In the title structures, each molecules is connected to two other molecules via four N—H⋯O hydrogen bonds, resulting in a chain with a sequence of (8) rings.
Keywords: crystal structure, hydrogen bonding, barbiturates, pharmaceuticals
Abstract
The molecule of buthalital, (I) [systematic name: 5-(2-methylpropyl)-5-(prop-2-en-1-yl)-2-sulfanylidene-1,3-diazinane-4,6-dione], C11H16N2O2S, exhibits a planar pyrimidine ring, whereas the pyrimidine ring of methitural, (II) [systematic name: 5-(1-methylbutyl)-5-[2-(methylsulfanyl)ethyl]-2-sulfanylidene-1,3-diazinane-4,6-dione], C12H20N2O2S2, is slightly puckered. (I) and (II) contain the same hydrogen-bonded chain structure in which each molecule is connected, via four N—H⋯O=C hydrogen bonds, to two other molecules, resulting in a hydrogen-bonded chain displaying a sequence of R 2 2(8) rings. The same type of N—H⋯O=C hydrogen-bonded chain has previously been found in several 5,5-disubstituted derivatives of barbituric acid which are chemically closely related to (I) and (II).
Chemical context
Buthalital (I) and methitural (II) are 5,5-disubstituted derivatives of 2-thiobarbituric acid. Compounds of the thiobarbiturate class differ from the corresponding barbiturates in that the ketone group at the 2-position is replaced by a thione group. Thiobarbiturates are used as injection narcotics for the induction of general anaesthesia or to produce complete anaesthesia of short duration. The sodium salt of (I) was originally developed as a short-acting anaesthetic but was found to have an extremely rapid elimination rate. Similarly, (II) was marketed in the 1950s as an ultra-short-acting intravenous anaesthetic.
Structural commentary
The molecular structure of (I), Fig. 1 ▸, shows an almost planar pyrimidine ring (N1, C2, N3, C4 C5, C6) with a root-mean-square (r.m.s.) deviation of its six atoms from the mean plane of 0.016 Å (Fig. 1 ▸). The (C7, C8, C5, C10, C11) unit defined by ring atom C5 and two atoms of each of the allyl and isobutyl substituents is nearly planar (r.m.s. deviation = 0.050 Å). The mean plane of this fragment forms an angle of 87.5 (1)° with the plane of the six-membered ring. Additionally, it forms an angle of 77.8 (2)° with the plane of the allyl group defined by C7, C8 and C9. The terminal torsion angles C5—C10—C11—C12 and C5—C10— C11—C13 of the isobutyl substituent are −71.7 (3)° and 165.6 (2)°, respectively.
Figure 1.
The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level and H atoms drawn as spheres of arbitrary size.
The pyrimidine ring (N1, C2, N3, C4 C5, C6) in the molecule of (II) deviates somewhat from planarity (r.m.s. deviation = 0.030 Å); specifically, the distance between C6 and the mean plane defined by the other five ring atoms (r.m.s deviation = 0.005 Å) is 0.104 (2) Å (Fig. 2 ▸). The mean plane of the (S9, C8, C7, C5, C12, C16) chain, defined by ring atom C6, three atoms of the 2-(methylthio)ethyl substituent and two atoms of the sec-butyl group (r.m.s. deviation = 0.091 Å) forms an angle of 88.64 (5)° with the mean plane of the pyrimidine ring and an angle of 39.0 (1)° with the mean plane of the (C5, C12, C13, C14, C15) fragment of the nearly planar (r.m.s. deviation = 0.070) sec-butyl group. In the 2-(methylthio)ethyl substituent, the C10—S9 and C8—S9 bond lengths are 1.794 (2) and 1.803 (2) Å, respectively, and the C7—C8—S9—C10 torsion angle is 82.5 (2)°. The bond between ring atom C5 and atom C12 of the sec-butyl group [1.582 (2) Å] is somewhat longer than the analogous distance between C5 and atom C7 of the 2-(methylthio)ethyl group [1.547 (2) Å]. This difference is reminiscent of the difference between equatorial and axial bonds at ring atom C5 found in several 5,5-disubstituted barbituric acid derivatives that exhibit a puckered pyrimidine ring (Gelbrich et al., 2016b ▸).
Figure 2.
The molecular structure of (II), with displacement ellipsoids drawn at the 50% probability level and H atoms drawn as spheres of arbitrary size.
Supramolecular features
The crystal structure of (I) contains N1—H1⋯O4i and N3—H3⋯O6ii bonds (Fig. 3 ▸, Table 1 ▸). Each molecule is linked to two neighbouring molecules via two-point connections and (8) rings (Etter et al. 1990 ▸, Bernstein et al., 1995 ▸). The resulting chain structure (topological type 2C1) contains a twofold screw axis and runs parallel to the b axis. The mean planes of neighbouring pyrimidine rings in the chain form an angle of approximately 40° with one another. The chain structure of (I) belongs to the C-2 type, which also occurs in a number of 5,5-disubstituted barbituric acid derivatives (Gelbrich et al., 2016a
▸). The four shortest intermolecular contacts of the sulfur atom (S⋯H distances between 2.97 and 3.01 Å; close to the sum of van der Waals radii) involve both CH2 groups of a neighbouring molecule and one CH3 group belonging to the isobutyl substituent of two other molecules.
Figure 3.
The C-2-type bonded chain of (I). O and H atoms directly involved in N—H⋯O interactions are drawn as balls and H atoms bonded to C atoms are omitted for clarity. The chain displays a twofold screw symmetry and contains just one type of (8) ring. [Symmetry codes: (i) −x +
, y +
, −z +
; (ii) −x +
, y −
, −z +
.]
Table 1. Hydrogen-bond geometry (Å, °) for (I) .
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
---|---|---|---|---|
N1—H1⋯O4i | 0.87 (2) | 1.95 (2) | 2.815 (2) | 174 (2) |
N3—H3⋯O6ii | 0.86 (2) | 2.10 (2) | 2.922 (2) | 160 (2) |
Symmetry codes: (i) ; (ii)
.
Two independent hydrogen bonds, N1—H1⋯O6i and N3—H3⋯O4ii, are present in the crystal structure of (II). As in (I), each molecule is linked, by two-point connections, to two neighbouring molecules so that a C-2 chain structure is formed that propagates parallel to the c axis. In this case, the C-2 chain contains two crystallographically distinct (8) rings which are centred either by a twofold axis or an inversion centre (Fig. 4 ▸, Table 2 ▸). The mean planes of adjacent pyrimidine rings in the same chain are either coplanar with one another (if the corresponding molecules are related by an inversion operation), or they form an angle of 75° (if the molecules are related by a 180° rotation). The sulfur atom S9 of the 2-(methylthio)ethyl substituent forms an intermolecular contact (S⋯H = 2.86 Å) with the sec-butyl group of a molecule belonging to a neighbouring chain and S2 lies in close proximity to the methyl group of a 2-(methylthio)ethyl substituent (S⋯H = 2.96 Å).
Figure 4.
The C-2-type bonded chain of (II). O and H atoms directly involved in N—H⋯O interactions are drawn as balls and H atoms bonded to C atoms are omitted for clarity. The chain displays two types of (8) ring, which contain an inversion centre (N1—H1⋯O6i) or a twofold axis (N3—H3⋯O4ii). [Symmetry codes: (i) −x, −y + 1, −z + 1; (ii) −x, y, −z +
.]
Table 2. Hydrogen-bond geometry (Å, °) for (II) .
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
---|---|---|---|---|
N1—H1⋯O6i | 0.86 (2) | 2.07 (2) | 2.921 (2) | 170 (2) |
N3—H3⋯O4ii | 0.86 (2) | 2.14 (2) | 2.963 (2) | 160 (2) |
Symmetry codes: (i) ; (ii)
.
Database survey
The crystal structures of three polymorphs of the keto form of 2-thiobarbituric acid, which is a close structural analogue of (I) and (II), have been determined (Chierotti et al., 2010 ▸). Polymorph III (CSD refcode THBARB01) contains an N—H⋯O-bonded layer structure having the hcb topology and polymorph IV (THBARB02) an N—H⋯O-bonded framework. Both these structures contain N—H⋯O-bonded (8) rings analogous to those present in the hydrogen-bonded chains of (I) and (II), and additionally they contain one-point hydrogen-bond connections between molecules. Form VI of 2-thiobarbituric acid (THBARB03) displays two distinct hydrogen-bonded structures, an N—H⋯O-bonded layer with sql topology whose molecules are linked exclusively by one-point connections and an hcb-type layer based on N—H⋯O as well as N—H⋯S bonds, with the latter interaction resulting in
(8) rings.
Numerous 5,5-substituted derivatives of barbituric acid are known to form N—H⋯O=C-bonded chains exhibiting the 2C1 topology, with their molecules being linked by two-point connections resulting in the formation of characteristic (8) rings. Chains exhibiting these specific properties can be classified into two distinct types, denoted as C-1 and C-2 (Gelbrich et al., 2016a
▸; see Fig. 5 ▸). The less frequent of these two types, C-2, is also the chain motif of (I) and (II). It is characterized by the employment of each of the topologically equivalent C4 and C6 carbonyl groups, but not the C2 group, as a hydrogen-bond acceptor.
Figure 5.
(a) Simplified representation of a molecule of a 5,5-disubstituted derivative of barbituric acid. The same scheme can be applied for analogous thiobarbiturates such as (I) and (II) if the O atom of the carbonyl group in position 2 is replaced by a thioxo S atom. (b) and (c) Schematic representation of the N—H⋯O=C-bonded chain types C-1 and C-2 with an underlying 2C1 topology, which are frequently found in barbiturates. The thiobarbiturates (I) and (II) contain chains of the C-2 type.
C-2 chains containing a 21 screw axis occur in polymorph III of phenobarbital (PHBARB09), the CH2Cl2 solvate of the same compound (EPUDEA) (Zencirci et al., 2010 ▸, 2014 ▸) and in 5-fluoro-5-phenylbarbituric acid (HEKTOG) (DesMarteau et al., 1994 ▸) as well as in (I). By contrast, the C-2 chains of 6-oxocyclobarbital (OXCBAR) (Chentli-Benchikha et al., 1977 ▸) and polymorph III of pentobarbital (FUFTEG02) (Rossi et al., 2012 ▸) exhibit glide symmetry. Moreover, polymorph II of barbital (DETBAA02) (Craven et al., 1969 ▸) as well as forms I and II of phenobarbital (Zencirci et al., 2010 ▸) exhibit C-2 chains whose (8) rings contain crystallographic inversion centres. The crystal structure of methitural (II) is the first example of a C-2 chain whose
(8) rings are centred alternately by a twofold rotational axis and an inversion centre.
Synthesis and crystallization
Single crystals of (I) were produced by sublimation between two glass slides separated by a spacer ring (height: 1 cm), using a hot bench at a temperature of 403 K. As confirmed by PXRD, the phase investigated by us is identical with that of the original sample from the1940s obtained from our archive. The melting point of this phase of 422 K was determined with hot-stage microscopy. Heating the quench-cooled melt of (I) above 323 K resulted in the crystallization of a second form. Isolated, individual crystals of this second form melted at approximately 387 K. In other experiments, a phase transition from the low-melting form II to a high-melting form I occurred on heating, usually between 378 and 383 K (see Supporting information). These observations are consistent with a previous description by Brandstätter-Kuhnert & Aepkers (1962 ▸).
The crystals of (II) investigated in this study were taken from a sample obtained from Merck AG, Darmstadt, Germany. These crystals melted within a relatively broad temperature range between 361 and 366 K.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 3 ▸. All H atoms were identified in difference maps. Methyl H atoms were idealized and included as rigid groups allowed to rotate but not tip and all other H atoms bonded to carbon atoms were positioned geometrically (C—H = 0.95–0.99 Å). The hydrogen atoms in NH groups were refined with restrained distances [N—H = 0.88 (2) Å]. The U iso parameters of all H atoms were refined freely.
Table 3. Experimental details.
(I) | (II) | |
---|---|---|
Crystal data | ||
Chemical formula | C11H16N2O2S | C12H20N2O2S2 |
M r | 240.32 | 288.42 |
Crystal system, space group | Monoclinic, P21/n | Monoclinic, C2/c |
Temperature (K) | 120 | 120 |
a, b, c (Å) | 8.7271 (6), 11.6521 (4), 12.5400 (8) | 15.1873 (2), 9.0920 (1), 20.8684 (3) |
β (°) | 96.539 (2) | 96.083 (1) |
V (Å3) | 1266.89 (13) | 2865.34 (6) |
Z | 4 | 8 |
Radiation type | Mo Kα | Mo Kα |
μ (mm−1) | 0.24 | 0.37 |
Crystal size (mm) | 0.40 × 0.10 × 0.05 | 0.15 × 0.15 × 0.10 |
Data collection | ||
Diffractometer | Bruker–Nonius Roper CCD camera on κ-goniostat | Bruker–Nonius APEXII CCD camera on κ-goniostat |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2007 ▸) | Multi-scan (SADABS; Sheldrick, 2007 ▸) |
T min, T max | 0.924, 1.000 | 0.974, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9476, 2519, 1833 | 24772, 2813, 2630 |
R int | 0.067 | 0.034 |
Refinement | ||
R[F 2 > 2σ(F 2)], wR(F 2), S | 0.045, 0.108, 1.04 | 0.038, 0.084, 1.14 |
No. of reflections | 2519 | 2813 |
No. of parameters | 170 | 192 |
No. of restraints | 2 | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.31, −0.27 | 0.53, −0.30 |
Supplementary Material
Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S205698901701653X/dx2002sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901701653X/dx2002Isup2.hkl
Structure factors: contains datablock(s) II. DOI: 10.1107/S205698901701653X/dx2002IIsup3.hkl
Supporting information file. DOI: 10.1107/S205698901701653X/dx2002Isup4.cml
Supporting information file. DOI: 10.1107/S205698901701653X/dx2002IIsup5.cml
Hot-stage microscopy. DOI: 10.1107/S205698901701653X/dx2002sup6.pdf
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
We thank Professor S. Coles (Southampton) for providing access to the X-ray diffractometers used in this study.
supplementary crystallographic information
5-(2-Methylpropyl)-5-(prop-2-en-1-yl)-2-sulfanylidene-1,3-diazinane-4,6-dione (I). Crystal data
C11H16N2O2S | F(000) = 512 |
Mr = 240.32 | Dx = 1.260 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 8.7271 (6) Å | Cell parameters from 10435 reflections |
b = 11.6521 (4) Å | θ = 2.9–27.5° |
c = 12.5400 (8) Å | µ = 0.24 mm−1 |
β = 96.539 (2)° | T = 120 K |
V = 1266.89 (13) Å3 | Prism, colourless |
Z = 4 | 0.40 × 0.10 × 0.05 mm |
5-(2-Methylpropyl)-5-(prop-2-en-1-yl)-2-sulfanylidene-1,3-diazinane-4,6-dione (I). Data collection
Bruker–Nonius Roper CCD camera on κ-goniostat diffractometer | 2519 independent reflections |
Radiation source: Bruker-Nonius FR591 rotating anode | 1833 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.067 |
Detector resolution: 9.091 pixels mm-1 | θmax = 26.4°, θmin = 3.3° |
φ & ω scans | h = −9→10 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | k = −12→13 |
Tmin = 0.924, Tmax = 1.000 | l = −15→14 |
9476 measured reflections |
5-(2-Methylpropyl)-5-(prop-2-en-1-yl)-2-sulfanylidene-1,3-diazinane-4,6-dione (I). Refinement
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.045 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.108 | w = 1/[σ2(Fo2) + (0.0431P)2 + 0.281P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
2519 reflections | Δρmax = 0.31 e Å−3 |
170 parameters | Δρmin = −0.27 e Å−3 |
2 restraints | Extinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.011 (2) |
5-(2-Methylpropyl)-5-(prop-2-en-1-yl)-2-sulfanylidene-1,3-diazinane-4,6-dione (I). Special details
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
5-(2-Methylpropyl)-5-(prop-2-en-1-yl)-2-sulfanylidene-1,3-diazinane-4,6-dione (I). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | ||
S2 | 0.13456 (7) | 0.87633 (4) | 0.94050 (5) | 0.0259 (2) | |
O4 | 0.42805 (18) | 0.66380 (11) | 0.69496 (13) | 0.0256 (4) | |
O6 | 0.26955 (18) | 1.04475 (11) | 0.60757 (12) | 0.0261 (4) | |
N1 | 0.2119 (2) | 0.95525 (14) | 0.75707 (14) | 0.0197 (4) | |
H1 | 0.162 (3) | 1.0169 (17) | 0.771 (2) | 0.036 (7)* | |
N3 | 0.2876 (2) | 0.76850 (14) | 0.79944 (14) | 0.0192 (4) | |
H3 | 0.282 (3) | 0.7101 (16) | 0.8409 (17) | 0.030 (7)* | |
C2 | 0.2138 (2) | 0.86637 (16) | 0.82860 (17) | 0.0181 (5) | |
C4 | 0.3650 (2) | 0.75482 (16) | 0.71139 (17) | 0.0196 (5) | |
C5 | 0.3698 (2) | 0.85445 (16) | 0.63413 (17) | 0.0187 (5) | |
C6 | 0.2810 (2) | 0.95949 (16) | 0.66426 (17) | 0.0193 (5) | |
C7 | 0.2939 (3) | 0.81243 (17) | 0.52224 (17) | 0.0225 (5) | |
H7A | 0.3022 | 0.8740 | 0.4689 | 0.034 (7)* | |
H7B | 0.3518 | 0.7451 | 0.5000 | 0.034 (7)* | |
C8 | 0.1275 (3) | 0.7801 (2) | 0.52146 (18) | 0.0286 (5) | |
H8 | 0.0538 | 0.8398 | 0.5236 | 0.038 (7)* | |
C9 | 0.0781 (3) | 0.6733 (2) | 0.5180 (2) | 0.0397 (7) | |
H9A | 0.1494 | 0.6119 | 0.5157 | 0.054 (9)* | |
H9B | −0.0287 | 0.6576 | 0.5176 | 0.051 (8)* | |
C10 | 0.5409 (3) | 0.88428 (17) | 0.62406 (17) | 0.0221 (5) | |
H10A | 0.5867 | 0.8189 | 0.5884 | 0.029 (6)* | |
H10B | 0.5423 | 0.9512 | 0.5756 | 0.025 (6)* | |
C11 | 0.6456 (3) | 0.9114 (2) | 0.7264 (2) | 0.0322 (6) | |
H11 | 0.6314 | 0.8501 | 0.7802 | 0.052 (8)* | |
C12 | 0.6132 (3) | 1.0262 (3) | 0.7760 (2) | 0.0494 (8) | |
H12A | 0.6195 | 1.0872 | 0.7228 | 0.074 (11)* | |
H12B | 0.6895 | 1.0404 | 0.8382 | 0.076 (10)* | |
H12C | 0.5096 | 1.0254 | 0.7990 | 0.074 (11)* | |
C13 | 0.8130 (3) | 0.9075 (3) | 0.7015 (3) | 0.0484 (8) | |
H13A | 0.8366 | 0.8305 | 0.6764 | 0.068 (10)* | |
H13B | 0.8819 | 0.9256 | 0.7666 | 0.069 (10)* | |
H13C | 0.8278 | 0.9639 | 0.6456 | 0.049 (8)* |
5-(2-Methylpropyl)-5-(prop-2-en-1-yl)-2-sulfanylidene-1,3-diazinane-4,6-dione (I). Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
S2 | 0.0311 (4) | 0.0251 (3) | 0.0237 (3) | 0.0012 (2) | 0.0123 (3) | 0.0027 (2) |
O4 | 0.0280 (9) | 0.0144 (7) | 0.0365 (10) | 0.0023 (6) | 0.0129 (7) | 0.0001 (6) |
O6 | 0.0392 (10) | 0.0170 (8) | 0.0238 (9) | 0.0019 (6) | 0.0113 (7) | 0.0035 (6) |
N1 | 0.0239 (11) | 0.0145 (9) | 0.0222 (10) | 0.0010 (7) | 0.0086 (8) | 0.0010 (7) |
N3 | 0.0234 (10) | 0.0139 (9) | 0.0212 (10) | 0.0015 (7) | 0.0063 (8) | 0.0034 (7) |
C2 | 0.0164 (11) | 0.0172 (10) | 0.0203 (11) | −0.0026 (8) | 0.0002 (9) | −0.0009 (8) |
C4 | 0.0164 (11) | 0.0178 (11) | 0.0248 (12) | −0.0042 (8) | 0.0031 (9) | −0.0019 (8) |
C5 | 0.0214 (12) | 0.0154 (10) | 0.0205 (11) | −0.0015 (8) | 0.0074 (9) | −0.0004 (8) |
C6 | 0.0222 (12) | 0.0160 (10) | 0.0200 (12) | −0.0020 (8) | 0.0042 (9) | −0.0018 (8) |
C7 | 0.0262 (13) | 0.0213 (11) | 0.0207 (12) | −0.0024 (9) | 0.0063 (10) | −0.0025 (8) |
C8 | 0.0259 (13) | 0.0358 (13) | 0.0240 (13) | −0.0013 (10) | 0.0028 (10) | −0.0040 (10) |
C9 | 0.0355 (16) | 0.0477 (16) | 0.0343 (15) | −0.0172 (13) | −0.0032 (12) | 0.0032 (11) |
C10 | 0.0238 (12) | 0.0215 (11) | 0.0225 (12) | −0.0024 (8) | 0.0088 (10) | 0.0005 (8) |
C11 | 0.0269 (14) | 0.0405 (14) | 0.0287 (14) | −0.0073 (10) | 0.0016 (11) | 0.0039 (10) |
C12 | 0.0388 (18) | 0.068 (2) | 0.0405 (17) | −0.0152 (14) | 0.0031 (14) | −0.0245 (15) |
C13 | 0.0291 (16) | 0.066 (2) | 0.0496 (19) | −0.0035 (13) | 0.0025 (14) | 0.0078 (15) |
5-(2-Methylpropyl)-5-(prop-2-en-1-yl)-2-sulfanylidene-1,3-diazinane-4,6-dione (I). Geometric parameters (Å, º)
S2—C2 | 1.638 (2) | C8—C9 | 1.315 (3) |
O4—C4 | 1.223 (2) | C8—H8 | 0.9500 |
O6—C6 | 1.219 (2) | C9—H9A | 0.9500 |
N1—C2 | 1.369 (3) | C9—H9B | 0.9500 |
N1—C6 | 1.371 (3) | C10—C11 | 1.522 (3) |
N1—H1 | 0.867 (16) | C10—H10A | 0.9900 |
N3—C4 | 1.367 (3) | C10—H10B | 0.9900 |
N3—C2 | 1.379 (3) | C11—C12 | 1.515 (4) |
N3—H3 | 0.861 (16) | C11—C13 | 1.529 (4) |
C4—C5 | 1.516 (3) | C11—H11 | 1.0000 |
C5—C6 | 1.519 (3) | C12—H12A | 0.9800 |
C5—C10 | 1.552 (3) | C12—H12B | 0.9800 |
C5—C7 | 1.561 (3) | C12—H12C | 0.9800 |
C7—C8 | 1.499 (3) | C13—H13A | 0.9800 |
C7—H7A | 0.9900 | C13—H13B | 0.9800 |
C7—H7B | 0.9900 | C13—H13C | 0.9800 |
C2—N1—C6 | 127.57 (17) | C7—C8—H8 | 118.3 |
C2—N1—H1 | 117.7 (17) | C8—C9—H9A | 120.0 |
C6—N1—H1 | 114.8 (17) | C8—C9—H9B | 120.0 |
C4—N3—C2 | 126.79 (17) | H9A—C9—H9B | 120.0 |
C4—N3—H3 | 117.7 (16) | C11—C10—C5 | 117.95 (18) |
C2—N3—H3 | 115.5 (16) | C11—C10—H10A | 107.8 |
N1—C2—N3 | 115.02 (18) | C5—C10—H10A | 107.8 |
N1—C2—S2 | 122.21 (15) | C11—C10—H10B | 107.8 |
N3—C2—S2 | 122.77 (15) | C5—C10—H10B | 107.8 |
O4—C4—N3 | 120.68 (18) | H10A—C10—H10B | 107.2 |
O4—C4—C5 | 120.70 (19) | C12—C11—C10 | 114.0 (2) |
N3—C4—C5 | 118.62 (17) | C12—C11—C13 | 109.7 (2) |
C4—C5—C6 | 113.95 (17) | C10—C11—C13 | 108.5 (2) |
C4—C5—C10 | 108.69 (17) | C12—C11—H11 | 108.1 |
C6—C5—C10 | 111.26 (16) | C10—C11—H11 | 108.1 |
C4—C5—C7 | 107.13 (16) | C13—C11—H11 | 108.1 |
C6—C5—C7 | 107.46 (17) | C11—C12—H12A | 109.5 |
C10—C5—C7 | 108.11 (16) | C11—C12—H12B | 109.5 |
O6—C6—N1 | 120.64 (18) | H12A—C12—H12B | 109.5 |
O6—C6—C5 | 121.44 (18) | C11—C12—H12C | 109.5 |
N1—C6—C5 | 117.91 (17) | H12A—C12—H12C | 109.5 |
C8—C7—C5 | 113.35 (17) | H12B—C12—H12C | 109.5 |
C8—C7—H7A | 108.9 | C11—C13—H13A | 109.5 |
C5—C7—H7A | 108.9 | C11—C13—H13B | 109.5 |
C8—C7—H7B | 108.9 | H13A—C13—H13B | 109.5 |
C5—C7—H7B | 108.9 | C11—C13—H13C | 109.5 |
H7A—C7—H7B | 107.7 | H13A—C13—H13C | 109.5 |
C9—C8—C7 | 123.4 (2) | H13B—C13—H13C | 109.5 |
C9—C8—H8 | 118.3 | ||
C6—N1—C2—N3 | −3.7 (3) | C10—C5—C6—O6 | 59.5 (3) |
C6—N1—C2—S2 | 176.16 (17) | C7—C5—C6—O6 | −58.7 (2) |
C4—N3—C2—N1 | 4.2 (3) | C4—C5—C6—N1 | 2.0 (3) |
C4—N3—C2—S2 | −175.64 (17) | C10—C5—C6—N1 | −121.3 (2) |
C2—N3—C4—O4 | 178.9 (2) | C7—C5—C6—N1 | 120.6 (2) |
C2—N3—C4—C5 | −1.6 (3) | C4—C5—C7—C8 | 62.7 (2) |
O4—C4—C5—C6 | 177.91 (19) | C6—C5—C7—C8 | −60.1 (2) |
N3—C4—C5—C6 | −1.6 (3) | C10—C5—C7—C8 | 179.67 (17) |
O4—C4—C5—C10 | −57.4 (2) | C5—C7—C8—C9 | −106.1 (3) |
N3—C4—C5—C10 | 123.1 (2) | C4—C5—C10—C11 | −55.6 (2) |
O4—C4—C5—C7 | 59.2 (3) | C6—C5—C10—C11 | 70.6 (2) |
N3—C4—C5—C7 | −120.3 (2) | C7—C5—C10—C11 | −171.58 (18) |
C2—N1—C6—O6 | 179.9 (2) | C5—C10—C11—C12 | −71.7 (3) |
C2—N1—C6—C5 | 0.6 (3) | C5—C10—C11—C13 | 165.64 (19) |
C4—C5—C6—O6 | −177.20 (19) |
5-(2-Methylpropyl)-5-(prop-2-en-1-yl)-2-sulfanylidene-1,3-diazinane-4,6-dione (I). Hydrogen-bond geometry (Å, º)
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O4i | 0.87 (2) | 1.95 (2) | 2.815 (2) | 174 (2) |
N3—H3···O6ii | 0.86 (2) | 2.10 (2) | 2.922 (2) | 160 (2) |
Symmetry codes: (i) −x+1/2, y+1/2, −z+3/2; (ii) −x+1/2, y−1/2, −z+3/2.
5-(1-Methylbutyl)-5-[2-(methylsulfanyl)ethyl]-2-sulfanylidene-1,3-diazinane-4,6-dione (II). Crystal data
C12H20N2O2S2 | F(000) = 1232 |
Mr = 288.42 | Dx = 1.337 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 15.1873 (2) Å | Cell parameters from 29667 reflections |
b = 9.0920 (1) Å | θ = 2.9–27.5° |
c = 20.8684 (3) Å | µ = 0.37 mm−1 |
β = 96.083 (1)° | T = 120 K |
V = 2865.34 (6) Å3 | Block, colourless |
Z = 8 | 0.15 × 0.15 × 0.10 mm |
5-(1-Methylbutyl)-5-[2-(methylsulfanyl)ethyl]-2-sulfanylidene-1,3-diazinane-4,6-dione (II). Data collection
Bruker–Nonius APEXII CCD camera on κ-goniostat diffractometer | 2813 independent reflections |
Radiation source: Bruker-Nonius FR591 rotating anode | 2630 reflections with I > 2σ(I) |
10cm confocal mirrors monochromator | Rint = 0.034 |
Detector resolution: 9.091 pixels mm-1 | θmax = 26.0°, θmin = 3.2° |
φ & ω scans | h = −18→18 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | k = −11→11 |
Tmin = 0.974, Tmax = 1.000 | l = −25→25 |
24772 measured reflections |
5-(1-Methylbutyl)-5-[2-(methylsulfanyl)ethyl]-2-sulfanylidene-1,3-diazinane-4,6-dione (II). Refinement
Refinement on F2 | 2 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.038 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.084 | w = 1/[σ2(Fo2) + (0.0192P)2 + 6.3729P] where P = (Fo2 + 2Fc2)/3 |
S = 1.14 | (Δ/σ)max = 0.001 |
2813 reflections | Δρmax = 0.53 e Å−3 |
192 parameters | Δρmin = −0.29 e Å−3 |
5-(1-Methylbutyl)-5-[2-(methylsulfanyl)ethyl]-2-sulfanylidene-1,3-diazinane-4,6-dione (II). Special details
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
5-(1-Methylbutyl)-5-[2-(methylsulfanyl)ethyl]-2-sulfanylidene-1,3-diazinane-4,6-dione (II). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | ||
S2 | −0.17769 (3) | 0.62565 (6) | 0.34779 (2) | 0.02411 (13) | |
S9 | 0.14236 (3) | 1.10685 (5) | 0.51192 (2) | 0.02392 (13) | |
O4 | 0.09157 (9) | 0.87624 (15) | 0.30012 (6) | 0.0218 (3) | |
O6 | 0.09747 (9) | 0.59147 (14) | 0.49086 (6) | 0.0220 (3) | |
N1 | −0.02312 (10) | 0.60656 (17) | 0.41868 (7) | 0.0177 (3) | |
H1 | −0.0510 (14) | 0.551 (2) | 0.4430 (10) | 0.031 (6)* | |
N3 | −0.02774 (10) | 0.75738 (17) | 0.32870 (7) | 0.0181 (3) | |
H3 | −0.0574 (14) | 0.798 (2) | 0.2962 (9) | 0.029 (6)* | |
C2 | −0.07264 (12) | 0.6645 (2) | 0.36566 (8) | 0.0173 (4) | |
C4 | 0.06055 (12) | 0.79499 (19) | 0.33818 (8) | 0.0167 (4) | |
C6 | 0.06356 (12) | 0.63907 (19) | 0.43924 (8) | 0.0171 (4) | |
C7 | 0.16068 (12) | 0.85980 (19) | 0.43567 (8) | 0.0161 (4) | |
H7A | 0.2088 | 0.8208 | 0.4667 | 0.020 (5)* | |
H7B | 0.1875 | 0.9281 | 0.4063 | 0.021 (5)* | |
C5 | 0.11666 (11) | 0.73082 (19) | 0.39593 (8) | 0.0158 (4) | |
C8 | 0.09525 (13) | 0.9443 (2) | 0.47235 (9) | 0.0218 (4) | |
H8A | 0.0735 | 0.8786 | 0.5051 | 0.029 (6)* | |
H8B | 0.0437 | 0.9733 | 0.4419 | 0.031 (6)* | |
C10 | 0.13117 (16) | 1.2337 (2) | 0.44571 (12) | 0.0345 (5) | |
H10A | 0.1605 | 1.1935 | 0.4099 | 0.071 (10)* | |
H10B | 0.1586 | 1.3277 | 0.4594 | 0.053 (8)* | |
H10C | 0.0682 | 1.2492 | 0.4316 | 0.047 (8)* | |
C12 | 0.18817 (13) | 0.6231 (2) | 0.37204 (9) | 0.0217 (4) | |
H12 | 0.2155 | 0.5694 | 0.4110 | 0.033 (6)* | |
C13 | 0.26315 (13) | 0.7017 (2) | 0.34349 (10) | 0.0258 (4) | |
H13A | 0.2880 | 0.7777 | 0.3742 | 0.040 (7)* | |
H13B | 0.2390 | 0.7523 | 0.3034 | 0.043 (7)* | |
C14 | 0.33787 (14) | 0.5984 (2) | 0.32810 (11) | 0.0308 (5) | |
H14A | 0.3564 | 0.5368 | 0.3662 | 0.029 (6)* | |
H14B | 0.3159 | 0.5324 | 0.2922 | 0.054 (8)* | |
C15 | 0.41659 (17) | 0.6846 (3) | 0.30960 (13) | 0.0438 (6) | |
H15A | 0.3988 | 0.7425 | 0.2708 | 0.072 (10)* | |
H15B | 0.4640 | 0.6164 | 0.3011 | 0.053 (8)* | |
H15C | 0.4380 | 0.7508 | 0.3449 | 0.073 (10)* | |
C16 | 0.14371 (14) | 0.5061 (2) | 0.32611 (9) | 0.0250 (4) | |
H16A | 0.1226 | 0.5521 | 0.2849 | 0.036 (7)* | |
H16B | 0.0935 | 0.4628 | 0.3452 | 0.038 (7)* | |
H16C | 0.1867 | 0.4290 | 0.3190 | 0.040 (7)* |
5-(1-Methylbutyl)-5-[2-(methylsulfanyl)ethyl]-2-sulfanylidene-1,3-diazinane-4,6-dione (II). Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
S2 | 0.0188 (2) | 0.0307 (3) | 0.0228 (2) | −0.0057 (2) | 0.00256 (18) | 0.0002 (2) |
S9 | 0.0251 (3) | 0.0196 (2) | 0.0270 (3) | −0.00207 (19) | 0.00215 (19) | −0.00781 (19) |
O4 | 0.0228 (7) | 0.0243 (7) | 0.0184 (6) | −0.0061 (6) | 0.0029 (5) | 0.0052 (5) |
O6 | 0.0248 (7) | 0.0210 (7) | 0.0195 (7) | −0.0020 (6) | −0.0006 (5) | 0.0056 (5) |
N1 | 0.0194 (8) | 0.0159 (7) | 0.0183 (8) | −0.0032 (6) | 0.0045 (6) | 0.0025 (6) |
N3 | 0.0177 (8) | 0.0212 (8) | 0.0152 (7) | −0.0008 (6) | 0.0009 (6) | 0.0030 (6) |
C2 | 0.0211 (9) | 0.0159 (9) | 0.0152 (8) | −0.0005 (7) | 0.0038 (7) | −0.0027 (7) |
C4 | 0.0200 (9) | 0.0157 (9) | 0.0145 (8) | 0.0003 (7) | 0.0028 (7) | −0.0030 (7) |
C6 | 0.0209 (9) | 0.0119 (8) | 0.0186 (9) | −0.0001 (7) | 0.0029 (7) | −0.0018 (7) |
C7 | 0.0164 (9) | 0.0147 (8) | 0.0172 (8) | −0.0012 (7) | 0.0023 (7) | −0.0011 (7) |
C5 | 0.0153 (8) | 0.0155 (8) | 0.0169 (8) | 0.0004 (7) | 0.0026 (7) | 0.0000 (7) |
C8 | 0.0230 (10) | 0.0169 (9) | 0.0266 (10) | −0.0043 (8) | 0.0081 (8) | −0.0067 (8) |
C10 | 0.0388 (13) | 0.0191 (10) | 0.0469 (13) | 0.0002 (9) | 0.0106 (11) | 0.0060 (10) |
C12 | 0.0222 (10) | 0.0183 (9) | 0.0250 (10) | 0.0029 (8) | 0.0047 (8) | −0.0032 (8) |
C13 | 0.0249 (10) | 0.0237 (10) | 0.0299 (10) | 0.0025 (8) | 0.0081 (8) | 0.0006 (8) |
C14 | 0.0283 (11) | 0.0317 (12) | 0.0345 (12) | 0.0080 (9) | 0.0122 (9) | −0.0006 (9) |
C15 | 0.0387 (14) | 0.0430 (14) | 0.0528 (15) | 0.0091 (12) | 0.0189 (12) | 0.0070 (13) |
C16 | 0.0312 (11) | 0.0189 (9) | 0.0258 (10) | 0.0007 (8) | 0.0078 (8) | −0.0048 (8) |
5-(1-Methylbutyl)-5-[2-(methylsulfanyl)ethyl]-2-sulfanylidene-1,3-diazinane-4,6-dione (II). Geometric parameters (Å, º)
S2—C2 | 1.6381 (19) | C8—H8B | 0.9900 |
S9—C10 | 1.794 (2) | C10—H10A | 0.9800 |
S9—C8 | 1.8033 (19) | C10—H10B | 0.9800 |
O4—C4 | 1.216 (2) | C10—H10C | 0.9800 |
O6—C6 | 1.223 (2) | C12—C13 | 1.519 (3) |
N1—C6 | 1.373 (2) | C12—C16 | 1.539 (3) |
N1—C2 | 1.375 (2) | C12—H12 | 1.0000 |
N1—H1 | 0.858 (16) | C13—C14 | 1.533 (3) |
N3—C2 | 1.373 (2) | C13—H13A | 0.9900 |
N3—C4 | 1.378 (2) | C13—H13B | 0.9900 |
N3—H3 | 0.856 (16) | C14—C15 | 1.513 (3) |
C4—C5 | 1.517 (2) | C14—H14A | 0.9900 |
C6—C5 | 1.522 (2) | C14—H14B | 0.9900 |
C7—C8 | 1.525 (2) | C15—H15A | 0.9800 |
C7—C5 | 1.547 (2) | C15—H15B | 0.9800 |
C7—H7A | 0.9900 | C15—H15C | 0.9800 |
C7—H7B | 0.9900 | C16—H16A | 0.9800 |
C5—C12 | 1.582 (2) | C16—H16B | 0.9800 |
C8—H8A | 0.9900 | C16—H16C | 0.9800 |
C10—S9—C8 | 99.99 (10) | S9—C10—H10B | 109.5 |
C6—N1—C2 | 126.40 (15) | H10A—C10—H10B | 109.5 |
C6—N1—H1 | 117.3 (16) | S9—C10—H10C | 109.5 |
C2—N1—H1 | 116.1 (16) | H10A—C10—H10C | 109.5 |
C2—N3—C4 | 127.29 (16) | H10B—C10—H10C | 109.5 |
C2—N3—H3 | 117.3 (16) | C13—C12—C16 | 112.25 (16) |
C4—N3—H3 | 115.4 (16) | C13—C12—C5 | 113.62 (15) |
N3—C2—N1 | 115.21 (16) | C16—C12—C5 | 110.71 (15) |
N3—C2—S2 | 122.31 (14) | C13—C12—H12 | 106.6 |
N1—C2—S2 | 122.47 (14) | C16—C12—H12 | 106.6 |
O4—C4—N3 | 119.72 (16) | C5—C12—H12 | 106.6 |
O4—C4—C5 | 121.92 (16) | C12—C13—C14 | 113.35 (17) |
N3—C4—C5 | 118.36 (15) | C12—C13—H13A | 108.9 |
O6—C6—N1 | 119.97 (16) | C14—C13—H13A | 108.9 |
O6—C6—C5 | 121.12 (16) | C12—C13—H13B | 108.9 |
N1—C6—C5 | 118.89 (15) | C14—C13—H13B | 108.9 |
C8—C7—C5 | 112.56 (14) | H13A—C13—H13B | 107.7 |
C8—C7—H7A | 109.1 | C15—C14—C13 | 111.01 (19) |
C5—C7—H7A | 109.1 | C15—C14—H14A | 109.4 |
C8—C7—H7B | 109.1 | C13—C14—H14A | 109.4 |
C5—C7—H7B | 109.1 | C15—C14—H14B | 109.4 |
H7A—C7—H7B | 107.8 | C13—C14—H14B | 109.4 |
C4—C5—C6 | 113.21 (15) | H14A—C14—H14B | 108.0 |
C4—C5—C7 | 107.99 (14) | C14—C15—H15A | 109.5 |
C6—C5—C7 | 108.86 (14) | C14—C15—H15B | 109.5 |
C4—C5—C12 | 109.53 (14) | H15A—C15—H15B | 109.5 |
C6—C5—C12 | 105.81 (14) | C14—C15—H15C | 109.5 |
C7—C5—C12 | 111.49 (14) | H15A—C15—H15C | 109.5 |
C7—C8—S9 | 113.25 (13) | H15B—C15—H15C | 109.5 |
C7—C8—H8A | 108.9 | C12—C16—H16A | 109.5 |
S9—C8—H8A | 108.9 | C12—C16—H16B | 109.5 |
C7—C8—H8B | 108.9 | H16A—C16—H16B | 109.5 |
S9—C8—H8B | 108.9 | C12—C16—H16C | 109.5 |
H8A—C8—H8B | 107.7 | H16A—C16—H16C | 109.5 |
S9—C10—H10A | 109.5 | H16B—C16—H16C | 109.5 |
C4—N3—C2—N1 | 1.7 (3) | N1—C6—C5—C7 | 128.90 (16) |
C4—N3—C2—S2 | −178.33 (14) | O6—C6—C5—C12 | 67.0 (2) |
C6—N1—C2—N3 | 3.8 (3) | N1—C6—C5—C12 | −111.17 (17) |
C6—N1—C2—S2 | −176.19 (14) | C8—C7—C5—C4 | 73.15 (18) |
C2—N3—C4—O4 | 178.09 (17) | C8—C7—C5—C6 | −50.13 (19) |
C2—N3—C4—C5 | −1.0 (3) | C8—C7—C5—C12 | −166.48 (15) |
C2—N1—C6—O6 | 172.51 (17) | C5—C7—C8—S9 | −173.66 (12) |
C2—N1—C6—C5 | −9.3 (3) | C10—S9—C8—C7 | 82.54 (16) |
O4—C4—C5—C6 | 176.79 (16) | C4—C5—C12—C13 | 73.5 (2) |
N3—C4—C5—C6 | −4.2 (2) | C6—C5—C12—C13 | −164.15 (16) |
O4—C4—C5—C7 | 56.2 (2) | C7—C5—C12—C13 | −46.0 (2) |
N3—C4—C5—C7 | −124.77 (16) | C4—C5—C12—C16 | −53.9 (2) |
O4—C4—C5—C12 | −65.4 (2) | C6—C5—C12—C16 | 68.47 (19) |
N3—C4—C5—C12 | 113.64 (17) | C7—C5—C12—C16 | −173.34 (15) |
O6—C6—C5—C4 | −173.00 (16) | C16—C12—C13—C14 | −60.5 (2) |
N1—C6—C5—C4 | 8.8 (2) | C5—C12—C13—C14 | 172.91 (17) |
O6—C6—C5—C7 | −52.9 (2) | C12—C13—C14—C15 | −171.28 (19) |
5-(1-Methylbutyl)-5-[2-(methylsulfanyl)ethyl]-2-sulfanylidene-1,3-diazinane-4,6-dione (II). Hydrogen-bond geometry (Å, º)
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O6i | 0.86 (2) | 2.07 (2) | 2.921 (2) | 170 (2) |
N3—H3···O4ii | 0.86 (2) | 2.14 (2) | 2.963 (2) | 160 (2) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, y, −z+1/2.
References
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Blatov, V. A. (2006). IUCr Compcomm Newsl. 7, 4–38.
- Brandstätter-Kuhnert, M. & Aepkers, M. (1962). Mikrochim. Acta, 50, 1055–1074.
- Chentli-Benchikha, F., Declercq, J. P., Germain, G., Van Meerssche, M., Bouché, R. & Draguet-Brughmans, M. (1977). Acta Cryst. B33, 2739–2743.
- Chierotti, M. R., Ferrero, L., Garino, N., Gobetto, R., Pellegrino, L., Braga, D., Grepioni, F. & Maini, L. (2010). Chem. Eur. J. 16, 4347–4358. [DOI] [PubMed]
- Craven, B. M., Vizzini, E. A. & Rodrigues, M. M. (1969). Acta Cryst. B25, 1978–1993. [DOI] [PubMed]
- DesMarteau, D. D., Pennington, W. T. & Resnati, G. (1994). Acta Cryst. C50, 1305–1308.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
- Gelbrich, T., Braun, D. E. & Griesser, U. J. (2016a). Chem. Cent. J. 10, 8. [DOI] [PMC free article] [PubMed]
- Gelbrich, T., Braun, D. E., Oberparleiter, S., Schottenberger, H. & Griesser, U. J. (2016b). Crystals, 6, 47. [DOI] [PMC free article] [PubMed]
- Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Rossi, D., Gelbrich, T., Kahlenberg, V. & Griesser, U. J. (2012). CrystEngComm, 14, 2494–2506.
- Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [DOI] [PubMed]
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Zencirci, N., Gelbrich, T., Apperley, D. C., Harris, R. K., Kahlenberg, V. & Griesser, U. J. (2010). Cryst. Growth Des. 10, 302–313.
- Zencirci, N., Griesser, U. J., Gelbrich, T., Kahlenberg, V., Jetti, R. K. R., Apperley, D. C. & Harris, R. K. (2014). J. Phys. Chem. B, 118, 3267–3280. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S205698901701653X/dx2002sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901701653X/dx2002Isup2.hkl
Structure factors: contains datablock(s) II. DOI: 10.1107/S205698901701653X/dx2002IIsup3.hkl
Supporting information file. DOI: 10.1107/S205698901701653X/dx2002Isup4.cml
Supporting information file. DOI: 10.1107/S205698901701653X/dx2002IIsup5.cml
Hot-stage microscopy. DOI: 10.1107/S205698901701653X/dx2002sup6.pdf
Additional supporting information: crystallographic information; 3D view; checkCIF report