Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Nov 14;73(Pt 12):1855–1860. doi: 10.1107/S2056989017016152

Crystal structure of BaMn2(AsO4)2 containing discrete [Mn4O18]28− units

Salvador Alcantar a, Hollis R Ledbetter a, Kulugammana G S Ranmohotti a,*
PMCID: PMC5730239  PMID: 29250402

BaMn2(AsO4)2 was isolated from a high-temperature halide flux. Its crystal structure is characterized by infinite sheets made up of AsO4 units and distorted MnO6 octa­hedra while barium cations inter­leave successive sheets. The layered framework comprises weakly inter­acting [Mn4O18]28− tetra­meric units. These units in the neighboring layer are separated from each other by 6.614 (2) Å (MnMn distance).

Keywords: orthoarsenate, tetra­meric units, layered framework stucture, bond-valence sum calculations, crystal structure

Abstract

In our attempt to search for mixed alkaline-earth and transition metal arsenates, the title compound, barium dimanganese(II) bis­(arsenate), has been synthesized by employing a high-temperature RbCl flux. The crystal structure of BaMn2(AsO4)2 is made up of MnO6 octa­hedra and AsO4 tetra­hedra assembled by sharing corners and edges into infinite slabs with composition [Mn2(AsO4)2]2− that extend parallel to the ab plane. The barium cations reside between parallel slabs maintaining the inter­slab connectivity through coordination to eight oxygen anions. The layered anionic framework comprises weakly inter­acting [Mn4O18]28− tetra­meric units. In each tetra­mer, the manganese(II) cations are in a planar arrangement related by a center of inversion. Within the slabs, the tetra­meric units are separated from each other by 6.614 (2) Å (Mn⋯Mn distances). The title compound has isostructural analogues amongst synthetic SrM 2(XO4)2 compounds with M = Ni, Co, and X = As, P.

Chemical context  

Compounds of vanadates, phosphates, and arsenates with the general formula AM 2(XO4)2, where A = Pb or an alkaline earth metal, M = Mg or a divalent first row transition metal, and X = V, P or As, can adopt different structure types. They have attracted much attention in solid-state physics due to magnetic ordering at low temperatures and the occurrence of (multiple) phase transitions. For AM 2(XO4)2 compounds with Pb or an alkaline earth metal ion on the A 2+ site and a transition metal with partially filled 3d orbitals on the M 2+ site, one-dimensional magnetic properties with high anisotropy and weak inter­chain inter­actions have been reported (Bera et al., 2013). The crystal structures of some of these compounds comprise screw-chains made up of MO6 octa­hedra, separated by non-magnetic VO4 (V5+; 3d 0) tetra­hedra, resulting in a quasi one-dimensional structure. Five representatives of this family have been characterized crystallographically, viz. BaMg2(VO4)2 (Velikodnyi et al., 1982), BaCo2(VO4)2 (Wichmann & Müller-Buschbaum, 1986a ), BaMn2(VO4)2, BaMgZn(VO4)2 and Ba1/2Sr1/2Ni2(VO4)2 (Von Postel & Müller-Buschbaum, 1992). They crystallize in the tetra­gonal crystal system in space group I41/acd (No. 142). For the related compounds SrMn2(VO4)2 (Niesen et al., 2011), SrCo2(VO4)2 (Osterloh & Müller-Buschbaum, 1994a ), PbCo2(VO4)2 (He et al., 2007) and PbNi2(VO4)2 (Uchiyama et al., 1999), it was found that they adopt the SrNi2(VO4)2 structure type (Wichmann & Müller-Buschbaum, 1986b ), crystallizing in space group I41 cd (No.110), a subgroup of the latter. The only copper(II) vanadate compound with an AM 2(XO4)2 composition is BaCu2(VO4)2 (Vogt & Müller-Buschbaum, 1990). The crystal structure is also tetra­gonal but belongs to space group I Inline graphic2d (No. 122), another subgroup of I41/acd. BaNi2(VO4)2 (Rogado et al., 2002) adopts a different structure type as it belongs to the rhombohedral space group R Inline graphic (No. 148) and represents the only quasi-two-dimensional system within the above-mentioned vanadates.

Phosphates containing transition metals have been widely investigated because of their variety of potential applications. They can adopt a plethora of different structure types and show various magnetic properties. With respect to the AM 2(XO4)2 family of compounds, the phosphates BaCu2(PO4)2 (Moqine et al., 1993), α-SrCo2(PO4)2 (El Bali et al., 1993a ), β-SrCo2(PO4)2 (Yang et al., 2016 ), SrNi2(PO4)2 (El Bali et al., 1993b ), SrNiZn(PO4)2 (El Bali et al., 2004) and SrMn2(PO4)2 (El Bali et al., 2000) crystallize in space group P Inline graphic (No. 2). SrCu2(PO4)2 (Belik et al., 2005) and PbCu2(PO4)2 (Belik et al., 2006) are isotypic and crystallize in the ortho­rhom­bic crystal system [space group Pccn (No. 56)]. The crystal structures of BaNi2(PO4)2 (Čabrić et al., 1982), and BaFe2(PO4)2 (Kabbour et al., 2012) possess trigonal symmetry in space group R Inline graphic (No. 148). BaCo2(PO4)2, in particular, can exist in several polymorphs such as the rhombohedral γ-phase [(R Inline graphic (No. 148); Bircsak & Harrison, 1998], the monoclinic α-phase [P21/a (No. 14)] and the trigonal β-phase [P Inline graphic (No. 147); David et al., 2013], depending on the synthetic conditions and thermal history. It has been reported that α-SrZn2(PO4)2 (Hemon & Courbion, 1990) and SrFe2(PO4)2 (Belik et al., 2001) adopt different structure types and crystallize in the monoclinic space group P21/c (No. 14).

Thus far, compared to vanadates and phosphates, only a few arsenates of the AM 2(XO4)2 family have been studied, viz. BaNi2(AsO4)2 (Eymond et al., 1969a ), BaMg2(AsO4)2 and BaCo2(AsO4)2 (Eymond et al., 1969b ) in space group R Inline graphic, and SrCo2(AsO4)2 (Osterloh & Müller-Buschbaum, 1994a ) and BaCu2(AsO4)2 (Osterloh & Müller-Buschbaum, 1994b ) in space groups P Inline graphic and P21/n, respectively. To extend our knowledge of the AM 2(XO4)2 system, we have undertaken an investigation of the BaO/MnO/As2O5 phase diagram and employed a flux method for crystal growth. The present work deals with the determination of the crystal structure of a new mixed-metal orthoarsenate, BaMn2(AsO4)2.

Structural commentary  

Besides Ba2Mn(AsO4)2 (Adams et al., 1996), BaMn2(AsO4)2 represents the second compound to be structurally characterized in the system BaO/MnO/As2O5. BaMn2(AsO4)2 is isotypic with β-SrCo2(PO4)2 (Yang et al., 2016), SrCo2(AsO4)2 (Osterloh & Müller-Buschbaum, 1994a ) and SrNi2(PO4)2 (El Bali et al., 1993b ) (for numerical data for these structures, see Supplementary Table 1 in the Supporting information). The crystal structure of BaMn2(AsO4)2 can be described as a three-dimensional framework containing slabs of composition [Mn2(AsO4)2]2− that are built up from two different MnO6 and two different AsO4 polyhedra (Fig. 1) and extend parallel to the ab plane (Fig. 2). Mn1 possesses a distorted octa­hedral coordination environment and exhibits five normal Mn—O bonds and one long Mn—O bond. Mn2 is also six-coordinated and has two long Mn—O bonds, again forming a distorted MnO6 octa­hedron (Table1, Fig. 3 a). Similar distortions in MnO6 octa­hedra have been observed previously (Adams et al., 1996; Weil & Kremer, 2017). The two arsenic atoms are part of AsO4 tetra­hedra (Fig. 3 b), with As—O bond lengths ranging from 1.663 (5)–1.710 (4) Å (Table 1) and O—As—O bond angles from 99.8 (2)–114.6 (2)°. The average As—O bond length (1.688 Å) in the title compound is identical to those of previously reported arsenates (Ulutagay-Kartin et al., 2003). The bond lengths are also consistent with the sum of the Shannon crystal radii (Shannon, 1976), 1.68 Å, of four-coordinate As5+ (0.475 Å) and two-coordinate O2− (1.21 Å). The barium cations reside between parallel slabs and maintain the inter­slab connectivity through coordination to eight oxygen anions (Fig. 3 c). The average Ba—O bond length, 2.83 Å, matches closely with 2.77 Å, the sum of the Shannon radii for eight-coordinate Ba2+ (1.56 Å) and two-coordinated O2− (1.21 Å) ions, and is in agreement with those of other barium arsenates (Weil, 2016).

Figure 1.

Figure 1

(a) Perspective view of the crystal structure of BaMn2(AsO4)2 viewed along the a axis. The quasi-two-dimensional lattice is characterized by [Mn2(AsO4)2]2− slabs, which are highlighted by dark- and light-colored lines representing the Mn—O and As—O bonds, respectively. The wavy and dotted lines (right) indicate the zigzag arrays of barium cations. Only one barium cation with bonds is drawn for clarity, demonstrating the function of Ba—O bonds with regard to holding neighboring [Mn2(AsO4)2]2− slabs. (b) Part of the crystal structure showing corner- and edge-sharing MnO6 octa­hedra and AsO4 tetra­hedra. In each tetra­mer, the manganese(II) atoms are in a planar configuration related by a center of inversion. (c) Polyhedral representation showing the alternating arrangement of isolated arsenate units. Only two bonds (dotted lines) around barium are shown for clarity.

Figure 2.

Figure 2

(a) Quasi-two-dimensional structure of BaMn2(AsO4)2 shown by polyhedral and ball-and-stick drawing viewed along the b axis. (b) Ball-and-stick drawing of a portion of the manganese oxide network formed by inter­connected tetra­meric units. Dashed lines represent long Mn—O bonds.

Figure 3.

Figure 3

(a) Part of the crystal structure showing Mn1O6 and Mn2O6 octa­hedra sharing corners (polyhedral drawing). To distinguish the two types of bonds (short and long), one is highlighted with solid Mn—O bonds (short) and the other in dotted bonds (long). (b) The polyhedral units represent arsenic-centered oxygen tetra­hedra. (c) The barium cation resides in a BaO8 environment. Displacement ellipsoids represent the 95% probability level.

Table 1. Selected bond lengths (Å).

Mn1—O4i 2.052 (5) Mn2—O7 2.518 (5)
Mn1—O2ii 2.108 (5) Mn2—O5vi 2.526 (5)
Mn1—O1iii 2.179 (4) As1—O6 1.663 (5)
Mn1—O1iv 2.200 (5) As1—O1 1.697 (5)
Mn1—O3 2.202 (5) As1—O5 1.709 (5)
Mn1—O5 2.491 (5) As1—O3 1.710 (4)
Mn2—O8v 2.094 (5) As2—O7 1.669 (5)
Mn2—O4 2.136 (5) As2—O2 1.677 (5)
Mn2—O5iv 2.152 (5) As2—O8 1.677 (4)
Mn2—O3 2.178 (5) As2—O4 1.698 (5)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Fig. 4 a shows two Mn1O6 octa­hedra sharing a common edge, O1v—O1vii (symmetry codes refer to Table 1) to form a Mn2O10 unit with an Mn1Mn1 separation of 3.1854 (17) Å and an Mn1—O1—Mn1 angle of 93.34 (18)°. Mn2O6 octa­hedra share corners with the Mn2O10 unit through O3 and O4, resulting in a tetra­meric [Mn4O18]28− unit (Fig. 4 b). These [Mn4O18]28− units are inter­linked through AsO4 tetra­hedra to give slabs with overall composition [Mn2(AsO4)2]2−. Each [Mn4O18]28− unit inter­acts weakly by sharing oxygen vertices with six other units, whereby the tetra­meric units are separated from each other along the b axis by 4.2616 (19) Å [Mn1⋯Mn2(1 − x, −y, 2 − z)] and along the a axis by 3.490 (18) Å [Mn1⋯Mn2(x, −1 + y, −1 + z)]. The distance between the Mn atoms of adjacent slabs [Mn2⋯Mn2(−x, 1 − y, −z)] is 6.614 (2) Å (Fig. 1 a).

Figure 4.

Figure 4

(a) The ball-and-stick and polyhedral composite representation showing parts of the Mn—As—O framework. The polyhedral units represent AsO4 tetra­hedra. One of the [Mn4O18]28− units is located in the area outlined by a dotted ellipsoid. The only unshared oxygen atom, O6 of the As1O4 tetra­hedra, forms a bond with a Ba cation. (b) A tetra­meric unit formed by two edge-sharing Mn1O6 octa­hedra and two corner-sharing Mn2O6 octa­hedra. (c) Three [Mn4O18]28− units showing the inter­tetra­mer inter­action through long Mn1—O5 and Mn2—O5 bonds (dotted lines).

As shown in Fig. 4 a, the roles of the two arsenate groups are different. As1O4 tetra­hedra share oxygen atoms O1 with Mn1O6 octa­hedra, and O3 and O5 atoms with Mn1O6 and Mn2O6 octa­hedra while oxygen atom O6 points towards neighboring slabs to form a bond with a Ba2+ cation (Fig. 4 a). As2O4 tetra­hedra, on the other hand, share an edge (O4–O7) with Mn2O6 octa­hedra of one tetra­meric unit and share two corners (O7 and O8) with Mn1O6 and Mn2O6 octa­hedra of two other neighboring tetra­meric units. Thus As1O4 and As2O4 tetra­hedra inter­link two and three neighboring tetra­meric units, respectively. As shown in Fig. 1 c, As1O4 and As2O4 tetra­hedra alternate along the b axis, and this template-like arrangement allows the barium cations to propagate in a zigzag fashion to maintain the distance between the [Mn2(AsO4)2]2− slabs.

Bond-valence sum (BVS) calculations (Brese & O’Keefe, 1991) for BaMn2(AsO4)2 result in values of 2.19, 1.84, 4.87, 5.05 and 1.98 valence units for Mn1, Mn2, As1, As2 and Ba1, respectively, which in each case is close to the expected values of 2 for Mn, 5 for As and 2 for Ba.

It is important to note that the barium cations reside in the gaps between adjacent [Mn2(AsO4)2]2− slabs. The large inter-slab separation [6.614 (2) Å] leads us to believe that magnetic inter­actions that occur between these slabs are expected to be extremely weak, and the dominant magnetic exchange is expected to appear between Mn2+ ions in the tetra­meric units within a slab. Judging from the reported magnetic properties for related BaM 2(XO4)2 (M = Co, Ni; X = As, P) compounds with the magnetic ions sitting on a honeycomb lattice (Martin et al., 2012 ), or those of β-SrCo2(PO4)2 (Yang et al., 2016) and SrNi2(PO4)2 (He et al., 2008), we also expect inter­esting magnetic phenomena for BaMn2(AsO4)2.

Synthesis and crystallization  

Light-pink crystals of BaMn2(AsO4)2 were grown by employing an RbCl flux in a fused silica ampoule under vacuum. MnO (3.81 mmol, 99.999+%, Alfa), BaO (1.90 mmol, 99.99+%, Aldrich) and As2O5 (1.90 mmol, 99.9+%, Strem) were mixed and ground with RbCl (1:3 by weight) in a nitro­gen-blanketed drybox. The resulting mixture was heated to 818 K at 1 K min−1, isothermed for two days, heated to 1023 K at 1 K min−1, isothermed for another four days, then slowly cooled to 673 K at 0.1 K min−1, followed by furnace-cooling to room temperature. Prismatic crystals of BaMn2(AsO4)2 (Fig. 5) were retrieved upon washing off recrystallized RbCl with deionized water.

Figure 5.

Figure 5

Single crystals of BaMn2(AsO4)2 obtained from a RbCl flux.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The final Fourier difference synthesis showed the maximum residual electron density 0.96 Å from Ba1 and the minimum 0.83 Å from the same site.

Table 2. Experimental details.

Crystal data
Chemical formula BaMn2(AsO4)2
M r 525.06
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 293
a, b, c (Å) 5.7981 (12), 7.0938 (14), 9.817 (2)
α, β, γ (°) 109.75 (3), 100.42 (3), 98.40 (3)
V3) 364.26 (15)
Z 2
Radiation type Mo Kα
μ (mm−1) 17.78
Crystal size (mm) 0.20 × 0.10 × 0.06
 
Data collection
Diffractometer Rigaku AFC8S
Absorption correction Multi-scan (REQAB; Rigaku, 1998)
T min, T max 0.808, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 3149, 1330, 1254
R int 0.035
(sin θ/λ)max−1) 0.606
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.039, 0.097, 1.14
No. of reflections 1330
No. of parameters 119
Δρmax, Δρmin (e Å−3) 3.25, −2.93

Computer programs: CrystalClear (Rigaku, 2006), SHELXT (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ), DIAMOND (Brandenburg, 1999) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017016152/wm5420sup1.cif

e-73-01855-sup1.cif (115.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017016152/wm5420Isup2.hkl

e-73-01855-Isup2.hkl (107.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017016152/wm5420sup3.pdf

e-73-01855-sup3.pdf (92.1KB, pdf)

CCDC reference: 1584656

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The Division of Science, Mathematics and Technology at Governors State University and the University Research Grant (URG) are gratefully acknowledged for their continuous support. Special thanks are due to Dr Liurukara D. Sanjeewa at Clemson University for X-ray crystallography expertise.

supplementary crystallographic information

Crystal data

BaMn2(AsO4)2 Z = 2
Mr = 525.06 F(000) = 472
Triclinic, P1 Dx = 4.787 Mg m3
a = 5.7981 (12) Å Mo Kα radiation, λ = 0.71073 Å
b = 7.0938 (14) Å Cell parameters from 3100 reflections
c = 9.817 (2) Å θ = 2.3–25.2°
α = 109.75 (3)° µ = 17.78 mm1
β = 100.42 (3)° T = 293 K
γ = 98.40 (3)° Column, light pink
V = 364.26 (15) Å3 0.20 × 0.10 × 0.06 mm

Data collection

Rigaku AFC8S diffractometer 1254 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.035
φ and ω scans θmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan (REQAB; Rigaku, 1998) h = −6→7
Tmin = 0.808, Tmax = 1.000 k = −8→8
3149 measured reflections l = −11→11
1330 independent reflections 1 standard reflections every 1 reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0674P)2 + 0.2802P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.097 (Δ/σ)max = 0.001
S = 1.14 Δρmax = 3.25 e Å3
1330 reflections Δρmin = −2.93 e Å3
119 parameters Extinction correction: SHELXL2014 (Sheldrick, 2015a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.076 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ba1 0.24355 (7) 0.79849 (6) 0.05371 (4) 0.0100 (2)
Mn1 0.36901 (17) 1.15237 (15) 0.44407 (11) 0.0091 (3)
Mn2 0.00727 (18) 0.59526 (15) 0.35472 (12) 0.0105 (3)
As1 −0.15775 (11) 1.02502 (10) 0.30239 (7) 0.0061 (3)
As2 0.40017 (11) 0.42782 (10) 0.24010 (7) 0.0062 (3)
O1 −0.3934 (8) 0.9502 (7) 0.3669 (5) 0.0092 (10)
O2 0.3546 (8) 0.1879 (7) 0.2382 (5) 0.0124 (10)
O3 0.0571 (8) 0.8910 (7) 0.3296 (5) 0.0105 (10)
O4 0.3801 (8) 0.5917 (7) 0.4075 (5) 0.0099 (10)
O5 −0.0125 (8) 1.2729 (7) 0.4122 (5) 0.0125 (10)
O6 −0.2437 (9) 0.9808 (7) 0.1213 (5) 0.0139 (11)
O7 0.1684 (8) 0.4587 (7) 0.1276 (6) 0.0133 (11)
O8 0.6676 (8) 0.4888 (7) 0.2047 (5) 0.0127 (10)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ba1 0.0116 (3) 0.0073 (3) 0.0072 (3) −0.00194 (18) 0.00103 (18) 0.0003 (2)
Mn1 0.0061 (5) 0.0097 (5) 0.0073 (5) −0.0021 (4) 0.0006 (4) 0.0000 (4)
Mn2 0.0053 (5) 0.0125 (6) 0.0087 (6) 0.0006 (4) 0.0003 (4) −0.0009 (4)
As1 0.0043 (4) 0.0072 (4) 0.0043 (4) −0.0005 (3) 0.0007 (3) −0.0001 (3)
As2 0.0036 (4) 0.0060 (4) 0.0069 (4) −0.0002 (3) 0.0007 (3) 0.0007 (3)
O1 0.006 (2) 0.011 (2) 0.010 (2) 0.0021 (17) 0.0015 (17) 0.0034 (19)
O2 0.017 (2) 0.006 (2) 0.012 (3) 0.0009 (18) 0.0022 (19) 0.0023 (19)
O3 0.006 (2) 0.009 (2) 0.016 (3) 0.0021 (17) 0.0009 (18) 0.005 (2)
O4 0.009 (2) 0.009 (2) 0.008 (2) 0.0015 (18) 0.0040 (17) −0.0008 (18)
O5 0.013 (2) 0.013 (2) 0.006 (2) −0.0032 (18) 0.0037 (18) −0.001 (2)
O6 0.017 (3) 0.018 (3) 0.004 (2) 0.002 (2) −0.0009 (19) 0.004 (2)
O7 0.008 (2) 0.013 (2) 0.016 (3) −0.0008 (18) −0.0042 (19) 0.007 (2)
O8 0.006 (2) 0.018 (2) 0.011 (2) −0.0018 (18) 0.0055 (18) 0.002 (2)

Geometric parameters (Å, º)

Ba1—O2i 2.647 (4) Mn2—O8viii 2.094 (5)
Ba1—O7ii 2.682 (5) Mn2—O4 2.136 (5)
Ba1—O6iii 2.687 (5) Mn2—O5vii 2.152 (5)
Ba1—O7 2.741 (5) Mn2—O3 2.178 (5)
Ba1—O8iv 2.853 (5) Mn2—O7 2.518 (5)
Ba1—O6v 2.921 (5) Mn2—O5ix 2.526 (5)
Ba1—O3 3.000 (5) As1—O6 1.663 (5)
Ba1—O1v 3.131 (5) As1—O1 1.697 (5)
Mn1—O4vi 2.052 (5) As1—O5 1.709 (5)
Mn1—O2i 2.108 (5) As1—O3 1.710 (4)
Mn1—O1v 2.179 (4) As2—O7 1.669 (5)
Mn1—O1vii 2.200 (5) As2—O2 1.677 (5)
Mn1—O3 2.202 (5) As2—O8 1.677 (4)
Mn1—O5 2.491 (5) As2—O4 1.698 (5)
Mn1—Mn1vi 3.185 (2)
O2i—Ba1—O7ii 133.63 (15) O8viii—Mn2—O5ix 94.05 (18)
O2i—Ba1—O6iii 74.41 (15) O4—Mn2—O5ix 79.10 (17)
O7ii—Ba1—O6iii 90.91 (15) O5vii—Mn2—O5ix 81.45 (17)
O2i—Ba1—O7 127.00 (15) O3—Mn2—O5ix 173.25 (17)
O7ii—Ba1—O7 71.27 (16) O7—Mn2—O5ix 94.82 (16)
O6iii—Ba1—O7 158.19 (14) O6—As1—O1 111.1 (2)
O2i—Ba1—O8iv 144.78 (15) O6—As1—O5 114.6 (2)
O7ii—Ba1—O8iv 69.26 (14) O1—As1—O5 110.1 (2)
O6iii—Ba1—O8iv 79.72 (15) O6—As1—O3 109.1 (2)
O7—Ba1—O8iv 82.17 (15) O1—As1—O3 109.0 (2)
O2i—Ba1—O6v 67.93 (15) O5—As1—O3 102.5 (2)
O7ii—Ba1—O6v 152.74 (15) O7—As2—O2 111.2 (2)
O6iii—Ba1—O6v 78.74 (16) O7—As2—O8 114.4 (3)
O7—Ba1—O6v 111.37 (14) O2—As2—O8 109.7 (2)
O8iv—Ba1—O6v 84.02 (14) O7—As2—O4 99.8 (2)
O2i—Ba1—O3 63.79 (14) O2—As2—O4 109.1 (2)
O7ii—Ba1—O3 94.34 (15) O8—As2—O4 112.2 (2)
O6iii—Ba1—O3 126.26 (14) As1—O1—Mn1viii 121.9 (2)
O7—Ba1—O3 69.23 (14) As1—O1—Mn1vii 125.5 (2)
O8iv—Ba1—O3 150.59 (13) Mn1viii—O1—Mn1vii 93.34 (18)
O6v—Ba1—O3 112.17 (13) As1—O1—Ba1viii 93.03 (18)
O2i—Ba1—O1v 58.18 (14) Mn1viii—O1—Ba1viii 85.45 (14)
O7ii—Ba1—O1v 146.18 (14) Mn1vii—O1—Ba1viii 133.22 (19)
O6iii—Ba1—O1v 121.73 (13) As2—O2—Mn1ix 117.6 (2)
O7—Ba1—O1v 78.33 (13) As2—O2—Ba1ix 141.9 (3)
O8iv—Ba1—O1v 121.31 (13) Mn1ix—O2—Ba1ix 100.46 (18)
O6v—Ba1—O1v 54.34 (13) As1—O3—Mn2 127.5 (2)
O3—Ba1—O1v 60.47 (12) As1—O3—Mn1 98.5 (2)
O4vi—Mn1—O2i 102.96 (19) Mn2—O3—Mn1 127.0 (2)
O4vi—Mn1—O1v 99.75 (17) As1—O3—Ba1 104.3 (2)
O2i—Mn1—O1v 82.98 (19) Mn2—O3—Ba1 101.98 (16)
O4vi—Mn1—O1vii 84.93 (19) Mn1—O3—Ba1 88.38 (16)
O2i—Mn1—O1vii 167.89 (17) As2—O4—Mn1vi 127.8 (3)
O1v—Mn1—O1vii 86.66 (18) As2—O4—Mn2 99.8 (2)
O4vi—Mn1—O3 166.2 (2) Mn1vi—O4—Mn2 121.3 (2)
O2i—Mn1—O3 88.15 (19) As1—O5—Mn2vii 122.2 (3)
O1v—Mn1—O3 89.68 (17) As1—O5—Mn1 88.39 (19)
O1vii—Mn1—O3 85.54 (18) Mn2vii—O5—Mn1 97.19 (19)
O4vi—Mn1—O5 104.50 (16) As1—O5—Mn2i 129.8 (3)
O2i—Mn1—O5 79.89 (17) Mn2vii—O5—Mn2i 98.55 (17)
O1v—Mn1—O5 152.85 (16) Mn1—O5—Mn2i 116.29 (18)
O1vii—Mn1—O5 107.30 (17) As1—O6—Ba1iii 137.3 (3)
O3—Mn1—O5 68.96 (16) As1—O6—Ba1viii 101.6 (2)
O8viii—Mn2—O4 150.46 (18) Ba1iii—O6—Ba1viii 101.26 (16)
O8viii—Mn2—O5vii 116.23 (18) As2—O7—Mn2 87.0 (2)
O4—Mn2—O5vii 91.36 (18) As2—O7—Ba1ii 132.7 (2)
O8viii—Mn2—O3 92.31 (19) Mn2—O7—Ba1ii 96.77 (16)
O4—Mn2—O3 96.40 (18) As2—O7—Ba1 116.9 (2)
O5vii—Mn2—O3 93.72 (19) Mn2—O7—Ba1 100.85 (16)
O8viii—Mn2—O7 85.61 (17) Ba1ii—O7—Ba1 108.73 (16)
O4—Mn2—O7 66.64 (17) As2—O8—Mn2v 127.9 (3)
O5vii—Mn2—O7 157.97 (16) As2—O8—Ba1iv 116.1 (2)
O3—Mn2—O7 87.90 (17) Mn2v—O8—Ba1iv 102.60 (17)

Symmetry codes: (i) x, y+1, z; (ii) −x, −y+1, −z; (iii) −x, −y+2, −z; (iv) −x+1, −y+1, −z; (v) x+1, y, z; (vi) −x+1, −y+2, −z+1; (vii) −x, −y+2, −z+1; (viii) x−1, y, z; (ix) x, y−1, z.

References

  1. Adams, R., Layland, R. & Payen, C. (1996). Polyhedron, 15, 1235–1239.
  2. Belik, A. A., Azuma, M., Matsuo, A., Kaji, T., Okubo, S., Ohta, H., Kindo, K. & Takano, M. (2006). Phys. Rev. B, 73, 024429-1–024429-7.
  3. Belik, A. A., Azuma, M., Matsuo, A., Whangbo, M., Koo, H. J., Kikuchi, J., Kaji, T., Okubo, S., Ohta, H., Kindo, K. & Takano, M. (2005). Inorg. Chem. 44, 6632–6640. [DOI] [PubMed]
  4. Belik, A. A., Lazoryak, B. I., Pokholok, K. V., Terekhina, T. P., Leonidov, I. A., Mitberg, E. B., Karelina, V. V. & Kellerman, D. G. (2001). J. Solid State Chem. 162, 113–121.
  5. Bera, A. K., Lake, B., Islam, A. T. M. N., Klemke, B., Faulhaber, E. & Law, J. M. (2013). Phys. Rev. B, 87, 224423-1–224423-10.
  6. Bircsak, Z. & Harrison, W. T. A. (1998). Acta Cryst. C54, 1554–1556.
  7. Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  8. Brese, N. E. & O’Keeffe, M. (1991). Acta Cryst. B47, 192–197.
  9. Čabrić, B., Žižić, B. & Napijalo, M. L. (1982). J. Cryst. Growth, 60, 169–171.
  10. David, R., Kabbour, H., Pautrat, A. & Mentré, O. (2013). Inorg. Chem. 52, 8732–8737. [DOI] [PubMed]
  11. El Bali, B., Boukhari, A., Aride, J. & Abraham, F. (1993b). J. Solid State Chem. 104, 453–459.
  12. El Bali, B., Boukhari, A., Glaum, R., Gerk, M. & Maass, K. (2000). Z. Anorg. Allg. Chem. 626, 2557–2562.
  13. El Bali, B., Boukhari, A., Holt, E. M. & Aride, J. (1993a). J. Crystallogr. Spectrosc. Res. 23, 1001–1004.
  14. El Bali, B., Lachkar, M., Allouchi, H. & Narymbetov, B. (2004). Phosphorus Res. Bull. 15, 125–130.
  15. Eymond, S., Martin, M. & Durif, A. (1969a). C. R. Acad. Sci. Ser. C, 286, 1694–1696.
  16. Eymond, S., Martin, M. & Durif, A. (1969b). Mater. Res. Bull. 4, 595–599.
  17. He, Z. Z., Chen, S. C., Lue, C. S., Cheng, W. D. & Ueda, Y. (2008). Phys. Rev. B, 78, 212410-1–212410-4.
  18. He, Z., Ueda, Y. & Itoh, M. (2007). J. Solid State Chem. 180, 1770–1774.
  19. Hemon, A. & Courbion, G. (1990). J. Solid State Chem. 85, 164–168.
  20. Kabbour, H., David, R., Pautrat, A., Koo, H. J., Whangbo, M. H., André, G. & Mentré, O. (2012). Angew. Chem. Int. Ed. 51, 11745–11749. [DOI] [PubMed]
  21. Martin, N., Regnault, L. P. & Klimko, S. (2012). J. Phys. Conf. Ser. 340, 012012-1–012012-9.
  22. Moqine, A., Boukhari, A. & Darriet, J. (1993). J. Solid State Chem. 107, 362–367.
  23. Niesen, S. K., Heyer, O., Lorenz, T. & Valldor, M. (2011). J. Magn. Magn. Mater. 323, 2575–2578.
  24. Osterloh, D. & Müller-Buschbaum, H. (1994a). Z. Naturforsch. Teil B, 49, 923–926.
  25. Osterloh, D. & Müller-Buschbaum, H. (1994b). Z. Anorg. Allg. Chem. 620, 651–654.
  26. Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.
  27. Rigaku (2006). CrystalClear. Rigaku Corporation, Tokyo, Japan.
  28. Rogado, N., Huang, Q., Lynn, J., Ramirez, A. P., Huse, D. & Cava, R. J. (2002). Phys. Rev. B, 65, 144443-1–144443-7.
  29. Shannon, R. D. (1976). Acta Cryst. A32, 751–767.
  30. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  31. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  32. Uchiyama, Y., Sasago, Y., Tsukada, I., Uchinokura, K., Zheludev, A., Hayashi, T., Miura, N. & Böni, P. (1999). Phys. Rev. Lett. 83, 632–635.
  33. Ulutagay-Kartin, M., Hwu, S.-J. & Clayhold, J. A. (2003). Inorg. Chem. 42, 2405–2409. [DOI] [PubMed]
  34. Velikodnyi, Y. A., Trunov, V. K., Zhuravlev, V. D. & Makarevich, L. G. (1982). Sov. Phys. Crystallogr. 27, 226–229.
  35. Vogt, R. & Müller-Buschbaum, H. (1990). Z. Anorg. Allg. Chem. 591, 167–173.
  36. Von Postel, M. & Müller-Buschbaum, H. (1992). Z. Anorg. Allg. Chem. 615, 97–100.
  37. Weil, M. (2016). Cryst. Growth Des. 16, 908–921. [DOI] [PMC free article] [PubMed]
  38. Weil, M. & Kremer, R. K. (2017). J. Solid State Chem. 245, 115–126.
  39. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  40. Wichmann, R. & Müller-Buschbaum, H. (1986a). Z. Anorg. Allg. Chem. 534, 153–158.
  41. Wichmann, R. & Müller-Buschbaum, Hk. (1986b). Rev. Chim. Miner. 23, 1–7.
  42. Yang, M., Zhang, S. Y., Guo, W. B. & He, Z. Z. (2016). Solid State Sci. 52, 72–77.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017016152/wm5420sup1.cif

e-73-01855-sup1.cif (115.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017016152/wm5420Isup2.hkl

e-73-01855-Isup2.hkl (107.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017016152/wm5420sup3.pdf

e-73-01855-sup3.pdf (92.1KB, pdf)

CCDC reference: 1584656

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES