Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Nov 21;73(Pt 12):1908–1912. doi: 10.1107/S205698901701653X

Buthalital and methitural – 5,5-substituted derivatives of 2-thio­barbituric acid forming the same type of hydrogen-bonded chain

Thomas Gelbrich a,*, Ulrich J Griesser a
PMCID: PMC5730250  PMID: 29250413

In the title structures, each mol­ecules is connected to two other mol­ecules via four N—H⋯O hydrogen bonds, resulting in a chain with a sequence of Inline graphic(8) rings.

Keywords: crystal structure, hydrogen bonding, barbiturates, pharmaceuticals

Abstract

The mol­ecule of buthalital, (I) [systematic name: 5-(2-methyl­prop­yl)-5-(prop-2-en-1-yl)-2-sulfanyl­idene-1,3-diazinane-4,6-dione], C11H16N2O2S, exhibits a planar pyrimidine ring, whereas the pyrimidine ring of methitural, (II) [systematic name: 5-(1-methyl­but­yl)-5-[2-(methyl­sulfan­yl)eth­yl]-2-sulfanyl­idene-1,3-diazinane-4,6-dione], C12H20N2O2S2, is slightly puckered. (I) and (II) contain the same hydrogen-bonded chain structure in which each mol­ecule is connected, via four N—H⋯O=C hydrogen bonds, to two other mol­ecules, resulting in a hydrogen-bonded chain displaying a sequence of R 2 2(8) rings. The same type of N—H⋯O=C hydrogen-bonded chain has previously been found in several 5,5-disubstituted derivatives of barbituric acid which are chemically closely related to (I) and (II).

Chemical context  

Buthalital (I) and methitural (II) are 5,5-disubstituted derivatives of 2-thio­barbituric acid. Compounds of the thio­barbiturate class differ from the corresponding barbiturates in that the ketone group at the 2-position is replaced by a thione group. Thio­barbiturates are used as injection narcotics for the induction of general anaesthesia or to produce complete anaesthesia of short duration. The sodium salt of (I) was originally developed as a short-acting anaesthetic but was found to have an extremely rapid elimination rate. Similarly, (II) was marketed in the 1950s as an ultra-short-acting intra­venous anaesthetic.graphic file with name e-73-01908-scheme1.jpg

Structural commentary  

The mol­ecular structure of (I), Fig. 1, shows an almost planar pyrim­idine ring (N1, C2, N3, C4 C5, C6) with a root-mean-square (r.m.s.) deviation of its six atoms from the mean plane of 0.016 Å (Fig. 1). The (C7, C8, C5, C10, C11) unit defined by ring atom C5 and two atoms of each of the allyl and isobutyl substituents is nearly planar (r.m.s. deviation = 0.050 Å). The mean plane of this fragment forms an angle of 87.5 (1)° with the plane of the six-membered ring. Additionally, it forms an angle of 77.8 (2)° with the plane of the allyl group defined by C7, C8 and C9. The terminal torsion angles C5—C10—C11—C12 and C5—C10— C11—C13 of the isobutyl substituent are −71.7 (3)° and 165.6 (2)°, respectively.

Figure 1.

Figure 1

The mol­ecular structure of (I), with displacement ellipsoids drawn at the 50% probability level and H atoms drawn as spheres of arbitrary size.

The pyrimidine ring (N1, C2, N3, C4 C5, C6) in the mol­ecule of (II) deviates somewhat from planarity (r.m.s. deviation = 0.030 Å); specifically, the distance between C6 and the mean plane defined by the other five ring atoms (r.m.s deviation = 0.005 Å) is 0.104 (2) Å (Fig. 2). The mean plane of the (S9, C8, C7, C5, C12, C16) chain, defined by ring atom C6, three atoms of the 2-(methyl­thio)­ethyl substituent and two atoms of the sec-butyl group (r.m.s. deviation = 0.091 Å) forms an angle of 88.64 (5)° with the mean plane of the pyrimidine ring and an angle of 39.0 (1)° with the mean plane of the (C5, C12, C13, C14, C15) fragment of the nearly planar (r.m.s. deviation = 0.070) sec-butyl group. In the 2-(methyl­thio)­ethyl substituent, the C10—S9 and C8—S9 bond lengths are 1.794 (2) and 1.803 (2) Å, respectively, and the C7—C8—S9—C10 torsion angle is 82.5 (2)°. The bond between ring atom C5 and atom C12 of the sec-butyl group [1.582 (2) Å] is somewhat longer than the analogous distance between C5 and atom C7 of the 2-(methyl­thio)­ethyl group [1.547 (2) Å]. This difference is reminiscent of the difference between equatorial and axial bonds at ring atom C5 found in several 5,5-disubstituted barbituric acid derivatives that exhibit a puckered pyrimidine ring (Gelbrich et al., 2016b ).

Figure 2.

Figure 2

The mol­ecular structure of (II), with displacement ellipsoids drawn at the 50% probability level and H atoms drawn as spheres of arbitrary size.

Supra­molecular features  

The crystal structure of (I) contains N1—H1⋯O4i and N3—H3⋯O6ii bonds (Fig. 3, Table 1). Each mol­ecule is linked to two neighbouring mol­ecules via two-point connections and Inline graphic(8) rings (Etter et al. 1990, Bernstein et al., 1995). The resulting chain structure (topological type 2C1) contains a twofold screw axis and runs parallel to the b axis. The mean planes of neighbouring pyrimidine rings in the chain form an angle of approximately 40° with one another. The chain structure of (I) belongs to the C-2 type, which also occurs in a number of 5,5-disubstituted barbituric acid derivatives (Gelbrich et al., 2016a ). The four shortest inter­molecular contacts of the sulfur atom (S⋯H distances between 2.97 and 3.01 Å; close to the sum of van der Waals radii) involve both CH2 groups of a neighbouring mol­ecule and one CH3 group belonging to the isobutyl substituent of two other mol­ecules.

Figure 3.

Figure 3

The C-2-type bonded chain of (I). O and H atoms directly involved in N—H⋯O inter­actions are drawn as balls and H atoms bonded to C atoms are omitted for clarity. The chain displays a twofold screw symmetry and contains just one type of Inline graphic(8) ring. [Symmetry codes: (i) −x + Inline graphic, y + Inline graphic, −z + Inline graphic; (ii) −x + Inline graphic, y − Inline graphic, −z + Inline graphic.]

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.87 (2) 1.95 (2) 2.815 (2) 174 (2)
N3—H3⋯O6ii 0.86 (2) 2.10 (2) 2.922 (2) 160 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Two independent hydrogen bonds, N1—H1⋯O6i and N3—H3⋯O4ii, are present in the crystal structure of (II). As in (I), each mol­ecule is linked, by two-point connections, to two neighbouring mol­ecules so that a C-2 chain structure is formed that propagates parallel to the c axis. In this case, the C-2 chain contains two crystallographically distinct Inline graphic(8) rings which are centred either by a twofold axis or an inversion centre (Fig. 4, Table 2). The mean planes of adjacent pyrimidine rings in the same chain are either coplanar with one another (if the corresponding mol­ecules are related by an inversion operation), or they form an angle of 75° (if the mol­ecules are related by a 180° rotation). The sulfur atom S9 of the 2-(methyl­thio)­ethyl substituent forms an inter­molecular contact (S⋯H = 2.86 Å) with the sec-butyl group of a mol­ecule belonging to a neighbouring chain and S2 lies in close proximity to the methyl group of a 2-(methyl­thio)­ethyl substituent (S⋯H = 2.96 Å).

Figure 4.

Figure 4

The C-2-type bonded chain of (II). O and H atoms directly involved in N—H⋯O inter­actions are drawn as balls and H atoms bonded to C atoms are omitted for clarity. The chain displays two types of Inline graphic(8) ring, which contain an inversion centre (N1—H1⋯O6i) or a twofold axis (N3—H3⋯O4ii). [Symmetry codes: (i) −x, −y + 1, −z + 1; (ii) −x, y, −z + Inline graphic.]

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O6i 0.86 (2) 2.07 (2) 2.921 (2) 170 (2)
N3—H3⋯O4ii 0.86 (2) 2.14 (2) 2.963 (2) 160 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Database survey  

The crystal structures of three polymorphs of the keto form of 2-thio­barbituric acid, which is a close structural analogue of (I) and (II), have been determined (Chierotti et al., 2010). Polymorph III (CSD refcode THBARB01) contains an N—H⋯O-bonded layer structure having the hcb topology and polymorph IV (THBARB02) an N—H⋯O-bonded framework. Both these structures contain N—H⋯O-bonded Inline graphic(8) rings analogous to those present in the hydrogen-bonded chains of (I) and (II), and additionally they contain one-point hydrogen-bond connections between mol­ecules. Form VI of 2-thio­barbituric acid (THBARB03) displays two distinct hydrogen-bonded structures, an N—H⋯O-bonded layer with sql topology whose mol­ecules are linked exclusively by one-point connections and an hcb-type layer based on N—H⋯O as well as N—H⋯S bonds, with the latter inter­action resulting in Inline graphic(8) rings.

Numerous 5,5-substituted derivatives of barbituric acid are known to form N—H⋯O=C-bonded chains exhibiting the 2C1 topology, with their mol­ecules being linked by two-point connections resulting in the formation of characteristic Inline graphic(8) rings. Chains exhibiting these specific properties can be classified into two distinct types, denoted as C-1 and C-2 (Gelbrich et al., 2016a ; see Fig. 5). The less frequent of these two types, C-2, is also the chain motif of (I) and (II). It is characterized by the employment of each of the topologically equivalent C4 and C6 carbonyl groups, but not the C2 group, as a hydrogen-bond acceptor.

Figure 5.

Figure 5

(a) Simplified representation of a mol­ecule of a 5,5-disubstituted derivative of barbituric acid. The same scheme can be applied for analogous thio­barbiturates such as (I) and (II) if the O atom of the carbonyl group in position 2 is replaced by a thioxo S atom. (b) and (c) Schematic representation of the N—H⋯O=C-bonded chain types C-1 and C-2 with an underlying 2C1 topology, which are frequently found in barbiturates. The thio­barbiturates (I) and (II) contain chains of the C-2 type.

C-2 chains containing a 21 screw axis occur in polymorph III of phenobarbital (PHBARB09), the CH2Cl2 solvate of the same compound (EPUDEA) (Zencirci et al., 2010, 2014) and in 5-fluoro-5-phenyl­barbituric acid (HEKTOG) (DesMarteau et al., 1994) as well as in (I). By contrast, the C-2 chains of 6-oxo­cyclo­barbital (OXCBAR) (Chentli-Benchikha et al., 1977) and polymorph III of pentobarbital (FUFTEG02) (Rossi et al., 2012) exhibit glide symmetry. Moreover, polymorph II of barbital (DETBAA02) (Craven et al., 1969) as well as forms I and II of phenobarbital (Zencirci et al., 2010) exhibit C-2 chains whose Inline graphic(8) rings contain crystallographic inversion centres. The crystal structure of methitural (II) is the first example of a C-2 chain whose Inline graphic(8) rings are centred alternately by a twofold rotational axis and an inversion centre.

Synthesis and crystallization  

Single crystals of (I) were produced by sublimation between two glass slides separated by a spacer ring (height: 1 cm), using a hot bench at a temperature of 403 K. As confirmed by PXRD, the phase investigated by us is identical with that of the original sample from the1940s obtained from our archive. The melting point of this phase of 422 K was determined with hot-stage microscopy. Heating the quench-cooled melt of (I) above 323 K resulted in the crystallization of a second form. Isolated, individual crystals of this second form melted at approximately 387 K. In other experiments, a phase transition from the low-melting form II to a high-melting form I occurred on heating, usually between 378 and 383 K (see Supporting information). These observations are consistent with a previous description by Brandstätter-Kuhnert & Aepkers (1962).

The crystals of (II) investigated in this study were taken from a sample obtained from Merck AG, Darmstadt, Germany. These crystals melted within a relatively broad temperature range between 361 and 366 K.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were identified in difference maps. Methyl H atoms were idealized and included as rigid groups allowed to rotate but not tip and all other H atoms bonded to carbon atoms were positioned geometrically (C—H = 0.95–0.99 Å). The hydrogen atoms in NH groups were refined with restrained distances [N—H = 0.88 (2) Å]. The U iso parameters of all H atoms were refined freely.

Table 3. Experimental details.

  (I) (II)
Crystal data
Chemical formula C11H16N2O2S C12H20N2O2S2
M r 240.32 288.42
Crystal system, space group Monoclinic, P21/n Monoclinic, C2/c
Temperature (K) 120 120
a, b, c (Å) 8.7271 (6), 11.6521 (4), 12.5400 (8) 15.1873 (2), 9.0920 (1), 20.8684 (3)
β (°) 96.539 (2) 96.083 (1)
V3) 1266.89 (13) 2865.34 (6)
Z 4 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.24 0.37
Crystal size (mm) 0.40 × 0.10 × 0.05 0.15 × 0.15 × 0.10
 
Data collection
Diffractometer Bruker–Nonius Roper CCD camera on κ-goniostat Bruker–Nonius APEXII CCD camera on κ-goniostat
Absorption correction Multi-scan (SADABS; Sheldrick, 2007) Multi-scan (SADABS; Sheldrick, 2007)
T min, T max 0.924, 1.000 0.974, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 9476, 2519, 1833 24772, 2813, 2630
R int 0.067 0.034
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.045, 0.108, 1.04 0.038, 0.084, 1.14
No. of reflections 2519 2813
No. of parameters 170 192
No. of restraints 2 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.31, −0.27 0.53, −0.30

Computer programs: DENZO (Otwinowski & Minor, 1997), COLLECT (Hooft, 1998), SHELXT (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ), XP in SHELXTL (Sheldrick, 2008) Mercury (Macrae et al., 2006), PLATON (Spek, 2009), publCIF (Westrip, 2010) and TOPOS (Blatov, 2006).

Supplementary Material

Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S205698901701653X/dx2002sup1.cif

e-73-01908-sup1.cif (1.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901701653X/dx2002Isup2.hkl

e-73-01908-Isup2.hkl (201.8KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S205698901701653X/dx2002IIsup3.hkl

e-73-01908-IIsup3.hkl (225.4KB, hkl)

Supporting information file. DOI: 10.1107/S205698901701653X/dx2002Isup4.cml

Supporting information file. DOI: 10.1107/S205698901701653X/dx2002IIsup5.cml

Hot-stage microscopy. DOI: 10.1107/S205698901701653X/dx2002sup6.pdf

e-73-01908-sup6.pdf (817.7KB, pdf)

CCDC references: 1586016, 1586015

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Professor S. Coles (Southampton) for providing access to the X-ray diffractometers used in this study.

supplementary crystallographic information

5-(2-Methylpropyl)-5-(prop-2-en-1-yl)-2-sulfanylidene-1,3-diazinane-4,6-dione (I). Crystal data

C11H16N2O2S F(000) = 512
Mr = 240.32 Dx = 1.260 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 8.7271 (6) Å Cell parameters from 10435 reflections
b = 11.6521 (4) Å θ = 2.9–27.5°
c = 12.5400 (8) Å µ = 0.24 mm1
β = 96.539 (2)° T = 120 K
V = 1266.89 (13) Å3 Prism, colourless
Z = 4 0.40 × 0.10 × 0.05 mm

5-(2-Methylpropyl)-5-(prop-2-en-1-yl)-2-sulfanylidene-1,3-diazinane-4,6-dione (I). Data collection

Bruker–Nonius Roper CCD camera on κ-goniostat diffractometer 2519 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode 1833 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.067
Detector resolution: 9.091 pixels mm-1 θmax = 26.4°, θmin = 3.3°
φ & ω scans h = −9→10
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) k = −12→13
Tmin = 0.924, Tmax = 1.000 l = −15→14
9476 measured reflections

5-(2-Methylpropyl)-5-(prop-2-en-1-yl)-2-sulfanylidene-1,3-diazinane-4,6-dione (I). Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0431P)2 + 0.281P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
2519 reflections Δρmax = 0.31 e Å3
170 parameters Δρmin = −0.27 e Å3
2 restraints Extinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.011 (2)

5-(2-Methylpropyl)-5-(prop-2-en-1-yl)-2-sulfanylidene-1,3-diazinane-4,6-dione (I). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

5-(2-Methylpropyl)-5-(prop-2-en-1-yl)-2-sulfanylidene-1,3-diazinane-4,6-dione (I). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S2 0.13456 (7) 0.87633 (4) 0.94050 (5) 0.0259 (2)
O4 0.42805 (18) 0.66380 (11) 0.69496 (13) 0.0256 (4)
O6 0.26955 (18) 1.04475 (11) 0.60757 (12) 0.0261 (4)
N1 0.2119 (2) 0.95525 (14) 0.75707 (14) 0.0197 (4)
H1 0.162 (3) 1.0169 (17) 0.771 (2) 0.036 (7)*
N3 0.2876 (2) 0.76850 (14) 0.79944 (14) 0.0192 (4)
H3 0.282 (3) 0.7101 (16) 0.8409 (17) 0.030 (7)*
C2 0.2138 (2) 0.86637 (16) 0.82860 (17) 0.0181 (5)
C4 0.3650 (2) 0.75482 (16) 0.71139 (17) 0.0196 (5)
C5 0.3698 (2) 0.85445 (16) 0.63413 (17) 0.0187 (5)
C6 0.2810 (2) 0.95949 (16) 0.66426 (17) 0.0193 (5)
C7 0.2939 (3) 0.81243 (17) 0.52224 (17) 0.0225 (5)
H7A 0.3022 0.8740 0.4689 0.034 (7)*
H7B 0.3518 0.7451 0.5000 0.034 (7)*
C8 0.1275 (3) 0.7801 (2) 0.52146 (18) 0.0286 (5)
H8 0.0538 0.8398 0.5236 0.038 (7)*
C9 0.0781 (3) 0.6733 (2) 0.5180 (2) 0.0397 (7)
H9A 0.1494 0.6119 0.5157 0.054 (9)*
H9B −0.0287 0.6576 0.5176 0.051 (8)*
C10 0.5409 (3) 0.88428 (17) 0.62406 (17) 0.0221 (5)
H10A 0.5867 0.8189 0.5884 0.029 (6)*
H10B 0.5423 0.9512 0.5756 0.025 (6)*
C11 0.6456 (3) 0.9114 (2) 0.7264 (2) 0.0322 (6)
H11 0.6314 0.8501 0.7802 0.052 (8)*
C12 0.6132 (3) 1.0262 (3) 0.7760 (2) 0.0494 (8)
H12A 0.6195 1.0872 0.7228 0.074 (11)*
H12B 0.6895 1.0404 0.8382 0.076 (10)*
H12C 0.5096 1.0254 0.7990 0.074 (11)*
C13 0.8130 (3) 0.9075 (3) 0.7015 (3) 0.0484 (8)
H13A 0.8366 0.8305 0.6764 0.068 (10)*
H13B 0.8819 0.9256 0.7666 0.069 (10)*
H13C 0.8278 0.9639 0.6456 0.049 (8)*

5-(2-Methylpropyl)-5-(prop-2-en-1-yl)-2-sulfanylidene-1,3-diazinane-4,6-dione (I). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S2 0.0311 (4) 0.0251 (3) 0.0237 (3) 0.0012 (2) 0.0123 (3) 0.0027 (2)
O4 0.0280 (9) 0.0144 (7) 0.0365 (10) 0.0023 (6) 0.0129 (7) 0.0001 (6)
O6 0.0392 (10) 0.0170 (8) 0.0238 (9) 0.0019 (6) 0.0113 (7) 0.0035 (6)
N1 0.0239 (11) 0.0145 (9) 0.0222 (10) 0.0010 (7) 0.0086 (8) 0.0010 (7)
N3 0.0234 (10) 0.0139 (9) 0.0212 (10) 0.0015 (7) 0.0063 (8) 0.0034 (7)
C2 0.0164 (11) 0.0172 (10) 0.0203 (11) −0.0026 (8) 0.0002 (9) −0.0009 (8)
C4 0.0164 (11) 0.0178 (11) 0.0248 (12) −0.0042 (8) 0.0031 (9) −0.0019 (8)
C5 0.0214 (12) 0.0154 (10) 0.0205 (11) −0.0015 (8) 0.0074 (9) −0.0004 (8)
C6 0.0222 (12) 0.0160 (10) 0.0200 (12) −0.0020 (8) 0.0042 (9) −0.0018 (8)
C7 0.0262 (13) 0.0213 (11) 0.0207 (12) −0.0024 (9) 0.0063 (10) −0.0025 (8)
C8 0.0259 (13) 0.0358 (13) 0.0240 (13) −0.0013 (10) 0.0028 (10) −0.0040 (10)
C9 0.0355 (16) 0.0477 (16) 0.0343 (15) −0.0172 (13) −0.0032 (12) 0.0032 (11)
C10 0.0238 (12) 0.0215 (11) 0.0225 (12) −0.0024 (8) 0.0088 (10) 0.0005 (8)
C11 0.0269 (14) 0.0405 (14) 0.0287 (14) −0.0073 (10) 0.0016 (11) 0.0039 (10)
C12 0.0388 (18) 0.068 (2) 0.0405 (17) −0.0152 (14) 0.0031 (14) −0.0245 (15)
C13 0.0291 (16) 0.066 (2) 0.0496 (19) −0.0035 (13) 0.0025 (14) 0.0078 (15)

5-(2-Methylpropyl)-5-(prop-2-en-1-yl)-2-sulfanylidene-1,3-diazinane-4,6-dione (I). Geometric parameters (Å, º)

S2—C2 1.638 (2) C8—C9 1.315 (3)
O4—C4 1.223 (2) C8—H8 0.9500
O6—C6 1.219 (2) C9—H9A 0.9500
N1—C2 1.369 (3) C9—H9B 0.9500
N1—C6 1.371 (3) C10—C11 1.522 (3)
N1—H1 0.867 (16) C10—H10A 0.9900
N3—C4 1.367 (3) C10—H10B 0.9900
N3—C2 1.379 (3) C11—C12 1.515 (4)
N3—H3 0.861 (16) C11—C13 1.529 (4)
C4—C5 1.516 (3) C11—H11 1.0000
C5—C6 1.519 (3) C12—H12A 0.9800
C5—C10 1.552 (3) C12—H12B 0.9800
C5—C7 1.561 (3) C12—H12C 0.9800
C7—C8 1.499 (3) C13—H13A 0.9800
C7—H7A 0.9900 C13—H13B 0.9800
C7—H7B 0.9900 C13—H13C 0.9800
C2—N1—C6 127.57 (17) C7—C8—H8 118.3
C2—N1—H1 117.7 (17) C8—C9—H9A 120.0
C6—N1—H1 114.8 (17) C8—C9—H9B 120.0
C4—N3—C2 126.79 (17) H9A—C9—H9B 120.0
C4—N3—H3 117.7 (16) C11—C10—C5 117.95 (18)
C2—N3—H3 115.5 (16) C11—C10—H10A 107.8
N1—C2—N3 115.02 (18) C5—C10—H10A 107.8
N1—C2—S2 122.21 (15) C11—C10—H10B 107.8
N3—C2—S2 122.77 (15) C5—C10—H10B 107.8
O4—C4—N3 120.68 (18) H10A—C10—H10B 107.2
O4—C4—C5 120.70 (19) C12—C11—C10 114.0 (2)
N3—C4—C5 118.62 (17) C12—C11—C13 109.7 (2)
C4—C5—C6 113.95 (17) C10—C11—C13 108.5 (2)
C4—C5—C10 108.69 (17) C12—C11—H11 108.1
C6—C5—C10 111.26 (16) C10—C11—H11 108.1
C4—C5—C7 107.13 (16) C13—C11—H11 108.1
C6—C5—C7 107.46 (17) C11—C12—H12A 109.5
C10—C5—C7 108.11 (16) C11—C12—H12B 109.5
O6—C6—N1 120.64 (18) H12A—C12—H12B 109.5
O6—C6—C5 121.44 (18) C11—C12—H12C 109.5
N1—C6—C5 117.91 (17) H12A—C12—H12C 109.5
C8—C7—C5 113.35 (17) H12B—C12—H12C 109.5
C8—C7—H7A 108.9 C11—C13—H13A 109.5
C5—C7—H7A 108.9 C11—C13—H13B 109.5
C8—C7—H7B 108.9 H13A—C13—H13B 109.5
C5—C7—H7B 108.9 C11—C13—H13C 109.5
H7A—C7—H7B 107.7 H13A—C13—H13C 109.5
C9—C8—C7 123.4 (2) H13B—C13—H13C 109.5
C9—C8—H8 118.3
C6—N1—C2—N3 −3.7 (3) C10—C5—C6—O6 59.5 (3)
C6—N1—C2—S2 176.16 (17) C7—C5—C6—O6 −58.7 (2)
C4—N3—C2—N1 4.2 (3) C4—C5—C6—N1 2.0 (3)
C4—N3—C2—S2 −175.64 (17) C10—C5—C6—N1 −121.3 (2)
C2—N3—C4—O4 178.9 (2) C7—C5—C6—N1 120.6 (2)
C2—N3—C4—C5 −1.6 (3) C4—C5—C7—C8 62.7 (2)
O4—C4—C5—C6 177.91 (19) C6—C5—C7—C8 −60.1 (2)
N3—C4—C5—C6 −1.6 (3) C10—C5—C7—C8 179.67 (17)
O4—C4—C5—C10 −57.4 (2) C5—C7—C8—C9 −106.1 (3)
N3—C4—C5—C10 123.1 (2) C4—C5—C10—C11 −55.6 (2)
O4—C4—C5—C7 59.2 (3) C6—C5—C10—C11 70.6 (2)
N3—C4—C5—C7 −120.3 (2) C7—C5—C10—C11 −171.58 (18)
C2—N1—C6—O6 179.9 (2) C5—C10—C11—C12 −71.7 (3)
C2—N1—C6—C5 0.6 (3) C5—C10—C11—C13 165.64 (19)
C4—C5—C6—O6 −177.20 (19)

5-(2-Methylpropyl)-5-(prop-2-en-1-yl)-2-sulfanylidene-1,3-diazinane-4,6-dione (I). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O4i 0.87 (2) 1.95 (2) 2.815 (2) 174 (2)
N3—H3···O6ii 0.86 (2) 2.10 (2) 2.922 (2) 160 (2)

Symmetry codes: (i) −x+1/2, y+1/2, −z+3/2; (ii) −x+1/2, y−1/2, −z+3/2.

5-(1-Methylbutyl)-5-[2-(methylsulfanyl)ethyl]-2-sulfanylidene-1,3-diazinane-4,6-dione (II). Crystal data

C12H20N2O2S2 F(000) = 1232
Mr = 288.42 Dx = 1.337 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 15.1873 (2) Å Cell parameters from 29667 reflections
b = 9.0920 (1) Å θ = 2.9–27.5°
c = 20.8684 (3) Å µ = 0.37 mm1
β = 96.083 (1)° T = 120 K
V = 2865.34 (6) Å3 Block, colourless
Z = 8 0.15 × 0.15 × 0.10 mm

5-(1-Methylbutyl)-5-[2-(methylsulfanyl)ethyl]-2-sulfanylidene-1,3-diazinane-4,6-dione (II). Data collection

Bruker–Nonius APEXII CCD camera on κ-goniostat diffractometer 2813 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode 2630 reflections with I > 2σ(I)
10cm confocal mirrors monochromator Rint = 0.034
Detector resolution: 9.091 pixels mm-1 θmax = 26.0°, θmin = 3.2°
φ & ω scans h = −18→18
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) k = −11→11
Tmin = 0.974, Tmax = 1.000 l = −25→25
24772 measured reflections

5-(1-Methylbutyl)-5-[2-(methylsulfanyl)ethyl]-2-sulfanylidene-1,3-diazinane-4,6-dione (II). Refinement

Refinement on F2 2 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0192P)2 + 6.3729P] where P = (Fo2 + 2Fc2)/3
S = 1.14 (Δ/σ)max = 0.001
2813 reflections Δρmax = 0.53 e Å3
192 parameters Δρmin = −0.29 e Å3

5-(1-Methylbutyl)-5-[2-(methylsulfanyl)ethyl]-2-sulfanylidene-1,3-diazinane-4,6-dione (II). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

5-(1-Methylbutyl)-5-[2-(methylsulfanyl)ethyl]-2-sulfanylidene-1,3-diazinane-4,6-dione (II). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S2 −0.17769 (3) 0.62565 (6) 0.34779 (2) 0.02411 (13)
S9 0.14236 (3) 1.10685 (5) 0.51192 (2) 0.02392 (13)
O4 0.09157 (9) 0.87624 (15) 0.30012 (6) 0.0218 (3)
O6 0.09747 (9) 0.59147 (14) 0.49086 (6) 0.0220 (3)
N1 −0.02312 (10) 0.60656 (17) 0.41868 (7) 0.0177 (3)
H1 −0.0510 (14) 0.551 (2) 0.4430 (10) 0.031 (6)*
N3 −0.02774 (10) 0.75738 (17) 0.32870 (7) 0.0181 (3)
H3 −0.0574 (14) 0.798 (2) 0.2962 (9) 0.029 (6)*
C2 −0.07264 (12) 0.6645 (2) 0.36566 (8) 0.0173 (4)
C4 0.06055 (12) 0.79499 (19) 0.33818 (8) 0.0167 (4)
C6 0.06356 (12) 0.63907 (19) 0.43924 (8) 0.0171 (4)
C7 0.16068 (12) 0.85980 (19) 0.43567 (8) 0.0161 (4)
H7A 0.2088 0.8208 0.4667 0.020 (5)*
H7B 0.1875 0.9281 0.4063 0.021 (5)*
C5 0.11666 (11) 0.73082 (19) 0.39593 (8) 0.0158 (4)
C8 0.09525 (13) 0.9443 (2) 0.47235 (9) 0.0218 (4)
H8A 0.0735 0.8786 0.5051 0.029 (6)*
H8B 0.0437 0.9733 0.4419 0.031 (6)*
C10 0.13117 (16) 1.2337 (2) 0.44571 (12) 0.0345 (5)
H10A 0.1605 1.1935 0.4099 0.071 (10)*
H10B 0.1586 1.3277 0.4594 0.053 (8)*
H10C 0.0682 1.2492 0.4316 0.047 (8)*
C12 0.18817 (13) 0.6231 (2) 0.37204 (9) 0.0217 (4)
H12 0.2155 0.5694 0.4110 0.033 (6)*
C13 0.26315 (13) 0.7017 (2) 0.34349 (10) 0.0258 (4)
H13A 0.2880 0.7777 0.3742 0.040 (7)*
H13B 0.2390 0.7523 0.3034 0.043 (7)*
C14 0.33787 (14) 0.5984 (2) 0.32810 (11) 0.0308 (5)
H14A 0.3564 0.5368 0.3662 0.029 (6)*
H14B 0.3159 0.5324 0.2922 0.054 (8)*
C15 0.41659 (17) 0.6846 (3) 0.30960 (13) 0.0438 (6)
H15A 0.3988 0.7425 0.2708 0.072 (10)*
H15B 0.4640 0.6164 0.3011 0.053 (8)*
H15C 0.4380 0.7508 0.3449 0.073 (10)*
C16 0.14371 (14) 0.5061 (2) 0.32611 (9) 0.0250 (4)
H16A 0.1226 0.5521 0.2849 0.036 (7)*
H16B 0.0935 0.4628 0.3452 0.038 (7)*
H16C 0.1867 0.4290 0.3190 0.040 (7)*

5-(1-Methylbutyl)-5-[2-(methylsulfanyl)ethyl]-2-sulfanylidene-1,3-diazinane-4,6-dione (II). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S2 0.0188 (2) 0.0307 (3) 0.0228 (2) −0.0057 (2) 0.00256 (18) 0.0002 (2)
S9 0.0251 (3) 0.0196 (2) 0.0270 (3) −0.00207 (19) 0.00215 (19) −0.00781 (19)
O4 0.0228 (7) 0.0243 (7) 0.0184 (6) −0.0061 (6) 0.0029 (5) 0.0052 (5)
O6 0.0248 (7) 0.0210 (7) 0.0195 (7) −0.0020 (6) −0.0006 (5) 0.0056 (5)
N1 0.0194 (8) 0.0159 (7) 0.0183 (8) −0.0032 (6) 0.0045 (6) 0.0025 (6)
N3 0.0177 (8) 0.0212 (8) 0.0152 (7) −0.0008 (6) 0.0009 (6) 0.0030 (6)
C2 0.0211 (9) 0.0159 (9) 0.0152 (8) −0.0005 (7) 0.0038 (7) −0.0027 (7)
C4 0.0200 (9) 0.0157 (9) 0.0145 (8) 0.0003 (7) 0.0028 (7) −0.0030 (7)
C6 0.0209 (9) 0.0119 (8) 0.0186 (9) −0.0001 (7) 0.0029 (7) −0.0018 (7)
C7 0.0164 (9) 0.0147 (8) 0.0172 (8) −0.0012 (7) 0.0023 (7) −0.0011 (7)
C5 0.0153 (8) 0.0155 (8) 0.0169 (8) 0.0004 (7) 0.0026 (7) 0.0000 (7)
C8 0.0230 (10) 0.0169 (9) 0.0266 (10) −0.0043 (8) 0.0081 (8) −0.0067 (8)
C10 0.0388 (13) 0.0191 (10) 0.0469 (13) 0.0002 (9) 0.0106 (11) 0.0060 (10)
C12 0.0222 (10) 0.0183 (9) 0.0250 (10) 0.0029 (8) 0.0047 (8) −0.0032 (8)
C13 0.0249 (10) 0.0237 (10) 0.0299 (10) 0.0025 (8) 0.0081 (8) 0.0006 (8)
C14 0.0283 (11) 0.0317 (12) 0.0345 (12) 0.0080 (9) 0.0122 (9) −0.0006 (9)
C15 0.0387 (14) 0.0430 (14) 0.0528 (15) 0.0091 (12) 0.0189 (12) 0.0070 (13)
C16 0.0312 (11) 0.0189 (9) 0.0258 (10) 0.0007 (8) 0.0078 (8) −0.0048 (8)

5-(1-Methylbutyl)-5-[2-(methylsulfanyl)ethyl]-2-sulfanylidene-1,3-diazinane-4,6-dione (II). Geometric parameters (Å, º)

S2—C2 1.6381 (19) C8—H8B 0.9900
S9—C10 1.794 (2) C10—H10A 0.9800
S9—C8 1.8033 (19) C10—H10B 0.9800
O4—C4 1.216 (2) C10—H10C 0.9800
O6—C6 1.223 (2) C12—C13 1.519 (3)
N1—C6 1.373 (2) C12—C16 1.539 (3)
N1—C2 1.375 (2) C12—H12 1.0000
N1—H1 0.858 (16) C13—C14 1.533 (3)
N3—C2 1.373 (2) C13—H13A 0.9900
N3—C4 1.378 (2) C13—H13B 0.9900
N3—H3 0.856 (16) C14—C15 1.513 (3)
C4—C5 1.517 (2) C14—H14A 0.9900
C6—C5 1.522 (2) C14—H14B 0.9900
C7—C8 1.525 (2) C15—H15A 0.9800
C7—C5 1.547 (2) C15—H15B 0.9800
C7—H7A 0.9900 C15—H15C 0.9800
C7—H7B 0.9900 C16—H16A 0.9800
C5—C12 1.582 (2) C16—H16B 0.9800
C8—H8A 0.9900 C16—H16C 0.9800
C10—S9—C8 99.99 (10) S9—C10—H10B 109.5
C6—N1—C2 126.40 (15) H10A—C10—H10B 109.5
C6—N1—H1 117.3 (16) S9—C10—H10C 109.5
C2—N1—H1 116.1 (16) H10A—C10—H10C 109.5
C2—N3—C4 127.29 (16) H10B—C10—H10C 109.5
C2—N3—H3 117.3 (16) C13—C12—C16 112.25 (16)
C4—N3—H3 115.4 (16) C13—C12—C5 113.62 (15)
N3—C2—N1 115.21 (16) C16—C12—C5 110.71 (15)
N3—C2—S2 122.31 (14) C13—C12—H12 106.6
N1—C2—S2 122.47 (14) C16—C12—H12 106.6
O4—C4—N3 119.72 (16) C5—C12—H12 106.6
O4—C4—C5 121.92 (16) C12—C13—C14 113.35 (17)
N3—C4—C5 118.36 (15) C12—C13—H13A 108.9
O6—C6—N1 119.97 (16) C14—C13—H13A 108.9
O6—C6—C5 121.12 (16) C12—C13—H13B 108.9
N1—C6—C5 118.89 (15) C14—C13—H13B 108.9
C8—C7—C5 112.56 (14) H13A—C13—H13B 107.7
C8—C7—H7A 109.1 C15—C14—C13 111.01 (19)
C5—C7—H7A 109.1 C15—C14—H14A 109.4
C8—C7—H7B 109.1 C13—C14—H14A 109.4
C5—C7—H7B 109.1 C15—C14—H14B 109.4
H7A—C7—H7B 107.8 C13—C14—H14B 109.4
C4—C5—C6 113.21 (15) H14A—C14—H14B 108.0
C4—C5—C7 107.99 (14) C14—C15—H15A 109.5
C6—C5—C7 108.86 (14) C14—C15—H15B 109.5
C4—C5—C12 109.53 (14) H15A—C15—H15B 109.5
C6—C5—C12 105.81 (14) C14—C15—H15C 109.5
C7—C5—C12 111.49 (14) H15A—C15—H15C 109.5
C7—C8—S9 113.25 (13) H15B—C15—H15C 109.5
C7—C8—H8A 108.9 C12—C16—H16A 109.5
S9—C8—H8A 108.9 C12—C16—H16B 109.5
C7—C8—H8B 108.9 H16A—C16—H16B 109.5
S9—C8—H8B 108.9 C12—C16—H16C 109.5
H8A—C8—H8B 107.7 H16A—C16—H16C 109.5
S9—C10—H10A 109.5 H16B—C16—H16C 109.5
C4—N3—C2—N1 1.7 (3) N1—C6—C5—C7 128.90 (16)
C4—N3—C2—S2 −178.33 (14) O6—C6—C5—C12 67.0 (2)
C6—N1—C2—N3 3.8 (3) N1—C6—C5—C12 −111.17 (17)
C6—N1—C2—S2 −176.19 (14) C8—C7—C5—C4 73.15 (18)
C2—N3—C4—O4 178.09 (17) C8—C7—C5—C6 −50.13 (19)
C2—N3—C4—C5 −1.0 (3) C8—C7—C5—C12 −166.48 (15)
C2—N1—C6—O6 172.51 (17) C5—C7—C8—S9 −173.66 (12)
C2—N1—C6—C5 −9.3 (3) C10—S9—C8—C7 82.54 (16)
O4—C4—C5—C6 176.79 (16) C4—C5—C12—C13 73.5 (2)
N3—C4—C5—C6 −4.2 (2) C6—C5—C12—C13 −164.15 (16)
O4—C4—C5—C7 56.2 (2) C7—C5—C12—C13 −46.0 (2)
N3—C4—C5—C7 −124.77 (16) C4—C5—C12—C16 −53.9 (2)
O4—C4—C5—C12 −65.4 (2) C6—C5—C12—C16 68.47 (19)
N3—C4—C5—C12 113.64 (17) C7—C5—C12—C16 −173.34 (15)
O6—C6—C5—C4 −173.00 (16) C16—C12—C13—C14 −60.5 (2)
N1—C6—C5—C4 8.8 (2) C5—C12—C13—C14 172.91 (17)
O6—C6—C5—C7 −52.9 (2) C12—C13—C14—C15 −171.28 (19)

5-(1-Methylbutyl)-5-[2-(methylsulfanyl)ethyl]-2-sulfanylidene-1,3-diazinane-4,6-dione (II). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O6i 0.86 (2) 2.07 (2) 2.921 (2) 170 (2)
N3—H3···O4ii 0.86 (2) 2.14 (2) 2.963 (2) 160 (2)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, y, −z+1/2.

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Blatov, V. A. (2006). IUCr Compcomm Newsl. 7, 4–38.
  3. Brandstätter-Kuhnert, M. & Aepkers, M. (1962). Mikrochim. Acta, 50, 1055–1074.
  4. Chentli-Benchikha, F., Declercq, J. P., Germain, G., Van Meerssche, M., Bouché, R. & Draguet-Brughmans, M. (1977). Acta Cryst. B33, 2739–2743.
  5. Chierotti, M. R., Ferrero, L., Garino, N., Gobetto, R., Pellegrino, L., Braga, D., Grepioni, F. & Maini, L. (2010). Chem. Eur. J. 16, 4347–4358. [DOI] [PubMed]
  6. Craven, B. M., Vizzini, E. A. & Rodrigues, M. M. (1969). Acta Cryst. B25, 1978–1993. [DOI] [PubMed]
  7. DesMarteau, D. D., Pennington, W. T. & Resnati, G. (1994). Acta Cryst. C50, 1305–1308.
  8. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  9. Gelbrich, T., Braun, D. E. & Griesser, U. J. (2016a). Chem. Cent. J. 10, 8. [DOI] [PMC free article] [PubMed]
  10. Gelbrich, T., Braun, D. E., Oberparleiter, S., Schottenberger, H. & Griesser, U. J. (2016b). Crystals, 6, 47. [DOI] [PMC free article] [PubMed]
  11. Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
  12. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  13. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  14. Rossi, D., Gelbrich, T., Kahlenberg, V. & Griesser, U. J. (2012). CrystEngComm, 14, 2494–2506.
  15. Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.
  16. Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [DOI] [PubMed]
  17. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  18. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  19. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  20. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  21. Zencirci, N., Gelbrich, T., Apperley, D. C., Harris, R. K., Kahlenberg, V. & Griesser, U. J. (2010). Cryst. Growth Des. 10, 302–313.
  22. Zencirci, N., Griesser, U. J., Gelbrich, T., Kahlenberg, V., Jetti, R. K. R., Apperley, D. C. & Harris, R. K. (2014). J. Phys. Chem. B, 118, 3267–3280. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S205698901701653X/dx2002sup1.cif

e-73-01908-sup1.cif (1.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901701653X/dx2002Isup2.hkl

e-73-01908-Isup2.hkl (201.8KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S205698901701653X/dx2002IIsup3.hkl

e-73-01908-IIsup3.hkl (225.4KB, hkl)

Supporting information file. DOI: 10.1107/S205698901701653X/dx2002Isup4.cml

Supporting information file. DOI: 10.1107/S205698901701653X/dx2002IIsup5.cml

Hot-stage microscopy. DOI: 10.1107/S205698901701653X/dx2002sup6.pdf

e-73-01908-sup6.pdf (817.7KB, pdf)

CCDC references: 1586016, 1586015

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES