is a symmetric mol­ecule along the direction of the mol­ecular short axis. We thought that mono-alk­oxy­lation from quinizarin (1,4-dihy­droxy-9,10-anthra­quinone) should be effective to gain asymmetric 9,10-anthra­quinones along the mol­ecular short axis. We report herein the synthesis and crystal structures of 1-hy­droxy-4-prop­yloxy-9,10-anthra­quinone (I) and its acetyl derivative, 1-acet­yloxy-4-prop­yloxy-9,10-anthra­quinone (II).graphic file with name e-73-01845-scheme1.jpg

Structural commentary  

The mol­ecular structures of the title compounds, (I) and (II), are illustrated in Figs. 1 and 2, respectively. In both mol­ecules, the anthra­quinone frameworks are nearly planar. However, there is a large difference in the conformation of the prop­yloxy group; in compound (I), the the prop­yloxy moiety adopts a gauche conformation [O2—C15—C16—C17 torsion angle = 64.4 (2)°], and in compound (II), it has a trans-planar (zigzag) conformation [O2—C17—C18—C19 = 176.1 (3)°]. In (I), there is an intra­molecular O—H⋯O hydrogen bond forming an S(6) ring motif (Fig. 1 and Table 1). In compound (II), the acetyl group plane (O1/O5/C15/C16) is inclined to the anthra­quinone ring system by 71.87 (12)°.

Figure 1.

Figure 1

Mol­ecular structure of compound (I), showing the atom labelling and 50% probability displacement ellipsoids. The intra­molecular hydrogen bond is indicated by a dashed line.

Figure 2.

Figure 2

Mol­ecular structure of compound (II), showing the atom labelling and 50% probability displacement ellipsoids.

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4 0.98 (3) 1.61 (3) 2.525 (2) 153 (2)
C8—H8⋯O3i 0.95 2.51 3.270 (2) 137
C15—H15A⋯O1ii 0.99 2.88 3.359 (2) 111

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Supra­molecular features  

The crystal packing structures of the title compounds, (I) and (II), are shown in Figs. 3 and 4, respectively. In both crystals, mol­ecules are linked by inter­molecular C—H⋯O hydrogen bonds. For compound (I), C—H⋯O hydrogen bonds along the lateral direction of the mol­ecules are found (Fig. 3 and Table 1): C8—H8⋯O3i, C15—H15A⋯O1ii [symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) x − Inline graphic, −y + Inline graphic, z − Inline graphic]. In contrast, in compound (II) C—H⋯O inter­actions are formed along all directions (Fig. 4 and Table 2): C2—H2⋯O3iii, C10—H10⋯O5iv [symmetry codes: (iii) −x + 1, y − Inline graphic, −z + Inline graphic; (iv) x, −y + Inline graphic, z − Inline graphic] . To understand the solid-state optical properties of dyes, revealing the characteristics of the stacking patterns of neighboring mol­ecules is important. In both crystals, the anthra­quinone ring systems are arranged nearly parallel, although there is a difference in the mol­ecular arrangement of two neighboring mol­ecules along the stacking directions (Figs. 5–8 ). As shown in Figs. 5 and 6, a small π overlap of the anthra­quinone ring systems is observed for compound (II), on the other hand, compound (I) scarcely shows any π overlap. Regarding the overlap of the anthra­quinone ring systems, in compound (I) there is a translational slip, while in compound (II) there is a rotational slip. The shortest distances for overlapping non-bonded atoms in the anthra­quinone frameworks are 3.297 (2) Å (C11⋯C6v) and 3.558 (2) Å (C13⋯C4v) in compound (I), and 3.363 (4) Å (C8⋯C4iv), 3.423 (4) Å (C11⋯C6iv) and 3.523 (4) Å (C10⋯C14iv) in compound (II) [symmetry code: (v) x + 1, y, z]. As shown in Figs. 7 and 8, the inter­planar distances between the anthra­quinone planes [3.3895 (12) Å for compound (I) and 3.396 (3) Å for compound (II)] are almost identical. The degree of overlap and the inter­planar distance between two chromophores are considered to be the two factors essential for evaluating inter­molecular inter­actions. Therefore compound (II) would have stronger inter­molecular inter­actions than compound (I).

Figure 3.

Figure 3

Packing of the unit cell of (I), showing short C—H⋯O contacts as blue lines.

Figure 4.

Figure 4

Packing of the unit cell of (II), showing short C—H⋯O contacts as blue lines.

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O3i 0.95 2.6 3.384 (4) 140
C10—H10⋯O5ii 0.95 2.57 3.180 (4) 123

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 5.

Figure 5

Top view of two neighboring mol­ecules of compound (I) along the stacking direction.

Figure 6.

Figure 6

Top view of two neighboring mol­ecules of compound (II) along the stacking direction.

Figure 7.

Figure 7

Side view of two neighboring mol­ecules of compound (I).

Figure 8.

Figure 8

Side view of two neighboring mol­ecules of compound (II).

Database survey  

A literature search found no reports of crystal structures of 1-hy­droxy-4-prop­yloxy-9,10-anthra­quinone (I) and 1-acet­yloxy-4-prop­yloxy-9,10-anthra­quinone (II). Other hy­droxy- or alk­oxy-substituted anthra­quinone compounds have been reported: 4-(3-bromo­prop­yloxy)-1-hy­droxy-9,10-anthra­quin­one (Ohira et al., 2016), 1,4-diprop­yloxy-9,10-anthra­quinone (Kitamura et al., 2015b ), 1,4-dihy­droxy-2,3-di­nitro-9,10-anthra­quinone (Furukawa et al., 2016), 1,4-dieth­oxy-9,10-anthra­quinone (Kitamura et al., 2015a ), 2-bromo-1,4-dihy­droxy-9,10-anthra­quinone (Furukawa et al., 2014), 2,6-dimeth­oxy-9,10-anthra­quinone (Ohta et al., 2012a ), 2,6-diprop­yloxy-9,10-anthra­quinone (Ohta et al., 2012b ), 2,3,6,7-tetra­prop­yloxy-9,10-anthra­quinone (Ohta et al., 2012b ).

Synthesis and crystallization  

The title compounds, (I) and (II), were synthesized starting from quinizarin (1,4-dihy­droxy-9,10-anthra­quinone), as shown in Fig. 9

Figure 9.

Figure 9

Reaction scheme for the synthesis of compounds (I) and (II).

Compound (I): A mixture of quinizarin (289 mg, 1.20 mmol), 1-bromo­propane (675 mg, 5.49 mmol), K2CO3 (185 mg, 1.34 mmol) in DMF (5 mL) was stirred at 353 K for 3 h under N2. After cooling to room temperature, water (60 mL) was added to the reaction mixture. The brown solid that precipitated was filtered off. The resulting solid was solubilized with CH2Cl2. The organic layer was washed with 1 M NaOH to remove the unreacted quinizarin, then washed sequentially with brine, dried over Na2SO4, and evaporated under reduced pressure. The residual brown solid was purified by chromatography on silica gel with an eluent of CH2Cl2. The title compound (I) was obtained as an orange solid (132 mg, 46%). m.p. 387.5–389 K. 1H NMR (400 MHz, CDCl3): δ 1.14 (t, J = 7.4 Hz, 3H, CH3), 1.91–2.00 (m, 2H, CH2), 4.11 (t, J = 6.6 Hz, 2H, CH2), 7.28–7.32 (m, 1H, ArH), 7.39–7.41 (m, 1H, ArH), 7.73–7.82 (m, 2H, ArH), 8.27–8.31 (m, 2H, ArH), 13.03 (s, 1H, OH). Crystals suitable for X-ray diffraction were grown by slow evaporation of an AcOEt–hexane (>v:v = 1:10) solution.

Compound (II): A mixture of compound (I) (132 mg, 0.47 mmol), K2CO3 (137 mg, 0.99 mmol) in acetic anhydride (5 mL) was stirred at 383 K for 3 h under air. After cooling to room temperature, water (50 mL) was added into the resulting mixture, then the mixture was stirred for 20 min at room temperature. The mixture was extracted with CH2Cl2. The organic layer was washed with 10% NaHCO3 solution and then brine, and dried over Na2SO4, and evaporated under reduced pressure. The residual yellow solid was purified by recrystallization from a hexa­ne–toluene (>v:v = 3:1) solution to provide title compound (II) as a yellow solid (128 mg, 84%). m.p. 401–403 K. 1H NMR (400 MHz, CDCl3): δ 1.146 (t, J = 7.3 Hz, 3H, CH3), 1.93–2.02 (m, 2H, CH2), 2.48 (s, 3H, CH3), 4.13 (t, J = 6.4 Hz, 2H, CH2), 7.32–7.36 (m, 2H, ArH), 7.68–7.76 (m, 2H, ArH), 8.12–8.22 (m, 2H, ArH). Crystals suitable for X-ray diffraction were grown by slow evaporation of a hexane-toluene (>v:v = 18:1) solution.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The hydroxyl H atom, H1 of compound (I), was refined isotropically. All other H atoms were positioned geometrically and treated as riding atoms: C—H = 0.95–0.99 Å with U iso(H) = 1.5U eq(C) for CH3 and 1.2U eq(C) for CH2 and aromatic C—H.

Table 3. Experimental details.

  (I) (II)
Crystal data
Chemical formula C17H14O4 C19H16O5
M r 282.28 324.32
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/c
Temperature (K) 200 200
a, b, c (Å) 4.7354 (3), 25.9882 (17), 11.0671 (9) 11.7730 (12), 15.514 (2), 8.9609 (10)
β (°) 102.268 (7) 111.153 (8)
V3) 1330.87 (17) 1526.4 (3)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.1 0.10
Crystal size (mm) 0.5 × 0.13 × 0.05 0.55 × 0.1 × 0.05
 
Data collection
Diffractometer R-AXIS RAPID R-AXIS RAPID
No. of measured, independent and observed [I > 2σ(I)] reflections 12176, 3029, 2035 13902, 3439, 1649
R int 0.039 0.127
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.047, 0.123, 1.02 0.070, 0.180, 0.96
No. of reflections 3029 3439
No. of parameters 195 219
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.17, −0.20 0.20, −0.24

Computer programs: PROCESS-AUTO (Rigaku, 1998), SIR2004 (Burla et al., 2005), SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2008), WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989017015973/nr2068sup1.cif

e-73-01845-sup1.cif (900.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017015973/nr2068Isup2.hkl

e-73-01845-Isup2.hkl (242.1KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989017015973/nr2068IIsup3.hkl

e-73-01845-IIsup3.hkl (274.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017015973/nr2068Isup4.cml

Supporting information file. DOI: 10.1107/S2056989017015973/nr2068IIsup5.cml

CCDC references: 1583677, 1583676

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

1-Hydroxy-4-propyloxy-9,10-anthraquinone (I). Crystal data

C17H14O4 F(000) = 592
Mr = 282.28 Dx = 1.409 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 8070 reflections
a = 4.7354 (3) Å θ = 3.0–27.4°
b = 25.9882 (17) Å µ = 0.1 mm1
c = 11.0671 (9) Å T = 200 K
β = 102.268 (7)° Needle, orange
V = 1330.87 (17) Å3 0.5 × 0.13 × 0.05 mm
Z = 4

1-Hydroxy-4-propyloxy-9,10-anthraquinone (I). Data collection

R-AXIS RAPID diffractometer 2035 reflections with I > 2σ(I)
Radiation source: normal sealed x-ray tube Rint = 0.039
Graphite monochromator θmax = 27.5°, θmin = 3.0°
Detector resolution: 10 pixels mm-1 h = −6→5
ω scans k = −33→32
12176 measured reflections l = −14→14
3029 independent reflections

1-Hydroxy-4-propyloxy-9,10-anthraquinone (I). Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: mixed
wR(F2) = 0.123 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0601P)2 + 0.1583P] where P = (Fo2 + 2Fc2)/3
3029 reflections (Δ/σ)max < 0.001
195 parameters Δρmax = 0.17 e Å3
0 restraints Δρmin = −0.20 e Å3
0 constraints

1-Hydroxy-4-propyloxy-9,10-anthraquinone (I). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

1-Hydroxy-4-propyloxy-9,10-anthraquinone (I). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.5957 (3) 0.24895 (6) 0.42197 (15) 0.0330 (4)
C2 0.3444 (4) 0.23736 (6) 0.33536 (16) 0.0358 (4)
H2 0.2979 0.2025 0.314 0.043*
C3 0.1644 (3) 0.27569 (6) 0.28092 (15) 0.0350 (4)
H3 −0.0048 0.267 0.2214 0.042*
C4 0.2236 (3) 0.32769 (6) 0.31091 (15) 0.0304 (3)
C5 0.4712 (3) 0.34058 (6) 0.40077 (14) 0.0288 (3)
C6 0.5450 (3) 0.39481 (6) 0.43736 (16) 0.0334 (4)
C7 0.7983 (3) 0.40429 (6) 0.54037 (15) 0.0319 (4)
C8 0.8576 (4) 0.45434 (7) 0.58305 (17) 0.0409 (4)
H8 0.7373 0.4819 0.5465 0.049*
C9 1.0910 (4) 0.46402 (8) 0.67839 (18) 0.0497 (5)
H9 1.1314 0.4983 0.7065 0.06*
C10 1.2665 (4) 0.42437 (8) 0.73352 (19) 0.0512 (5)
H10 1.4256 0.4314 0.7996 0.061*
C11 1.2107 (4) 0.37463 (7) 0.69259 (17) 0.0434 (4)
H11 1.3308 0.3473 0.7306 0.052*
C12 0.9770 (3) 0.36437 (6) 0.59508 (15) 0.0321 (4)
C13 0.9209 (3) 0.31127 (6) 0.55027 (15) 0.0315 (4)
C14 0.6585 (3) 0.30036 (6) 0.45649 (14) 0.0296 (3)
C15 −0.1815 (3) 0.35323 (7) 0.15327 (15) 0.0375 (4)
H15A −0.3207 0.3296 0.1798 0.045*
H15B −0.1016 0.336 0.0881 0.045*
C16 −0.3300 (4) 0.40232 (7) 0.10439 (17) 0.0445 (4)
H16A −0.3997 0.4198 0.172 0.053*
H16B −0.5009 0.3939 0.0388 0.053*
C17 −0.1379 (4) 0.43891 (8) 0.0523 (2) 0.0580 (5)
H17A −0.0718 0.4222 −0.0161 0.087*
H17B 0.0296 0.4481 0.1172 0.087*
H17C −0.2469 0.4701 0.0221 0.087*
O1 0.7687 (3) 0.20912 (4) 0.46962 (12) 0.0422 (3)
O2 0.0480 (2) 0.36605 (4) 0.25698 (11) 0.0374 (3)
O3 0.4064 (3) 0.43123 (4) 0.38701 (13) 0.0522 (4)
O4 1.0922 (2) 0.27624 (4) 0.59342 (11) 0.0396 (3)
H1 0.930 (6) 0.2263 (10) 0.525 (2) 0.086 (8)*

1-Hydroxy-4-propyloxy-9,10-anthraquinone (I). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0370 (8) 0.0307 (8) 0.0344 (9) 0.0001 (7) 0.0146 (7) 0.0027 (6)
C2 0.0412 (9) 0.0306 (8) 0.0372 (10) −0.0049 (7) 0.0122 (7) −0.0038 (7)
C3 0.0325 (8) 0.0403 (9) 0.0326 (9) −0.0083 (7) 0.0076 (7) −0.0063 (7)
C4 0.0279 (7) 0.0336 (8) 0.0299 (9) −0.0001 (7) 0.0066 (6) 0.0004 (6)
C5 0.0283 (7) 0.0311 (7) 0.0276 (8) −0.0018 (6) 0.0073 (6) −0.0001 (6)
C6 0.0332 (8) 0.0307 (8) 0.0352 (9) 0.0002 (7) 0.0049 (7) −0.0006 (7)
C7 0.0314 (8) 0.0344 (8) 0.0300 (9) −0.0035 (7) 0.0068 (7) −0.0012 (7)
C8 0.0418 (9) 0.0356 (8) 0.0436 (11) −0.0034 (8) 0.0051 (8) −0.0033 (7)
C9 0.0521 (11) 0.0469 (10) 0.0457 (12) −0.0109 (9) 0.0003 (9) −0.0103 (8)
C10 0.0474 (10) 0.0597 (11) 0.0396 (11) −0.0105 (10) −0.0059 (8) −0.0062 (9)
C11 0.0381 (9) 0.0520 (10) 0.0354 (10) −0.0002 (8) −0.0026 (7) 0.0033 (8)
C12 0.0305 (8) 0.0371 (8) 0.0283 (9) −0.0009 (7) 0.0056 (6) 0.0028 (7)
C13 0.0310 (8) 0.0357 (8) 0.0290 (9) 0.0006 (7) 0.0095 (6) 0.0058 (6)
C14 0.0301 (7) 0.0316 (7) 0.0286 (8) −0.0008 (7) 0.0099 (6) 0.0017 (6)
C15 0.0286 (8) 0.0520 (10) 0.0294 (9) −0.0023 (8) 0.0003 (7) −0.0052 (7)
C16 0.0337 (9) 0.0589 (11) 0.0376 (11) 0.0077 (9) 0.0002 (7) −0.0031 (8)
C17 0.0502 (11) 0.0622 (12) 0.0572 (14) 0.0067 (10) 0.0019 (10) 0.0147 (10)
O1 0.0472 (7) 0.0307 (6) 0.0489 (8) 0.0055 (6) 0.0106 (6) 0.0054 (5)
O2 0.0331 (6) 0.0388 (6) 0.0357 (7) 0.0023 (5) −0.0028 (5) −0.0018 (5)
O3 0.0524 (8) 0.0329 (6) 0.0595 (9) 0.0053 (6) −0.0150 (6) −0.0012 (6)
O4 0.0382 (6) 0.0392 (6) 0.0394 (7) 0.0067 (5) 0.0038 (5) 0.0076 (5)

1-Hydroxy-4-propyloxy-9,10-anthraquinone (I). Geometric parameters (Å, º)

C1—O1 1.3552 (19) C10—C11 1.376 (3)
C1—C2 1.393 (2) C10—H10 0.95
C1—C14 1.404 (2) C11—C12 1.397 (2)
C2—C3 1.365 (2) C11—H11 0.95
C2—H2 0.95 C12—C13 1.471 (2)
C3—C4 1.406 (2) C13—O4 1.2449 (18)
C3—H3 0.95 C13—C14 1.468 (2)
C4—O2 1.3531 (18) C15—O2 1.4422 (19)
C4—C5 1.407 (2) C15—C16 1.501 (2)
C5—C14 1.424 (2) C15—H15A 0.99
C5—C6 1.487 (2) C15—H15B 0.99
C6—O3 1.2172 (19) C16—C17 1.512 (3)
C6—C7 1.489 (2) C16—H16A 0.99
C7—C8 1.392 (2) C16—H16B 0.99
C7—C12 1.393 (2) C17—H17A 0.98
C8—C9 1.379 (3) C17—H17B 0.98
C8—H8 0.95 C17—H17C 0.98
C9—C10 1.382 (3) O1—H1 0.98 (3)
C9—H9 0.95
O1—C1—C2 117.38 (14) C10—C11—H11 120
O1—C1—C14 123.06 (15) C12—C11—H11 120
C2—C1—C14 119.56 (15) C7—C12—C11 120.12 (15)
C3—C2—C1 120.52 (15) C7—C12—C13 120.16 (14)
C3—C2—H2 119.7 C11—C12—C13 119.72 (15)
C1—C2—H2 119.7 O4—C13—C14 120.98 (14)
C2—C3—C4 121.52 (15) O4—C13—C12 120.02 (14)
C2—C3—H3 119.2 C14—C13—C12 118.98 (14)
C4—C3—H3 119.2 C1—C14—C5 120.30 (14)
O2—C4—C3 122.08 (14) C1—C14—C13 118.34 (14)
O2—C4—C5 118.55 (13) C5—C14—C13 121.36 (13)
C3—C4—C5 119.36 (15) O2—C15—C16 107.86 (14)
C4—C5—C14 118.68 (13) O2—C15—H15A 110.1
C4—C5—C6 122.03 (14) C16—C15—H15A 110.1
C14—C5—C6 119.28 (14) O2—C15—H15B 110.1
O3—C6—C5 122.65 (15) C16—C15—H15B 110.1
O3—C6—C7 119.34 (14) H15A—C15—H15B 108.4
C5—C6—C7 118.00 (14) C15—C16—C17 113.45 (15)
C8—C7—C12 119.21 (15) C15—C16—H16A 108.9
C8—C7—C6 119.08 (15) C17—C16—H16A 108.9
C12—C7—C6 121.71 (14) C15—C16—H16B 108.9
C9—C8—C7 120.09 (17) C17—C16—H16B 108.9
C9—C8—H8 120 H16A—C16—H16B 107.7
C7—C8—H8 120 C16—C17—H17A 109.5
C8—C9—C10 120.70 (17) C16—C17—H17B 109.5
C8—C9—H9 119.6 H17A—C17—H17B 109.5
C10—C9—H9 119.6 C16—C17—H17C 109.5
C11—C10—C9 119.97 (18) H17A—C17—H17C 109.5
C11—C10—H10 120 H17B—C17—H17C 109.5
C9—C10—H10 120 C1—O1—H1 102.8 (14)
C10—C11—C12 119.90 (17) C4—O2—C15 118.00 (12)
O1—C1—C2—C3 −178.11 (14) C8—C7—C12—C13 −179.10 (14)
C14—C1—C2—C3 2.2 (2) C6—C7—C12—C13 0.9 (2)
C1—C2—C3—C4 −0.7 (2) C10—C11—C12—C7 −0.9 (3)
C2—C3—C4—O2 179.53 (15) C10—C11—C12—C13 179.01 (16)
C2—C3—C4—C5 −1.2 (2) C7—C12—C13—O4 175.01 (14)
O2—C4—C5—C14 −179.17 (13) C11—C12—C13—O4 −4.9 (2)
C3—C4—C5—C14 1.5 (2) C7—C12—C13—C14 −6.2 (2)
O2—C4—C5—C6 −0.3 (2) C11—C12—C13—C14 173.89 (15)
C3—C4—C5—C6 −179.55 (14) O1—C1—C14—C5 178.51 (14)
C4—C5—C6—O3 −4.5 (3) C2—C1—C14—C5 −1.9 (2)
C14—C5—C6—O3 174.43 (16) O1—C1—C14—C13 −1.2 (2)
C4—C5—C6—C7 175.19 (14) C2—C1—C14—C13 178.45 (14)
C14—C5—C6—C7 −5.9 (2) C4—C5—C14—C1 0.0 (2)
O3—C6—C7—C8 4.9 (2) C6—C5—C14—C1 −178.97 (14)
C5—C6—C7—C8 −174.80 (14) C4—C5—C14—C13 179.65 (14)
O3—C6—C7—C12 −175.16 (16) C6—C5—C14—C13 0.7 (2)
C5—C6—C7—C12 5.2 (2) O4—C13—C14—C1 3.8 (2)
C12—C7—C8—C9 0.0 (3) C12—C13—C14—C1 −174.90 (13)
C6—C7—C8—C9 179.96 (16) O4—C13—C14—C5 −175.84 (14)
C7—C8—C9—C10 −0.7 (3) C12—C13—C14—C5 5.4 (2)
C8—C9—C10—C11 0.6 (3) O2—C15—C16—C17 64.4 (2)
C9—C10—C11—C12 0.2 (3) C3—C4—O2—C15 −9.3 (2)
C8—C7—C12—C11 0.8 (2) C5—C4—O2—C15 171.45 (14)
C6—C7—C12—C11 −179.20 (15) C16—C15—O2—C4 −175.86 (13)

1-Hydroxy-4-propyloxy-9,10-anthraquinone (I). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···O4 0.98 (3) 1.61 (3) 2.5249 (18) 153 (2)
C8—H8···O3i 0.95 2.51 3.270 (2) 137
C15—H15A···O1ii 0.99 2.88 3.359 (2) 111

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−3/2, −y+1/2, z−1/2.

1-Acetyloxy-4-propyloxy-9,10-anthraquinone (II). Crystal data

C19H16O5 F(000) = 680
Mr = 324.32 Dx = 1.411 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 6030 reflections
a = 11.7730 (12) Å θ = 3.2–27.5°
b = 15.514 (2) Å µ = 0.10 mm1
c = 8.9609 (10) Å T = 200 K
β = 111.153 (8)° Needle, yellow
V = 1526.4 (3) Å3 0.55 × 0.1 × 0.05 mm
Z = 4

1-Acetyloxy-4-propyloxy-9,10-anthraquinone (II). Data collection

R-AXIS RAPID diffractometer 1649 reflections with I > 2σ(I)
Radiation source: normal sealed x-ray tube Rint = 0.127
Graphite monochromator θmax = 27.5°, θmin = 3.2°
Detector resolution: 10 pixels mm-1 h = −15→15
ω scans k = −20→20
13902 measured reflections l = −10→11
3439 independent reflections

1-Acetyloxy-4-propyloxy-9,10-anthraquinone (II). Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.070 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180 H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0805P)2] where P = (Fo2 + 2Fc2)/3
3439 reflections (Δ/σ)max < 0.001
219 parameters Δρmax = 0.20 e Å3
0 restraints Δρmin = −0.24 e Å3
0 constraints

1-Acetyloxy-4-propyloxy-9,10-anthraquinone (II). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

1-Acetyloxy-4-propyloxy-9,10-anthraquinone (II). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.73574 (17) −0.04963 (13) 0.5929 (3) 0.0468 (6)
O2 0.42969 (17) 0.16690 (14) 0.7620 (3) 0.0483 (6)
O3 0.53107 (19) 0.29687 (14) 0.6807 (3) 0.0540 (6)
O4 0.8033 (2) 0.08785 (16) 0.4753 (3) 0.0702 (8)
O5 0.9066 (2) −0.0077 (2) 0.7902 (3) 0.0765 (9)
C1 0.6653 (2) 0.0082 (2) 0.6418 (4) 0.0408 (7)
C2 0.5870 (2) −0.0265 (2) 0.7073 (4) 0.0442 (8)
H2 0.5871 −0.0869 0.7251 0.053*
C3 0.5088 (3) 0.0255 (2) 0.7471 (4) 0.0455 (8)
H3 0.4543 0.0004 0.7912 0.055*
C4 0.5070 (2) 0.1141 (2) 0.7248 (4) 0.0422 (8)
C5 0.5900 (2) 0.1519 (2) 0.6615 (3) 0.0372 (7)
C6 0.5986 (2) 0.2472 (2) 0.6488 (3) 0.0402 (7)
C7 0.6959 (2) 0.2810 (2) 0.5962 (3) 0.0377 (7)
C8 0.7145 (3) 0.3696 (2) 0.5977 (4) 0.0444 (8)
H8 0.6651 0.4071 0.6323 0.053*
C9 0.8044 (3) 0.4036 (2) 0.5493 (4) 0.0468 (8)
H9 0.8158 0.4642 0.5501 0.056*
C10 0.8774 (3) 0.3499 (2) 0.4999 (4) 0.0485 (8)
H10 0.9396 0.3733 0.468 0.058*
C11 0.8596 (3) 0.2620 (2) 0.4971 (4) 0.0447 (8)
H11 0.909 0.225 0.4616 0.054*
C12 0.7697 (2) 0.2272 (2) 0.5461 (4) 0.0388 (7)
C13 0.7508 (3) 0.1335 (2) 0.5408 (4) 0.0426 (8)
C14 0.6682 (2) 0.0963 (2) 0.6175 (3) 0.0379 (7)
C15 0.8571 (3) −0.0477 (2) 0.6697 (5) 0.0495 (8)
C16 0.9202 (3) −0.1012 (2) 0.5859 (4) 0.0603 (10)
H16A 0.9495 −0.0642 0.5187 0.09*
H16B 0.8633 −0.144 0.5187 0.09*
H16C 0.9894 −0.1308 0.6649 0.09*
C17 0.3442 (3) 0.1282 (2) 0.8232 (4) 0.0472 (8)
H17A 0.3879 0.1001 0.9274 0.057*
H17B 0.2949 0.0841 0.7476 0.057*
C18 0.2633 (3) 0.1994 (2) 0.8430 (4) 0.0536 (9)
H18A 0.2249 0.2301 0.7402 0.064*
H18B 0.3126 0.2413 0.9236 0.064*
C19 0.1645 (3) 0.1607 (2) 0.8970 (5) 0.0711 (12)
H19A 0.1176 0.1178 0.8186 0.107*
H19B 0.1099 0.2066 0.9055 0.107*
H19C 0.2028 0.1329 1.0015 0.107*

1-Acetyloxy-4-propyloxy-9,10-anthraquinone (II). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0506 (11) 0.0288 (13) 0.0650 (15) 0.0007 (9) 0.0258 (12) −0.0081 (10)
O2 0.0496 (12) 0.0379 (14) 0.0699 (15) 0.0019 (10) 0.0365 (12) 0.0032 (11)
O3 0.0596 (12) 0.0321 (14) 0.0861 (17) 0.0101 (11) 0.0454 (13) 0.0047 (12)
O4 0.1004 (18) 0.0341 (15) 0.109 (2) 0.0120 (13) 0.0781 (18) 0.0053 (14)
O5 0.0604 (14) 0.077 (2) 0.080 (2) 0.0213 (14) 0.0106 (15) −0.0307 (17)
C1 0.0420 (15) 0.0303 (18) 0.0516 (19) 0.0030 (13) 0.0187 (16) −0.0029 (15)
C2 0.0465 (15) 0.0286 (19) 0.057 (2) −0.0033 (13) 0.0179 (17) 0.0010 (14)
C3 0.0460 (16) 0.038 (2) 0.059 (2) −0.0036 (14) 0.0260 (17) 0.0047 (15)
C4 0.0385 (15) 0.041 (2) 0.0477 (19) 0.0008 (14) 0.0166 (16) 0.0000 (15)
C5 0.0378 (14) 0.0309 (18) 0.0437 (18) 0.0024 (12) 0.0159 (15) 0.0034 (13)
C6 0.0415 (15) 0.0325 (19) 0.049 (2) 0.0023 (14) 0.0195 (16) 0.0016 (14)
C7 0.0410 (15) 0.0293 (18) 0.0436 (18) 0.0054 (13) 0.0163 (15) 0.0024 (13)
C8 0.0529 (17) 0.0319 (19) 0.053 (2) 0.0041 (14) 0.0251 (17) 0.0013 (15)
C9 0.0514 (17) 0.0310 (19) 0.060 (2) −0.0044 (14) 0.0222 (17) 0.0013 (15)
C10 0.0493 (17) 0.041 (2) 0.061 (2) −0.0054 (15) 0.0267 (18) 0.0030 (16)
C11 0.0459 (16) 0.037 (2) 0.056 (2) 0.0022 (14) 0.0250 (17) 0.0027 (15)
C12 0.0427 (15) 0.0307 (19) 0.0438 (18) 0.0034 (13) 0.0166 (15) 0.0037 (14)
C13 0.0493 (16) 0.0350 (19) 0.050 (2) 0.0052 (14) 0.0261 (17) 0.0005 (15)
C14 0.0401 (14) 0.0304 (18) 0.0435 (18) 0.0024 (13) 0.0155 (15) 0.0003 (13)
C15 0.0510 (18) 0.032 (2) 0.066 (2) 0.0078 (15) 0.0228 (19) −0.0013 (17)
C16 0.060 (2) 0.047 (3) 0.080 (3) 0.0102 (17) 0.033 (2) −0.0139 (19)
C17 0.0456 (16) 0.041 (2) 0.064 (2) −0.0031 (14) 0.0316 (17) 0.0025 (16)
C18 0.0505 (17) 0.045 (2) 0.077 (2) 0.0002 (15) 0.0368 (19) −0.0024 (17)
C19 0.071 (2) 0.047 (3) 0.122 (3) 0.0025 (18) 0.067 (3) −0.004 (2)

1-Acetyloxy-4-propyloxy-9,10-anthraquinone (II). Geometric parameters (Å, º)

O1—C15 1.344 (4) C9—C10 1.380 (4)
O1—C1 1.396 (3) C9—H9 0.95
O2—C4 1.353 (3) C10—C11 1.378 (4)
O2—C17 1.440 (3) C10—H10 0.95
O3—C6 1.213 (3) C11—C12 1.393 (4)
O4—C13 1.220 (3) C11—H11 0.95
O5—C15 1.198 (4) C12—C13 1.469 (4)
C1—C2 1.370 (4) C13—C14 1.494 (4)
C1—C14 1.387 (4) C15—C16 1.486 (4)
C2—C3 1.364 (4) C16—H16A 0.98
C2—H2 0.95 C16—H16B 0.98
C3—C4 1.389 (4) C16—H16C 0.98
C3—H3 0.95 C17—C18 1.510 (4)
C4—C5 1.421 (4) C17—H17A 0.99
C5—C14 1.417 (4) C17—H17B 0.99
C5—C6 1.488 (4) C18—C19 1.535 (4)
C6—C7 1.484 (4) C18—H18A 0.99
C7—C8 1.390 (4) C18—H18B 0.99
C7—C12 1.390 (4) C19—H19A 0.98
C8—C9 1.385 (4) C19—H19B 0.98
C8—H8 0.95 C19—H19C 0.98
C15—O1—C1 117.9 (2) C7—C12—C13 120.0 (3)
C4—O2—C17 117.8 (3) C11—C12—C13 119.8 (3)
C2—C1—C14 121.0 (3) O4—C13—C12 119.5 (3)
C2—C1—O1 116.7 (3) O4—C13—C14 121.6 (3)
C14—C1—O1 122.2 (2) C12—C13—C14 118.9 (2)
C3—C2—C1 120.0 (3) C1—C14—C5 120.1 (3)
C3—C2—H2 120 C1—C14—C13 120.6 (3)
C1—C2—H2 120 C5—C14—C13 119.3 (3)
C2—C3—C4 121.6 (3) O5—C15—O1 123.7 (3)
C2—C3—H3 119.2 O5—C15—C16 125.1 (3)
C4—C3—H3 119.2 O1—C15—C16 111.2 (3)
O2—C4—C3 122.7 (3) C15—C16—H16A 109.5
O2—C4—C5 118.0 (3) C15—C16—H16B 109.5
C3—C4—C5 119.3 (3) H16A—C16—H16B 109.5
C14—C5—C4 117.9 (3) C15—C16—H16C 109.5
C14—C5—C6 121.0 (2) H16A—C16—H16C 109.5
C4—C5—C6 121.0 (3) H16B—C16—H16C 109.5
O3—C6—C7 119.8 (3) O2—C17—C18 107.3 (3)
O3—C6—C5 123.0 (3) O2—C17—H17A 110.3
C7—C6—C5 117.2 (2) C18—C17—H17A 110.3
C8—C7—C12 118.8 (3) O2—C17—H17B 110.3
C8—C7—C6 118.9 (3) C18—C17—H17B 110.3
C12—C7—C6 122.3 (3) H17A—C17—H17B 108.5
C9—C8—C7 120.6 (3) C17—C18—C19 109.5 (3)
C9—C8—H8 119.7 C17—C18—H18A 109.8
C7—C8—H8 119.7 C19—C18—H18A 109.8
C10—C9—C8 120.3 (3) C17—C18—H18B 109.8
C10—C9—H9 119.8 C19—C18—H18B 109.8
C8—C9—H9 119.8 H18A—C18—H18B 108.2
C11—C10—C9 119.7 (3) C18—C19—H19A 109.5
C11—C10—H10 120.1 C18—C19—H19B 109.5
C9—C10—H10 120.1 H19A—C19—H19B 109.5
C10—C11—C12 120.3 (3) C18—C19—H19C 109.5
C10—C11—H11 119.8 H19A—C19—H19C 109.5
C12—C11—H11 119.8 H19B—C19—H19C 109.5
C7—C12—C11 120.2 (3)
C15—O1—C1—C2 −115.1 (3) C8—C7—C12—C11 −0.6 (4)
C15—O1—C1—C14 68.5 (4) C6—C7—C12—C11 179.7 (3)
C14—C1—C2—C3 1.2 (5) C8—C7—C12—C13 −179.0 (3)
O1—C1—C2—C3 −175.2 (3) C6—C7—C12—C13 1.3 (4)
C1—C2—C3—C4 −0.8 (5) C10—C11—C12—C7 0.9 (5)
C17—O2—C4—C3 −1.7 (4) C10—C11—C12—C13 179.3 (3)
C17—O2—C4—C5 178.8 (3) C7—C12—C13—O4 169.4 (3)
C2—C3—C4—O2 179.4 (3) C11—C12—C13—O4 −9.0 (5)
C2—C3—C4—C5 −1.1 (5) C7—C12—C13—C14 −11.2 (4)
O2—C4—C5—C14 −177.9 (3) C11—C12—C13—C14 170.4 (3)
C3—C4—C5—C14 2.6 (4) C2—C1—C14—C5 0.3 (5)
O2—C4—C5—C6 4.8 (4) O1—C1—C14—C5 176.6 (3)
C3—C4—C5—C6 −174.7 (3) C2—C1—C14—C13 −177.9 (3)
C14—C5—C6—O3 177.8 (3) O1—C1—C14—C13 −1.7 (5)
C4—C5—C6—O3 −5.1 (5) C4—C5—C14—C1 −2.2 (4)
C14—C5—C6—C7 −3.0 (4) C6—C5—C14—C1 175.0 (3)
C4—C5—C6—C7 174.2 (3) C4—C5—C14—C13 176.1 (3)
O3—C6—C7—C8 5.4 (4) C6—C5—C14—C13 −6.7 (4)
C5—C6—C7—C8 −173.8 (3) O4—C13—C14—C1 11.5 (5)
O3—C6—C7—C12 −174.8 (3) C12—C13—C14—C1 −167.9 (3)
C5—C6—C7—C12 5.9 (4) O4—C13—C14—C5 −166.7 (3)
C12—C7—C8—C9 0.4 (5) C12—C13—C14—C5 13.9 (4)
C6—C7—C8—C9 −179.9 (3) C1—O1—C15—O5 10.3 (5)
C7—C8—C9—C10 −0.5 (5) C1—O1—C15—C16 −169.8 (3)
C8—C9—C10—C11 0.7 (5) C4—O2—C17—C18 −175.8 (3)
C9—C10—C11—C12 −0.9 (5) O2—C17—C18—C19 176.1 (3)

1-Acetyloxy-4-propyloxy-9,10-anthraquinone (II). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2···O3i 0.95 2.6 3.384 (4) 140
C10—H10···O5ii 0.95 2.57 3.180 (4) 123

Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) x, −y+1/2, z−1/2.

Funding Statement

This work was funded by Japan Society for the Promotion of Science grant 15K05482.

References

  1. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  2. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  3. Furukawa, W., Takehara, M., Inoue, Y. & Kitamura, C. (2014). Acta Cryst. E70, o1130. [DOI] [PMC free article] [PubMed]
  4. Furukawa, W., Takehara, M., Inoue, Y. & Kitamura, C. (2016). IUCrData, 1, x160906.
  5. Kitamura, C., Li, S., Takehara, M., Inoue, Y., Ono, K. & Kawase, T. (2015a). Acta Cryst. E71, o504–o505. [DOI] [PMC free article] [PubMed]
  6. Kitamura, C., Li, S., Takehara, M., Inoue, Y., Ono, K., Kawase, T. & Fujimoto, K. J. (2015b). Bull. Chem. Soc. Jpn, 88, 713–715.
  7. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  8. Ohira, N., Takehara, M., Inoue, Y. & Kitamura, C. (2016). IUCrData, 1, x160753.
  9. Ohta, A., Hattori, K., Kobayashi, T., Naito, H., Kawase, T. & Kitamura, C. (2012a). Acta Cryst. E68, o2843. [DOI] [PMC free article] [PubMed]
  10. Ohta, A., Hattori, K., Kusumoto, Y., Kawase, T., Kobayashi, T., Naito, H. & Kitamura, C. (2012b). Chem. Lett. 41, 674–676.
  11. Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
  12. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  13. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989017015973/nr2068sup1.cif

e-73-01845-sup1.cif (900.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017015973/nr2068Isup2.hkl

e-73-01845-Isup2.hkl (242.1KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989017015973/nr2068IIsup3.hkl

e-73-01845-IIsup3.hkl (274.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017015973/nr2068Isup4.cml

Supporting information file. DOI: 10.1107/S2056989017015973/nr2068IIsup5.cml

CCDC references: 1583677, 1583676

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES