Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Nov 17;73(Pt 12):1866–1870. doi: 10.1107/S2056989017015936

Crystal structure of r-1,c-2-dibenzoyl-t-3,t-4-bis­(2-nitro­phen­yl)cyclo­butane

Manuel Velasco Ximello a, Sylvain Bernès b, Aarón Pérez-Benítez c, Ulises Hernández Pareja a, Angel Mendoza a, Jorge R Juárez Posadas a, Jaime Vázquez Bravo d,*
PMCID: PMC5730241  PMID: 29250404

The title mol­ecule is a tetra­substituted truxinic-type cyclo­butane derivative with a central ring that is almost planar despite of being placed in a general position. The mol­ecular structure of the dimer shows that the four benzene rings of the substituents are oriented in such a way that potential steric hindrance is minimized, whilst allowing some degree of inter­molecular π–π inter­actions for crystal stabilization.

Keywords: crystal structure, cyclo­butane, truxillic isomer, truxinic isomer, chalcone

Abstract

The condensation reaction of aceto­phenone (1-phenyl­ethan-1-one) with 2-nitro­benzaldehyde in the molten state yielded the expected chalcone, (E)-3-(2-nitro­phen­yl)-1-phenyl­prop-2-en-1-one, and, unexpectedly, the title compound, C30H22N2O6, which results from the syn head-to-head [2 + 2] cyclo­addition of the chalcone. The mol­ecular structure of the dimer shows that the four benzene rings of the substituents are oriented in such a way that potential steric hindrance is minimized, whilst allowing some degree of inter­molecular π–π inter­actions for crystal stabilization. In the mol­ecule, one nitro group is disordered over two positions, with occupancies for each part of 0.876 (7) and 0.127 (7).

Chemical context  

The [2 + 2]-photo­cyclo­addition reaction is the most frequently used photochemical reaction to access four-membered carbon rings. An emblematic application of this large class of reactions is the synthesis of cage compounds such as cubane (Eaton & Cole, 1964). On the other hand, [2 + 2] cyclo­addition may be also a key tool for the synthesis of some natural compounds including a functionalized cyclo­butane ring, for example sceptrin, isolated from a marine sponge (Ma et al., 2014), ediandrin, isolated from the roots of an Australian rainforest plant (Davis et al., 2009), or incarvillateine, isolated from the aerial parts of a wild plant found in China (Nakamura et al., 1999; Ichikawa et al., 2004).graphic file with name e-73-01866-scheme1.jpg

The syntheses of these compounds generally involves photochemical dimerization of olefins, α,β-unsaturated carbonyl, or carboxyl compounds. Traditionally, these compounds have been synthesized through inter­molecular [2 + 2]-photo­cyclo­addition reaction of 1,3-di­aryl­prop-2-en-1-ones (also known as chalcones) in solution (Kumar et al., 2017), or in the solid state and molten state, under UV irradiation. The cyclo­addition of (E)-chalcones may give four possible stereoisomers, namely syn/anti, head-to-head and head-to-tail (Fig. 1), depending on the physical state of the substrate (solid, solution or molten state) and on other reaction conditions, such as the type of glassware used for the workup.

Figure 1.

Figure 1

The four possible stereoisomers resulting from the [2 + 2]-cyclo­addition of (E)-chalcones (Cibin et al., 2003): (a) syn head-to-head; (b) anti head-to-head; (c) syn head-to-tail and (d) anti head-to-tail; (e) suprasupra bonding inter­action (π2s + π2s) of SOMO–LUMO to produce the syn head-to-head stereoisomer shown in (a).

Herein we report the synthesis and structure of a new chalcone dimer, obtained fortuitously while preparing the monomeric chalcone (see Scheme). The title compound corresponds to the syn head-to-head stereoisomer (Fig. 1 a), which could arise from a suprasupra bonding inter­action between the singly occupied mol­ecular orbital (SOMO) of one chalcone and the lowest unoccupied mol­ecular orbital (LUMO) of the other one (Fig. 1 e; Smith, 2016). Since we detected only one stereoisomer corresponding to the cyclo­addition product in the mixture of the reaction carried out under sunlight, we assume that dimerization is actually performed via this mechanism. Indeed, the proposed mechanism is consistent with the structure reported herein.

Structural commentary  

The topochemical solid-state dimerization of the chalcone (E)-3-(2-nitro­phen­yl)-1-phenyl­prop-2-en-1-one resulted in the title tetra­substituted cyclo­butane derivative (Fig. 2). The rctt (cis, trans, trans) relative stereochemistry of the substituents is identical to that of β-truxinic acid, obtained by photodimerization of cinnamic acid (Hein, 2006), indicating that dimerization occurred via a syn head-to-head [2 + 2] cyclo­addition of the chalcone.

Figure 2.

Figure 2

Mol­ecular structure of the title cyclo­butane, with displacement ellipsoids at the 30% probability level for non-H atoms. Disordered atoms O1B and O2B have been omitted.

The mol­ecule potentially belongs to the Cs point group, but crystallizes in a general position in space group P Inline graphic. The cyclo­butane ring is thus non-planar, unlike many head-to-tail photodimerizations adducts, which crystallize with the ring placed about an inversion centre (see Database survey section). However, the departure from planarity is very small, the dihedral angle between the C1/C2/C3 and C1/C4/C3 mean planes being 3.6 (2)°. Some other rctt tetra­substituted cyclo­butane derivatives have a more marked butterfly conformation, which apparently results from steric restrictions imposed by bulky substituents (e.g. Strabler et al., 2013). In the case of the title compound, the cis benzoyl and nitro­benzene groups are oriented in such a way that intra­molecular π–π or C—H⋯π contacts are avoided. The shortest centroid-to-centroid separation is larger than 4.2 Å, for the nitro­benzene rings, which form a dihedral angle of 45.73 (8)°. In contrast, an inter­molecular π–π contact is formed by parallel C11–C16 mnito­benzene rings related by an inversion centre. In that case, the separation between the rings is 3.883 (1) Å. These features seem to indicate that the mol­ecular conformation is optimized in order to avoid steric hindrance, whilst at the same time allowing an efficient packing for the crystal stabilization.

The geometry of the cyclo­butane ring matches the statistics computed by MOGUL (Bruno et al., 2004). The C—C bond lengths range from 1.542 (2) to 1.580 (3) Å and the C—C—C angles range from 88.90 (13) to 90.76 (13)° (MOGUL medians: m = 1.558–1.565 Å and m = 88.7–89.5°, respectively). On the other hand, the average of absolute values for torsion angle defined by the four C atoms of the cyclo­butane ring is 〈|δ|〉 = 2.52 (2)°. All these features support the conclusion reached by another research group who determined the structure of a closely related compound, namely a cyclo­butane substituted by two benzoyl and two meth­oxy­phenyl groups (Steyl et al., 2005): the total distortion of the cyclo­butane ring increases while additional functionalization of the benzene rings is achieved, due mainly to steric effects. In that sense, the title mol­ecule belongs to the class of cyclo­butane derivatives exhibiting almost no puckering distortion.

Database survey  

A survey of the current organic sub-set of the CSD database (CSD 5.38 updated May 2017; Groom et al., 2016) was performed for cyclo­butane derivatives formulated C4H4 R 2 R2 where R and R′ are two different substituents. The data set was limited to cyclo­butanes for which each C atom is substituted by exactly one H atom and one non-H substituent, and all hits for which the cyclo­butane is fused with one or various cyclic systems were omitted. The resulting hits for which 3D coord­inates are available were checked by hand in order to eliminate cyclo­butanes substituted by three or four different substituents and those for which the four substituents are identical. Finally, structures determined several times were filtered to avoid statistical bias, and some severely disordered cases unsuitable for geometric computations were also deleted. The final working set contained 225 cyclo­butanes C4H4 R 2 R2 comparable with the title compound (see deposited Excel file).

Within this set, 77% of the cyclo­butanes result formally from a head-to-tail dimerization (known as truxillic type), many of them (108) with the cyclo­butane lying on a special position. The remaining 23% result formally from a head-to-head dimerization (known as truxinic type), and only one of them displays crystallographic symmetry (cyclo­butane of sceptrin, placed on a twofold axis in space group C2; Ma et al., 2014). Although the truxillic cyclo­butanes thus have a marked tendency to be more ‘symmetric’ than the truxinic co-set, both groups are very similar regarding their conformational flexibility. The range of distortion accessible for the cyclo­butane ring may be estimated by plotting the geometric parameters describing the conformation of the ring: bond lengths, angles, and torsion angles (Figs. 3 and 4). The distributions observed for 52 truxinic cyclo­butanes (Fig. 3) and 174 truxillic cyclo­butanes (Fig. 4) are almost identical, with the exception of the accumulation of data at bond angles of 90° in the latter, due to the occurrence of rings planar by symmetry. The same applies to the distortion of the rings in both groups, for example, for the functions τ = τ(θ), where θ is a bond angle and τ a torsion angle (blue curves in Figs. 3 and 4). Indeed, these distributions are perfectly fitted using the same power function in both groups: τ = 15(θ − 90)0.5, where τ and θ are expressed in degrees.

Figure 3.

Figure 3

A plot of the geometric parameters for truxinic-type cyclo­butanes with formula C4H4 R 2 R2 retrieved from the CSD. Each red ball corresponds to one cyclo­butane ring in the three-dimensional space defined by the average of four bond lengths, the average of four bond angles, and the average of the absolute values of the four torsion angles in the cycle. This distribution is also projected on three two-dimensional spaces, for each couple of geometric parameters (magenta, green, and blue dots). The parameters for the title compound are represented with black dots.

Figure 4.

Figure 4

A plot similar to that of Fig. 3, for truxillic-type cyclo­butanes with formula C4H4 R 2 R2 retrieved from the CSD. The same scale for the three axis of the space is used in both figures, for comparison purposes. Note the cluster of points with the averages of bond angles constrained to 90°, corresponding to cyclo­butanes planar by symmetry.

The title compound belongs to the truxinic group, and exhibits a very small distortion for the cyclo­butane ring, compared to other truxinic derivatives (see black dots in Fig. 3). Only three other related truxinic derivatives for which the X-ray structures have been published present a more planar cyclo­butane ring. It thus appears that the substituents in the title mol­ecule, benzoyl and 2-nitro­phenyl, have very little steric influence on the central ring.

Synthesis and crystallization  

A mixture of aceto­phenone (0.52 g, 4.38 mmol), 2-nitro­benzaldehyde (0.66 g, 4.38 mmol) and solid NaOH pellets (0.17 g, 4.38 mmol) were ground in an agate mortar with a pestle, at room temperature, for 23 min. The reaction proceeds exothermically (as noted by a rise in temperature of about 5–12 K). The progress of the reaction was monitored by TLC. After completion, the mixture was diluted with CH2Cl2 and washed with brine. The organic layer was separated, dried over MgSO4 and evaporated under reduced pressure. The crude product was purified by column chromatography using silica-gel and hexa­nes–ethyl acetate 4:1 as eluent, to give the expected chalcone and the title compound (0.66 g, 30%), as brown and colourless solids, respectively. Cyclo­butane deriv­ative: m.p. 517 K. FT–IR νmax/cm−1 1659 (C=O), 1557, 1348 (NO2). 1H NMR (500 MHz, CDCl3) δ/ppm: 7.81–7.33 (18H, m, ArH), 5.22 (2H, m, CH) and 4.87 (2H, m, CH). 13C NMR (125 MHz, CDCl3) δ/ppm: 44.3, 46.8, 125.0, 128.3, 129.4, 129.6, 130.4, 133.1, 134.7, 136.7, 137.5, 148.6, 196.9. HRMS (EI) calculated for C30H22N2O6 (M +) 506.1478; found 506.1477.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 1. One of the nitro groups is disordered by rotation about its C—NO2 bond, and was refined with two parts for the O atoms: O1A/O2A with occupancy 0.876 (7) and O1B/O2B with occupancy 0.124 (7). These four sites were restrained to have similar displacement parameters, with standard deviation of 0.04 Å2. The same restriction was applied to the O atoms of the other nitro group, O3/O4, given that this nitro group is probably also affected by disorder, although we were unable to refine a suitable model on the basis of the room temperature data for this group. The C-bound H atoms were treated as riding atoms in geometrically idealized positions: C—H 0.93–0.98 Å with U iso(H) = 1.2U eq(C).

Table 1. Experimental details.

Crystal data
Chemical formula C30H22N2O6
M r 506.49
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 295
a, b, c (Å) 7.2599 (5), 10.5614 (5), 16.7351 (8)
α, β, γ (°) 78.863 (4), 87.472 (5), 85.238 (5)
V3) 1254.13 (13)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.37 × 0.20 × 0.15
 
Data collection
Diffractometer Agilent Xcalibur Atlas Gemini
Absorption correction Analytical (CrysAlis PRO; Agilent, 2013)
T min, T max 0.962, 0.983
No. of measured, independent and observed [I > 2σ(I)] reflections 25649, 5116, 3292
R int 0.051
(sin θ/λ)max−1) 0.625
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.053, 0.164, 1.04
No. of reflections 5116
No. of parameters 363
No. of restraints 24
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.27

Computer programs: CrysAlis PRO (Agilent, 2013), SHELXT2014 (Sheldrick, 2015a ), SHELXL2016 (Sheldrick, 2015b ), XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989017015936/ex2002sup1.cif

e-73-01866-sup1.cif (860.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017015936/ex2002Isup2.hkl

e-73-01866-Isup2.hkl (407KB, hkl)

excel file for statistic analysis. DOI: 10.1107/S2056989017015936/ex2002sup3.txt

e-73-01866-sup3.txt (31KB, txt)

Supporting information file. DOI: 10.1107/S2056989017015936/ex2002Isup4.cml

CCDC reference: 1583527

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C30H22N2O6 F(000) = 528
Mr = 506.49 Dx = 1.341 Mg m3
Triclinic, P1 Melting point: 517 K
a = 7.2599 (5) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.5614 (5) Å Cell parameters from 5272 reflections
c = 16.7351 (8) Å θ = 3.6–27.9°
α = 78.863 (4)° µ = 0.10 mm1
β = 87.472 (5)° T = 295 K
γ = 85.238 (5)° Prism, colourless
V = 1254.13 (13) Å3 0.37 × 0.20 × 0.15 mm
Z = 2

Data collection

Agilent Xcalibur Atlas Gemini diffractometer 5116 independent reflections
Radiation source: Enhance (Mo) X-ray Source 3292 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.051
Detector resolution: 10.5564 pixels mm-1 θmax = 26.4°, θmin = 3.1°
ω scans h = −9→8
Absorption correction: analytical (CrysAlis PRO; Agilent, 2013) k = −13→13
Tmin = 0.962, Tmax = 0.983 l = −20→20
25649 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053 H-atom parameters constrained
wR(F2) = 0.164 w = 1/[σ2(Fo2) + (0.0762P)2 + 0.1873P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
5116 reflections Δρmax = 0.27 e Å3
363 parameters Δρmin = −0.27 e Å3
24 restraints Extinction correction: SHELXL2016 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraints Extinction coefficient: 0.011 (3)
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.6552 (3) 0.64030 (16) 0.23390 (11) 0.0415 (4)
H1A 0.548307 0.694892 0.209849 0.050*
C2 0.6594 (3) 0.63982 (16) 0.32828 (11) 0.0406 (4)
H2A 0.558141 0.699162 0.342918 0.049*
C3 0.8388 (3) 0.71065 (17) 0.31510 (11) 0.0415 (4)
H3A 0.942691 0.650434 0.336831 0.050*
C4 0.8326 (3) 0.71816 (17) 0.22142 (11) 0.0414 (4)
H4A 0.938656 0.668933 0.200920 0.050*
C5 0.6680 (3) 0.51217 (17) 0.20721 (11) 0.0466 (5)
C6 0.5325 (3) 0.4711 (2) 0.16339 (15) 0.0648 (6)
C7 0.5406 (5) 0.3472 (3) 0.1475 (2) 0.0961 (10)
H7A 0.447643 0.322545 0.118570 0.115*
C8 0.6849 (5) 0.2614 (3) 0.1744 (2) 0.0980 (10)
H8A 0.690019 0.177555 0.164369 0.118*
C9 0.8229 (5) 0.2982 (2) 0.21645 (17) 0.0815 (8)
H9A 0.922486 0.239823 0.234101 0.098*
C10 0.8140 (3) 0.4216 (2) 0.23247 (13) 0.0591 (6)
H10A 0.908604 0.445158 0.261050 0.071*
C11 0.6561 (3) 0.51184 (17) 0.38742 (11) 0.0424 (4)
C12 0.5073 (3) 0.43324 (18) 0.39869 (12) 0.0466 (5)
C13 0.5125 (3) 0.3138 (2) 0.45159 (13) 0.0564 (6)
H13A 0.410934 0.264323 0.456958 0.068*
C14 0.6658 (4) 0.2693 (2) 0.49537 (13) 0.0637 (6)
H14A 0.670172 0.189494 0.530677 0.076*
C15 0.8138 (3) 0.3437 (2) 0.48669 (14) 0.0646 (6)
H15A 0.919549 0.314127 0.516170 0.078*
C16 0.8071 (3) 0.4627 (2) 0.43438 (13) 0.0565 (6)
H16A 0.908810 0.511744 0.430641 0.068*
C17 0.8343 (3) 0.83090 (18) 0.35266 (11) 0.0449 (5)
C18 0.9976 (3) 0.91010 (17) 0.34225 (11) 0.0448 (5)
C19 0.9958 (3) 1.0116 (2) 0.38363 (15) 0.0633 (6)
H19A 0.892064 1.031224 0.414871 0.076*
C20 1.1465 (4) 1.0838 (3) 0.37887 (18) 0.0789 (8)
H20A 1.144193 1.151593 0.407100 0.095*
C21 1.3000 (4) 1.0563 (3) 0.33276 (17) 0.0766 (8)
H21A 1.401455 1.105457 0.329712 0.092*
C22 1.3038 (3) 0.9565 (2) 0.29124 (15) 0.0642 (6)
H22A 1.407992 0.937882 0.259970 0.077*
C23 1.1527 (3) 0.8830 (2) 0.29563 (13) 0.0527 (5)
H23A 1.155681 0.815337 0.267201 0.063*
C24 0.7924 (3) 0.84768 (18) 0.16696 (12) 0.0438 (5)
C25 0.8062 (3) 0.85576 (19) 0.07748 (12) 0.0469 (5)
C26 0.7499 (3) 0.9703 (2) 0.02607 (14) 0.0623 (6)
H26A 0.703596 1.041174 0.048177 0.075*
C27 0.7615 (4) 0.9808 (3) −0.05686 (15) 0.0782 (8)
H27A 0.723599 1.058504 −0.090560 0.094*
C28 0.8287 (4) 0.8769 (3) −0.09014 (15) 0.0817 (8)
H28A 0.836448 0.884338 −0.146453 0.098*
C29 0.8843 (4) 0.7627 (3) −0.04106 (15) 0.0809 (8)
H29A 0.929398 0.692340 −0.063924 0.097*
C30 0.8737 (4) 0.7515 (2) 0.04271 (14) 0.0647 (6)
H30A 0.911977 0.673403 0.075957 0.078*
N6 0.3729 (4) 0.5581 (3) 0.13166 (19) 0.0906 (8)
O1A 0.3951 (6) 0.6676 (4) 0.1010 (3) 0.1231 (16) 0.876 (7)
O2A 0.2222 (4) 0.5095 (3) 0.1392 (2) 0.1287 (16) 0.876 (7)
O1B 0.307 (5) 0.642 (4) 0.154 (3) 0.149 (13) 0.124 (7)
O2B 0.360 (5) 0.567 (3) 0.0504 (17) 0.209 (16) 0.124 (7)
N12 0.3353 (2) 0.47251 (18) 0.35551 (12) 0.0607 (5)
O3 0.2211 (3) 0.3957 (2) 0.3593 (2) 0.1493 (13)
O4 0.3067 (2) 0.58039 (15) 0.31765 (11) 0.0740 (5)
O17 0.7042 (2) 0.85530 (15) 0.39699 (10) 0.0658 (5)
O24 0.7394 (2) 0.94134 (13) 0.19653 (9) 0.0615 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0485 (11) 0.0308 (9) 0.0445 (10) −0.0046 (8) −0.0076 (8) −0.0030 (8)
C2 0.0457 (10) 0.0316 (9) 0.0440 (10) −0.0048 (8) −0.0007 (8) −0.0055 (8)
C3 0.0470 (10) 0.0339 (10) 0.0421 (10) −0.0059 (8) −0.0030 (8) −0.0023 (8)
C4 0.0483 (11) 0.0326 (10) 0.0421 (10) −0.0035 (8) 0.0017 (8) −0.0049 (8)
C5 0.0628 (13) 0.0345 (10) 0.0422 (11) −0.0086 (9) 0.0004 (9) −0.0051 (8)
C6 0.0732 (16) 0.0551 (14) 0.0720 (15) −0.0143 (12) −0.0027 (12) −0.0229 (12)
C7 0.113 (2) 0.0699 (19) 0.122 (3) −0.0273 (18) −0.004 (2) −0.0510 (18)
C8 0.141 (3) 0.0449 (15) 0.117 (3) −0.0163 (18) 0.019 (2) −0.0380 (16)
C9 0.120 (2) 0.0465 (14) 0.0735 (17) 0.0141 (14) 0.0103 (16) −0.0105 (12)
C10 0.0822 (16) 0.0420 (12) 0.0506 (12) 0.0059 (11) −0.0009 (11) −0.0074 (9)
C11 0.0531 (11) 0.0351 (10) 0.0397 (10) −0.0077 (8) 0.0028 (8) −0.0076 (8)
C12 0.0520 (12) 0.0402 (11) 0.0480 (11) −0.0092 (9) 0.0055 (9) −0.0082 (8)
C13 0.0727 (15) 0.0432 (12) 0.0525 (12) −0.0185 (11) 0.0069 (11) −0.0035 (9)
C14 0.0940 (18) 0.0417 (12) 0.0511 (13) −0.0135 (12) −0.0039 (12) 0.0056 (10)
C15 0.0793 (16) 0.0530 (13) 0.0561 (13) −0.0101 (12) −0.0166 (11) 0.0084 (10)
C16 0.0667 (14) 0.0472 (12) 0.0531 (12) −0.0158 (10) −0.0126 (10) 0.0037 (9)
C17 0.0540 (12) 0.0406 (11) 0.0396 (10) −0.0094 (9) −0.0002 (9) −0.0045 (8)
C18 0.0523 (11) 0.0374 (10) 0.0425 (10) −0.0107 (9) −0.0059 (9) 0.0019 (8)
C19 0.0747 (15) 0.0518 (13) 0.0689 (15) −0.0207 (11) 0.0016 (12) −0.0192 (11)
C20 0.094 (2) 0.0624 (16) 0.0895 (19) −0.0351 (14) −0.0022 (16) −0.0237 (14)
C21 0.0775 (18) 0.0671 (17) 0.0843 (18) −0.0349 (14) −0.0142 (14) 0.0031 (14)
C22 0.0563 (13) 0.0607 (15) 0.0687 (15) −0.0143 (11) −0.0032 (11) 0.0093 (12)
C23 0.0547 (12) 0.0450 (12) 0.0552 (12) −0.0096 (10) −0.0055 (10) 0.0022 (9)
C24 0.0495 (11) 0.0356 (10) 0.0455 (11) −0.0080 (8) 0.0035 (8) −0.0047 (8)
C25 0.0509 (11) 0.0442 (11) 0.0444 (11) −0.0103 (9) 0.0007 (9) −0.0029 (9)
C26 0.0765 (15) 0.0528 (13) 0.0530 (13) 0.0000 (11) −0.0017 (11) −0.0003 (10)
C27 0.0956 (19) 0.0791 (18) 0.0502 (14) 0.0041 (15) −0.0057 (13) 0.0078 (13)
C28 0.106 (2) 0.094 (2) 0.0416 (13) −0.0032 (17) −0.0048 (13) −0.0059 (14)
C29 0.114 (2) 0.0783 (18) 0.0509 (14) 0.0014 (15) 0.0051 (14) −0.0198 (13)
C30 0.0890 (17) 0.0526 (13) 0.0501 (13) −0.0018 (12) 0.0024 (11) −0.0066 (10)
N6 0.0822 (18) 0.0880 (19) 0.114 (2) −0.0055 (17) −0.0415 (15) −0.0410 (19)
O1A 0.133 (3) 0.084 (2) 0.150 (4) −0.005 (2) −0.085 (3) 0.002 (2)
O2A 0.0728 (18) 0.148 (3) 0.183 (4) −0.0225 (16) −0.0267 (17) −0.064 (2)
O1B 0.15 (2) 0.12 (2) 0.19 (3) 0.075 (19) −0.081 (19) −0.08 (2)
O2B 0.27 (3) 0.25 (3) 0.12 (2) 0.09 (2) −0.13 (2) −0.109 (19)
N12 0.0526 (11) 0.0481 (11) 0.0804 (13) −0.0163 (9) 0.0023 (9) −0.0054 (10)
O3 0.1017 (17) 0.0876 (15) 0.241 (3) −0.0563 (14) −0.0743 (18) 0.0496 (17)
O4 0.0612 (10) 0.0490 (10) 0.1066 (14) −0.0061 (8) −0.0150 (9) 0.0015 (9)
O17 0.0734 (10) 0.0636 (10) 0.0683 (10) −0.0249 (8) 0.0213 (8) −0.0288 (8)
O24 0.0923 (11) 0.0372 (8) 0.0528 (9) 0.0021 (7) −0.0004 (8) −0.0066 (7)

Geometric parameters (Å, º)

C1—C5 1.499 (3) C16—H16A 0.9300
C1—C4 1.569 (3) C17—O17 1.217 (2)
C1—C2 1.580 (3) C17—C18 1.491 (3)
C1—H1A 0.9800 C18—C19 1.383 (3)
C2—C11 1.514 (2) C18—C23 1.384 (3)
C2—C3 1.542 (2) C19—C20 1.375 (3)
C2—H2A 0.9800 C19—H19A 0.9300
C3—C17 1.519 (3) C20—C21 1.371 (4)
C3—C4 1.557 (3) C20—H20A 0.9300
C3—H3A 0.9800 C21—C22 1.368 (4)
C4—C24 1.504 (3) C21—H21A 0.9300
C4—H4A 0.9800 C22—C23 1.387 (3)
C5—C10 1.390 (3) C22—H22A 0.9300
C5—C6 1.397 (3) C23—H23A 0.9300
C6—C7 1.380 (3) C24—O24 1.217 (2)
C6—N6 1.469 (4) C24—C25 1.483 (3)
C7—C8 1.359 (5) C25—C26 1.385 (3)
C7—H7A 0.9300 C25—C30 1.387 (3)
C8—C9 1.372 (4) C26—C27 1.370 (3)
C8—H8A 0.9300 C26—H26A 0.9300
C9—C10 1.376 (3) C27—C28 1.369 (4)
C9—H9A 0.9300 C27—H27A 0.9300
C10—H10A 0.9300 C28—C29 1.363 (4)
C11—C16 1.383 (3) C28—H28A 0.9300
C11—C12 1.401 (3) C29—C30 1.383 (3)
C12—C13 1.393 (3) C29—H29A 0.9300
C12—N12 1.460 (3) C30—H30A 0.9300
C13—C14 1.360 (3) N6—O1B 1.09 (3)
C13—H13A 0.9300 N6—O1A 1.192 (4)
C14—C15 1.369 (3) N6—O2A 1.238 (4)
C14—H14A 0.9300 N6—O2B 1.35 (2)
C15—C16 1.384 (3) N12—O3 1.198 (2)
C15—H15A 0.9300 N12—O4 1.198 (2)
C5—C1—C4 117.35 (16) C16—C15—H15A 119.7
C5—C1—C2 117.82 (14) C11—C16—C15 123.0 (2)
C4—C1—C2 88.90 (13) C11—C16—H16A 118.5
C5—C1—H1A 110.4 C15—C16—H16A 118.5
C4—C1—H1A 110.4 O17—C17—C18 120.32 (18)
C2—C1—H1A 110.4 O17—C17—C3 119.49 (17)
C11—C2—C3 119.52 (15) C18—C17—C3 119.87 (17)
C11—C2—C1 118.78 (14) C19—C18—C23 118.94 (19)
C3—C2—C1 90.19 (13) C19—C18—C17 118.30 (19)
C11—C2—H2A 109.0 C23—C18—C17 122.71 (18)
C3—C2—H2A 109.0 C20—C19—C18 120.4 (2)
C1—C2—H2A 109.0 C20—C19—H19A 119.8
C17—C3—C2 114.65 (15) C18—C19—H19A 119.8
C17—C3—C4 122.24 (15) C21—C20—C19 120.4 (2)
C2—C3—C4 90.76 (13) C21—C20—H20A 119.8
C17—C3—H3A 109.2 C19—C20—H20A 119.8
C2—C3—H3A 109.2 C22—C21—C20 119.9 (2)
C4—C3—H3A 109.2 C22—C21—H21A 120.0
C24—C4—C3 119.06 (15) C20—C21—H21A 120.0
C24—C4—C1 110.24 (15) C21—C22—C23 120.2 (2)
C3—C4—C1 90.03 (13) C21—C22—H22A 119.9
C24—C4—H4A 111.9 C23—C22—H22A 119.9
C3—C4—H4A 111.9 C18—C23—C22 120.1 (2)
C1—C4—H4A 111.9 C18—C23—H23A 119.9
C10—C5—C6 115.99 (19) C22—C23—H23A 119.9
C10—C5—C1 119.59 (18) O24—C24—C25 121.40 (17)
C6—C5—C1 124.18 (19) O24—C24—C4 119.91 (17)
C7—C6—C5 122.2 (3) C25—C24—C4 118.55 (16)
C7—C6—N6 116.4 (2) C26—C25—C30 118.15 (19)
C5—C6—N6 121.5 (2) C26—C25—C24 119.69 (19)
C8—C7—C6 119.8 (3) C30—C25—C24 122.16 (18)
C8—C7—H7A 120.1 C27—C26—C25 121.0 (2)
C6—C7—H7A 120.1 C27—C26—H26A 119.5
C7—C8—C9 120.1 (2) C25—C26—H26A 119.5
C7—C8—H8A 120.0 C28—C27—C26 120.0 (2)
C9—C8—H8A 120.0 C28—C27—H27A 120.0
C8—C9—C10 120.0 (3) C26—C27—H27A 120.0
C8—C9—H9A 120.0 C29—C28—C27 120.2 (2)
C10—C9—H9A 120.0 C29—C28—H28A 119.9
C9—C10—C5 122.0 (2) C27—C28—H28A 119.9
C9—C10—H10A 119.0 C28—C29—C30 120.1 (2)
C5—C10—H10A 119.0 C28—C29—H29A 120.0
C16—C11—C12 114.61 (17) C30—C29—H29A 120.0
C16—C11—C2 120.86 (16) C29—C30—C25 120.5 (2)
C12—C11—C2 124.52 (17) C29—C30—H30A 119.8
C13—C12—C11 122.70 (19) C25—C30—H30A 119.8
C13—C12—N12 115.67 (17) O1A—N6—O2A 124.8 (3)
C11—C12—N12 121.63 (17) O1B—N6—O2B 114 (2)
C14—C13—C12 120.2 (2) O1B—N6—C6 129.1 (15)
C14—C13—H13A 119.9 O1A—N6—C6 119.5 (3)
C12—C13—H13A 119.9 O2A—N6—C6 115.7 (3)
C13—C14—C15 119.0 (2) O2B—N6—C6 111.4 (13)
C13—C14—H14A 120.5 O3—N12—O4 120.1 (2)
C15—C14—H14A 120.5 O3—N12—C12 119.1 (2)
C14—C15—C16 120.5 (2) O4—N12—C12 120.80 (17)
C14—C15—H15A 119.7
C5—C1—C2—C11 −6.2 (2) C14—C15—C16—C11 −1.3 (4)
C4—C1—C2—C11 −126.84 (16) C2—C3—C17—O17 8.2 (3)
C5—C1—C2—C3 118.12 (17) C4—C3—C17—O17 116.0 (2)
C4—C1—C2—C3 −2.51 (13) C2—C3—C17—C18 −178.33 (15)
C11—C2—C3—C17 −107.37 (19) C4—C3—C17—C18 −70.5 (2)
C1—C2—C3—C17 128.91 (15) O17—C17—C18—C19 −0.5 (3)
C11—C2—C3—C4 126.25 (17) C3—C17—C18—C19 −173.92 (18)
C1—C2—C3—C4 2.53 (13) O17—C17—C18—C23 176.93 (19)
C17—C3—C4—C24 −9.3 (3) C3—C17—C18—C23 3.5 (3)
C2—C3—C4—C24 110.78 (17) C23—C18—C19—C20 −0.4 (3)
C17—C3—C4—C1 −122.65 (18) C17—C18—C19—C20 177.1 (2)
C2—C3—C4—C1 −2.55 (13) C18—C19—C20—C21 0.3 (4)
C5—C1—C4—C24 120.25 (17) C19—C20—C21—C22 −0.1 (4)
C2—C1—C4—C24 −118.70 (15) C20—C21—C22—C23 0.0 (4)
C5—C1—C4—C3 −118.56 (16) C19—C18—C23—C22 0.4 (3)
C2—C1—C4—C3 2.49 (13) C17—C18—C23—C22 −177.02 (18)
C4—C1—C5—C10 50.3 (2) C21—C22—C23—C18 −0.2 (3)
C2—C1—C5—C10 −54.1 (2) C3—C4—C24—O24 −10.5 (3)
C4—C1—C5—C6 −135.5 (2) C1—C4—C24—O24 91.3 (2)
C2—C1—C5—C6 120.1 (2) C3—C4—C24—C25 173.63 (16)
C10—C5—C6—C7 1.4 (4) C1—C4—C24—C25 −84.5 (2)
C1—C5—C6—C7 −173.0 (2) O24—C24—C25—C26 −3.1 (3)
C10—C5—C6—N6 −178.7 (2) C4—C24—C25—C26 172.72 (19)
C1—C5—C6—N6 7.0 (4) O24—C24—C25—C30 177.2 (2)
C5—C6—C7—C8 −0.5 (5) C4—C24—C25—C30 −7.0 (3)
N6—C6—C7—C8 179.5 (3) C30—C25—C26—C27 −0.4 (3)
C6—C7—C8—C9 −0.7 (5) C24—C25—C26—C27 179.9 (2)
C7—C8—C9—C10 1.0 (5) C25—C26—C27—C28 0.3 (4)
C8—C9—C10—C5 −0.1 (4) C26—C27—C28—C29 0.0 (4)
C6—C5—C10—C9 −1.1 (3) C27—C28—C29—C30 −0.3 (5)
C1—C5—C10—C9 173.6 (2) C28—C29—C30—C25 0.1 (4)
C3—C2—C11—C16 5.1 (3) C26—C25—C30—C29 0.2 (3)
C1—C2—C11—C16 113.4 (2) C24—C25—C30—C29 179.9 (2)
C3—C2—C11—C12 −173.80 (17) C7—C6—N6—O1B 153 (4)
C1—C2—C11—C12 −65.4 (2) C5—C6—N6—O1B −27 (4)
C16—C11—C12—C13 −1.4 (3) C7—C6—N6—O1A −137.9 (4)
C2—C11—C12—C13 177.54 (18) C5—C6—N6—O1A 42.2 (5)
C16—C11—C12—N12 178.28 (18) C7—C6—N6—O2A 41.9 (4)
C2—C11—C12—N12 −2.8 (3) C5—C6—N6—O2A −138.0 (3)
C11—C12—C13—C14 0.5 (3) C7—C6—N6—O2B −56 (2)
N12—C12—C13—C14 −179.2 (2) C5—C6—N6—O2B 124 (2)
C12—C13—C14—C15 0.1 (3) C13—C12—N12—O3 −9.5 (3)
C13—C14—C15—C16 0.2 (4) C11—C12—N12—O3 170.8 (3)
C12—C11—C16—C15 1.8 (3) C13—C12—N12—O4 169.5 (2)
C2—C11—C16—C15 −177.2 (2) C11—C12—N12—O4 −10.2 (3)

Funding Statement

This work was funded by VIEP–BUAP grant . Consejo Nacional de Ciencia y Tecnología grants 297948, 277416, and 173585. PRODEP grant UPMP-PTC-007.

References

  1. Agilent (2013). CrysAlis PRO, Agilent Technologies Inc., Santa Clara, CA, USA.
  2. Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144. [DOI] [PubMed]
  3. Cibin, F. R., Doddi, G. & Mencarelli, P. (2003). Tetrahedron, 59, 3455–3459.
  4. Davis, R. A., Barnes, E. C., Longden, J., Avery, V. M. & Healy, P. C. (2009). Bioorg. Med. Chem. 17, 1387–1392. [DOI] [PubMed]
  5. Eaton, P. E. & Cole, T. W. (1964). J. Am. Chem. Soc. 86, 3157–3158.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Hein, S. M. (2006). J. Chem. Educ. 83, 940–942.
  8. Ichikawa, M., Takahashi, M., Aoyagi, S. & Kibayashi, C. (2004). J. Am. Chem. Soc. 126, 16553–16558. [DOI] [PubMed]
  9. Kumar, S., Salian, V. V., Narayana, B., Sarojini, B. K., Anthal, S. & Kant, R. (2017). Rasayan J. Chem. 10, 522–527.
  10. Ma, Z., Wang, X., Wang, X., Rodriguez, R. A., Moore, C. E., Gao, S., Tan, X., Ma, Y., Rheingold, A. L., Baran, P. S. & Chen, C. (2014). Science, 346, 219–224. [DOI] [PMC free article] [PubMed]
  11. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  12. Nakamura, M., Chi, Y. M., Yan, W. M., Nakasugi, Y., Yoshizawa, T., Irino, N., Hashimoto, F., Kinjo, J., Nohara, T. & Sakurada, S. (1999). J. Nat. Prod. 62, 1293–1294. [DOI] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  15. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  16. Smith, M. (2016). Organic Synthesis, 4th edition. Academic Press.
  17. Steyl, G., Hill, T. & Roodt, A. (2005). Acta Cryst. E61, o1978–o1980.
  18. Strabler, C., Ortner, T., Prock, J., Granja, A., Gutmann, R., Kopacka, H., Müller, T. & Brüggeller, P. (2013). Eur. J. Inorg. Chem. pp. 5121–5132.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989017015936/ex2002sup1.cif

e-73-01866-sup1.cif (860.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017015936/ex2002Isup2.hkl

e-73-01866-Isup2.hkl (407KB, hkl)

excel file for statistic analysis. DOI: 10.1107/S2056989017015936/ex2002sup3.txt

e-73-01866-sup3.txt (31KB, txt)

Supporting information file. DOI: 10.1107/S2056989017015936/ex2002Isup4.cml

CCDC reference: 1583527

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES