Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Nov 21;73(Pt 12):1913–1916. doi: 10.1107/S2056989017016395

Crystal structures of 2,6-di­bromo-4-methyl­benzo­nitrile and 2,6-di­bromo-4-methyl­phenyl isocyanide

Wayland E Noland a,*, Jessica E Shudy a, Janel L Rieger a, Zoe H Tu a, Kenneth J Tritch a
PMCID: PMC5730251  PMID: 29250414

The title crystals are isomorphous, with tetra­meric Br⋯Br contacts as the principal packing inter­action. No CN⋯Br or NC⋯Br contacts are observed.

Keywords: crystal structure, nitrile, isocyanide, Br⋯Br contacts

Abstract

In the title crystals, C8H5Br2N, which are isomorphous, the steric bulk of the methyl group causes neighboring mol­ecules to become mutually inclined. This prevents the formation of planar or nearly planar sheets, which were observed in the tri­chloro and tri­bromo analogs. Instead of CN/NC⋯Br contacts, tetra­meric Br⋯Br contacts are observed. These contacts form tetra­gonally puckered sheets parallel to (001). The CN/NC and methyl groups are grouped at the peaks and troughs. Both mol­ecules lie across crystallographic mirror planes; thus, the methyl H atoms are disordered over two sets of sites with equal occupancy. The title nitrile is a redetermination. The refinement converged at R[F 2 > 2σ(F 2)] = 0.020, whereas the original determination [Gleason & Britton, (1976). Cryst. Struct. Commun. 5, 229–232] had R = 0.112.

Chemical context  

As part of an ongoing study of cyano–halo short contacts, the para-Br atom of 2,4,6-tri­bromo­benzo­nitrile (van Rij & Britton, 1972) was replaced by a methyl group (Gleason & Britton, 1976), giving 2,6-di­bromo-4-methyl­benzo­nitrile (RCN). The methyl group was bulky enough to disrupt the planar sheet structure that was observed in the tri­bromo nitrile. As of the most recent update of the Cambridge Structural Database (CSD; Version 5.37, Feb 2017; Groom et al., 2016), RCN remains the only example of a 2,6-dihalobenzo­nitrile with a methyl group at the 4-position. Most of the examples with polyatomic 4-substituents are fluorinated benzo­nitriles, with applications including tuning the fluoride affinity of phospho­ranes (Solyntjes et al., 2016), study of magnetostructural correlation (Thomson et al., 2012), and use as metal ligands (Díaz-Álvarez et al., 2006). The chlorinated and brominated entries are either bis(carbo­nitriles) [(I), Fig. 1; Britton, 1981; Hirshfeld, 1984; van Rij & Britton, 1981] or 4-carb­oxy analogs [(II); Britton, 2012; Noland et al., 2017]. All of these 4-substituents have stronger inter­actions than a methyl group, and exhibit different packing motifs than RCN. The comparison of corresponding nitriles and isocyanides is a rare opportunity to explore the subtle differences between mol­ecules that are both isomeric and isoelectronic. In the 2,6-dihaloaryl series, there are only three prior examples in the CSD. The tri­chloro and tri­bromo pairs [(III); Pink et al., 2000; Britton et al., 2016] are polytypic, and the penta­fluoro pair [(IV), Fig. 1; Bond et al., 2001; Lentz & Preugschat, 1993] is isomorphous. The question arose as to whether RCN and its isocyanide (2,6-di­bromo-4-methyl­phenyl isocyanide, RNC) would be isomorphous, polytypic, or polymorphic. A single crystal of RNC and a redetermination of RCN are presented.graphic file with name e-73-01913-scheme1.jpg

Figure 1.

Figure 1

Contextual compounds.

Structural commentary  

RNC and the redetermination of RCN are isomorphous with the original RCN structure (Gleason & Britton, 1976). The mol­ecular structures of RCN (Fig. 2 a) and RNC (Fig. 2 b) are nearly planar. The two crystals described herein were pseudo-enanti­omorphic, roughly being enanti­omorphs with swapped cyano C and N atoms, hence the reflected ellipsoid orientations between RCN and RNC. For RCN, the mean deviation from the plane of best fit for the benzene ring (C1–C4) is 0.002 (3) Å. For RNC, this deviation (C11–C14) is 0.001 (2) Å. These planes are roughly parallel to (33Inline graphic).

Figure 2.

Figure 2

The mol­ecular structures of (a) RCN and (b) RNC, with atom labeling and displacement ellipsoids at the 50% probability level. Unlabeled atoms are generated by the (−Inline graphic + y, Inline graphic + x, z) and (Inline graphic − y, −Inline graphic + x, z) symmetry operations, respectively. For the methyl H atoms, only one of the two mirror-related disorder sites is shown.

Supra­molecular features  

The methyl group is sufficiently bulky to prevent planar ribbons or inversion dimers of the types found in the tri­bromo analogs. Instead, neighboring mol­ecules of RCN and RNC adopt a mutually inclined arrangement. The inclination between best-fit planes for adjacent mol­ecules of RCN is 38.3 (3)°, and 41.0 (2)° for RNC. This mol­ecular arrangement prevents CN⋯Br and NC⋯Br contacts, but is probably affected by the formation of Inline graphic(4) rings of Br⋯Br contacts (Table 1). Each Br atom participates both as a donor (narrow C—Br⋯Br angle) and an acceptor (wide C—Br⋯Br angle). Each mol­ecule participates in two such Inline graphic(4) rings, forming Inline graphic(24) rings. The result is a tetra­gonally puckered sheet structure parallel to (001) (Fig. 3). This is similar to the sheet structure reported for 2,6-di­bromo­benzo­nitrile (Britton et al., 2000), although without the methyl group, the sheets were nearly planar. As future work, we plan to find whether this packing motif changes when the Br atoms are replaced with I atoms.

Table 1. Contact geometry (Å, °).

C—Br⋯Br C—Br Br⋯Br C—Br⋯Br
C2—Br2⋯Br2i 1.899 (5) 3.5575 (7) 96.8 (2)
C2—Br2⋯Br2ii 1.899 (5) 3.5575 (7) 176.41 (7)
C12—Br12⋯Br12i 1.895 (4) 3.575 (1) 97.8 (1)
C12—Br12⋯Br12ii 1.895 (4) 3.575 (1) 175.7 (1)

Symmetry codes: (i) 1 − y, x, 1 − z; (ii) y, 1 − x, 1 − z.

Figure 3.

Figure 3

The sheet structure of RNC, viewed along [0Inline graphic3]. The Br⋯Br contacts are represented as pink dotted lines.

Synthesis and crystallization  

The synthesis of RCN and RNC is shown in Fig. 4.

Figure 4.

Figure 4

The synthesis of RCN and RNC.

2,6-Di­bromo-4-methyl­aniline (V) was prepared from 4-methyl­aniline based on the work of Olivier (1926).

RCN was prepared from (V) (980 mg) via the Sandmeyer cyanation procedure described by Britton et al. (2016; Fig. 4), as a tan powder (898 mg, 88%). M.p. 434–435 K (lit. 429–431 K; Gleason & Britton, 1976); R f = 0.49 (SiO2 in 2:1 hexa­ne–ethyl acetate); 1H NMR (500 MHz, CD2Cl2) δ 7.490 (s, 2H, H3A), 2.380 (s, 3H, H6AC); 13C NMR (126 MHz, CD2Cl2) δ 147.1 (C4), 133.2 (C3), 126.6 (C2), 116.6 (C1 or C5), 116.1 (C5 or C1), 21.7 (C6); IR (KBr, cm−1) 3062, 2231, 1582, 1451, 1197, 857, 747; MS (EI, m/z) [M]+ calculated for C8H5Br2N 274.8763, found 274.8766.

2,6-Di­bromo-4-methyl­formanilide (VI) was prepared from (V) (997 mg) via the formyl­ation procedure described by Britton et al. (2016), performed at 60% scale, with di­chloro­methane instead of tetra­hydro­furan. The filter cake was recrystallized from toluene, giving white needles (1.00 g, 91%). M.p. 505–506 K; R f = 0.27 (SiO2 in 2:1 hexa­ne–ethyl acetate); 1H NMR (500 MHz, (CD3)2SO; 2 conformers obs.) δ 9.993 (s, 1H; major), 9.743 (d, J = 10.9 Hz, 1H; minor), 8.270 (s, 1H; major), 8.021 (d, J = 11.1 Hz, 1H; minor), 7.623 (s, 2H; minor), 7.571 (s, 2H; major), 2.303 (s, 3H; both); 13C NMR (126 MHz, (CD3)2SO; 2 conformers obs.) δ 164.5 (1C; minor), 159.6 (1C; major), 140.9 (1C; minor), 140.7 (1C; major), 133.0 (2C; minor), 132.6 (2C; major), 131.9 (1C; minor), 131.8 (1C; major), 123.3 (2C; minor), 123.2 (2C; major), 19.8 (1C; both); IR (KBr, cm−1) 3247, 2927, 1656, 1511, 1152, 1060, 840, 747, 684; MS (ESI, m/z) [M–H] calculated for C8H7Br2NO 289.8822, found 289.8814.

RNC was prepared from (VI) (254 mg) via the amide dehydration procedure described by Britton et al. (2016), performed at 15% scale, as a beige powder (190 mg, 81%). M.p. 401–402 K; R f = 0.53 (SiO2 in 3:1 hexa­ne–ethyl acetate); 1H NMR (400 MHz, CD2Cl2) δ 7.456 (s, 2H, H13), 2.346 (s, 3H, H16AC); 13C NMR (101 MHz, CD2Cl2) δ 172.7 (C15), 142.9 (C14), 133.2 (C13), 126.0 (C11), 120.8 (C12), 21.2 (C16); IR (KBr, cm−1) 3061, 2922, 2850, 2118, 1654, 1586, 1451, 1384, 1064, 857, 748, 701; MS (EI, m/z) [M]+ calculated for C8H5Br2N 274.8783, found 274.8784.

Crystallization: RCN and RNC crystals were grown by slow evaporation of di­chloro­methane solutions under ambient conditions. Crystals were collected by suction filtration when a small portion of the original solvent remained, and then they were washed with pentane.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. A direct-methods solution was calculated, followed by full-matrix least squares/difference-Fourier cycles. All H atoms were placed in calculated positions (C—H = 0.95 or 0.98 Å) and refined as riding atoms with U iso(H) set to 1.2U eq(C) for aryl H atoms and 1.5U eq(C) for methyl H atoms. Because the mol­ecules lie across mirror planes, the methyl H atoms are disordered across two sets of sites with 1:1 occupancy.

Table 2. Experimental details.

  RCN RNC
Crystal data
Chemical formula C8H5Br2N C8H5Br2N
M r 274.95 274.95
Crystal system, space group Tetragonal, P Inline graphic21 m Tetragonal, P Inline graphic21 m
Temperature (K) 123 173
a, c (Å) 14.6731 (5), 3.9727 (1) 14.690 (5), 4.0703 (15)
V3) 855.32 (6) 878.3 (7)
Z 4 4
Radiation type Cu Kα Mo Kα
μ (mm−1) 11.46 9.16
Crystal size (mm) 0.50 × 0.07 × 0.04 0.40 × 0.14 × 0.08
 
Data collection
Diffractometer Bruker Venture PHOTON-II Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996) Multi-scan (SADABS; Sheldrick, 1996)
T min, T max 0.314, 0.754 0.255, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 8444, 904, 902 10248, 1074, 1001
R int 0.039 0.045
(sin θ/λ)max−1) 0.624 0.652
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.020, 0.057, 1.27 0.023, 0.051, 1.14
No. of reflections 904 1074
No. of parameters 60 59
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.32 0.30, −0.51
Absolute structure Flack x determined using 348 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013) Flack x determined using 381 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter −0.02 (3) −0.024 (13)

Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXT2014 (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ), Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) RCN, RNC. DOI: 10.1107/S2056989017016395/lh5859sup1.cif

e-73-01913-sup1.cif (558.9KB, cif)

Structure factors: contains datablock(s) RCN. DOI: 10.1107/S2056989017016395/lh5859RCNsup2.hkl

e-73-01913-RCNsup2.hkl (74.4KB, hkl)

Structure factors: contains datablock(s) RNC. DOI: 10.1107/S2056989017016395/lh5859RNCsup3.hkl

e-73-01913-RNCsup3.hkl (87.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017016395/lh5859RCNsup4.cml

Supporting information file. DOI: 10.1107/S2056989017016395/lh5859RNCsup5.cml

CCDC references: 1525809, 1525810

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Victor G. Young, Jr. (X-Ray Crystallographic Laboratory, University of Minnesota) for assistance with the crystallographic determination, the Wayland E. Noland Research Fellowship Fund at the University of Minnesota Foundation for generous financial support of this project, and Doyle Britton (deceased July 7, 2015) for providing the basis of this project. This work was taken in large part from the PhD thesis of KJT (Tritch, 2017).

supplementary crystallographic information

3,5-Dibromo-4-methylbenzonitrile (RCN). Crystal data

C8H5Br2N Melting point: 434 K
Mr = 274.95 Cu Kα radiation, λ = 1.54178 Å
Tetragonal, P421m Cell parameters from 2980 reflections
a = 14.6731 (5) Å θ = 4.3–74.0°
c = 3.9727 (1) Å µ = 11.46 mm1
V = 855.32 (6) Å3 T = 123 K
Z = 4 Needle, colourless
F(000) = 520 0.50 × 0.07 × 0.04 mm
Dx = 2.135 Mg m3

3,5-Dibromo-4-methylbenzonitrile (RCN). Data collection

Bruker Venture PHOTON-II diffractometer 902 reflections with I > 2σ(I)
Radiation source: ImuS micro-focus Rint = 0.039
φ and ω scans θmax = 74.2°, θmin = 6.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −18→18
Tmin = 0.314, Tmax = 0.754 k = −17→17
8444 measured reflections l = −4→4
904 independent reflections

3,5-Dibromo-4-methylbenzonitrile (RCN). Refinement

Refinement on F2 H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + 2.1952P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.020 (Δ/σ)max = 0.001
wR(F2) = 0.057 Δρmax = 0.37 e Å3
S = 1.27 Δρmin = −0.32 e Å3
904 reflections Extinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
60 parameters Extinction coefficient: 0.0055 (4)
0 restraints Absolute structure: Flack x determined using 348 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Hydrogen site location: inferred from neighbouring sites Absolute structure parameter: −0.02 (3)

3,5-Dibromo-4-methylbenzonitrile (RCN). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

3,5-Dibromo-4-methylbenzonitrile (RCN). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.2722 (3) 0.7722 (3) 0.357 (2) 0.0156 (13)
C2 0.2985 (3) 0.6837 (4) 0.2695 (13) 0.0177 (10)
Br2 0.41762 (3) 0.64354 (3) 0.38319 (19) 0.0222 (2)
C3 0.2404 (3) 0.6240 (3) 0.1067 (15) 0.0185 (9)
H3A 0.2605 0.5645 0.0486 0.022*
C4 0.1517 (3) 0.6517 (3) 0.0283 (18) 0.0189 (15)
C5 0.3328 (4) 0.8328 (4) 0.532 (2) 0.0223 (17)
N1 0.3806 (3) 0.8806 (3) 0.676 (2) 0.0309 (17)
C6 0.0866 (3) 0.5866 (3) −0.138 (2) 0.0212 (13)
H6A 0.0306 0.6190 −0.1991 0.032* 0.5
H6B 0.0720 0.5369 0.0175 0.032* 0.5
H6C 0.1148 0.5615 −0.3417 0.032* 0.5

3,5-Dibromo-4-methylbenzonitrile (RCN). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0183 (18) 0.0183 (18) 0.010 (3) −0.003 (2) 0.000 (2) 0.000 (2)
C2 0.015 (2) 0.019 (2) 0.019 (3) 0.0001 (19) 0.0034 (19) 0.0025 (19)
Br2 0.0147 (3) 0.0236 (3) 0.0282 (3) 0.00002 (17) −0.0017 (2) 0.0042 (3)
C3 0.018 (2) 0.015 (2) 0.022 (2) −0.0001 (17) 0.002 (3) −0.003 (2)
C4 0.018 (2) 0.018 (2) 0.020 (4) −0.005 (3) 0.0031 (18) 0.0031 (18)
C5 0.022 (2) 0.022 (2) 0.024 (4) −0.002 (3) 0.000 (2) 0.000 (2)
N1 0.031 (2) 0.031 (2) 0.030 (4) −0.009 (3) −0.003 (2) −0.003 (2)
C6 0.023 (2) 0.023 (2) 0.017 (3) −0.005 (3) 0.000 (2) 0.000 (2)

3,5-Dibromo-4-methylbenzonitrile (RCN). Geometric parameters (Å, º)

C1—C2i 1.399 (6) C4—C3i 1.398 (6)
C1—C2 1.399 (6) C4—C6 1.505 (10)
C1—C5 1.437 (10) C5—N1 1.145 (11)
C2—C3 1.383 (8) C6—H6A 0.9800
C2—Br2 1.899 (5) C6—H6B 0.9800
C3—C4 1.398 (6) C6—H6C 0.9800
C3—H3A 0.9500
C2i—C1—C2 116.8 (7) C3i—C4—C6 120.3 (3)
C2i—C1—C5 121.6 (3) C3—C4—C6 120.3 (3)
C2—C1—C5 121.6 (3) N1—C5—C1 179.0 (9)
C3—C2—C1 122.3 (5) C4—C6—H6A 109.5
C3—C2—Br2 118.8 (4) C4—C6—H6B 109.5
C1—C2—Br2 118.9 (4) H6A—C6—H6B 109.5
C2—C3—C4 119.6 (5) C4—C6—H6C 109.5
C2—C3—H3A 120.2 H6A—C6—H6C 109.5
C4—C3—H3A 120.2 H6B—C6—H6C 109.5
C3i—C4—C3 119.5 (6)
C2i—C1—C2—C3 −0.5 (10) C1—C2—C3—C4 −0.7 (9)
C5—C1—C2—C3 178.7 (7) Br2—C2—C3—C4 178.5 (5)
C2i—C1—C2—Br2 −179.7 (4) C2—C3—C4—C3i 1.9 (11)
C5—C1—C2—Br2 −0.5 (9) C2—C3—C4—C6 −178.0 (6)

Symmetry code: (i) y−1/2, x+1/2, z.

2,6-Dibromo-4-methylphenyl isocyanide (RNC). Crystal data

C8H5Br2N Melting point: 401 K
Mr = 274.95 Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P421m Cell parameters from 2995 reflections
a = 14.690 (5) Å θ = 2.8–26.9°
c = 4.0703 (15) Å µ = 9.16 mm1
V = 878.3 (7) Å3 T = 173 K
Z = 4 Needle, colourless
F(000) = 520 0.40 × 0.14 × 0.08 mm
Dx = 2.079 Mg m3

2,6-Dibromo-4-methylphenyl isocyanide (RNC). Data collection

Bruker APEXII CCD diffractometer 1001 reflections with I > 2σ(I)
Radiation source: sealed tube Rint = 0.045
φ and ω scans θmax = 27.6°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −18→19
Tmin = 0.255, Tmax = 0.746 k = −19→19
10248 measured reflections l = −5→5
1074 independent reflections

2,6-Dibromo-4-methylphenyl isocyanide (RNC). Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0267P)2 + 0.0073P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.051 (Δ/σ)max < 0.001
S = 1.14 Δρmax = 0.30 e Å3
1074 reflections Δρmin = −0.51 e Å3
59 parameters Absolute structure: Flack x determined using 381 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraints Absolute structure parameter: −0.024 (13)

2,6-Dibromo-4-methylphenyl isocyanide (RNC). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

2,6-Dibromo-4-methylphenyl isocyanide (RNC). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Br12 0.64344 (3) 0.58324 (2) 0.38265 (14) 0.03268 (14)
N11 0.8281 (2) 0.6719 (2) 0.5307 (11) 0.0278 (11)
C11 0.7708 (2) 0.7292 (2) 0.3538 (15) 0.0228 (11)
C12 0.6845 (3) 0.7013 (3) 0.2671 (9) 0.0245 (8)
C13 0.6256 (2) 0.7587 (2) 0.0981 (10) 0.0243 (8)
H13A 0.5664 0.7382 0.0402 0.029*
C14 0.6535 (3) 0.8465 (3) 0.0132 (13) 0.0237 (11)
C15 0.8753 (3) 0.6247 (3) 0.6829 (18) 0.0474 (18)
C16 0.5894 (3) 0.9106 (3) −0.1624 (14) 0.0328 (12)
H16A 0.5318 0.8793 −0.2065 0.049* 0.5
H16B 0.6169 0.9300 −0.3703 0.049* 0.5
H16C 0.5781 0.9640 −0.0241 0.049* 0.5

2,6-Dibromo-4-methylphenyl isocyanide (RNC). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br12 0.0337 (2) 0.02125 (19) 0.0431 (2) −0.00062 (15) 0.0071 (2) 0.0013 (2)
N11 0.0268 (15) 0.0268 (15) 0.030 (3) 0.009 (2) 0.0005 (13) −0.0005 (13)
C11 0.0238 (15) 0.0238 (15) 0.021 (3) 0.0067 (19) 0.0031 (16) −0.0031 (16)
C12 0.0267 (19) 0.0202 (18) 0.027 (2) 0.0008 (16) 0.0080 (16) −0.0028 (15)
C13 0.0214 (17) 0.0240 (17) 0.0273 (19) 0.0001 (14) 0.0017 (18) −0.0043 (19)
C14 0.0245 (16) 0.0245 (16) 0.022 (3) 0.007 (2) 0.0038 (14) −0.0038 (14)
C15 0.048 (2) 0.048 (2) 0.046 (5) 0.016 (3) −0.002 (2) 0.002 (2)
C16 0.0329 (18) 0.0329 (18) 0.033 (3) 0.009 (3) −0.0013 (18) 0.0013 (18)

2,6-Dibromo-4-methylphenyl isocyanide (RNC). Geometric parameters (Å, º)

Br12—C12 1.896 (4) C13—H13A 0.9500
N11—C15 1.161 (8) C14—C13i 1.396 (4)
N11—C11 1.391 (7) C14—C16 1.511 (7)
C11—C12 1.379 (5) C16—H16A 0.9800
C11—C12i 1.379 (5) C16—H16B 0.9800
C12—C13 1.389 (6) C16—H16C 0.9800
C13—C14 1.396 (4)
C15—N11—C11 178.9 (6) C13—C14—C13i 118.7 (5)
C12—C11—C12i 118.7 (5) C13—C14—C16 120.6 (2)
C12—C11—N11 120.6 (3) C13i—C14—C16 120.6 (2)
C12i—C11—N11 120.6 (3) C14—C16—H16A 109.5
C11—C12—C13 121.3 (4) C14—C16—H16B 109.5
C11—C12—Br12 120.0 (3) H16A—C16—H16B 109.5
C13—C12—Br12 118.7 (3) C14—C16—H16C 109.5
C12—C13—C14 120.0 (4) H16A—C16—H16C 109.5
C12—C13—H13A 120.0 H16B—C16—H16C 109.5
C14—C13—H13A 120.0
C12i—C11—C12—C13 −0.5 (8) C11—C12—C13—C14 −0.1 (6)
N11—C11—C12—C13 178.2 (4) Br12—C12—C13—C14 179.2 (3)
C12i—C11—C12—Br12 −179.8 (3) C12—C13—C14—C13i 0.7 (7)
N11—C11—C12—Br12 −1.1 (7) C12—C13—C14—C16 −178.3 (4)

Symmetry code: (i) −y+3/2, −x+3/2, z.

References

  1. Bond, A. D., Davies, J. E., Griffiths, J. & Rawson, J. M. (2001). Acta Cryst. E57, o231–o233.
  2. Britton, D. (1981). Cryst. Struct. Commun. 10, 1501–1508.
  3. Britton, D. (2012). J. Chem. Crystallogr. 42, 851–855.
  4. Britton, D., Noland, W. E. & Pinnow, M. J. (2000). Acta Cryst. B56, 822–827. [DOI] [PubMed]
  5. Britton, D., Noland, W. E. & Tritch, K. J. (2016). Acta Cryst. E72, 178–183. [DOI] [PMC free article] [PubMed]
  6. Bruker (2012). APEX2 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.
  7. Díaz-Álvarez, A. E., Crochet, P., Zablocka, M., Cadierno, V., Duhayon, C., Gimeno, J. & Majoral, J.-P. (2006). New J. Chem. 30, 1295–1306.
  8. Gleason, W. B. & Britton, D. (1976). Cryst. Struct. Commun. 5, 229–232.
  9. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  10. Hirshfeld, F. L. (1984). Acta Cryst. B40, 484–492.
  11. Lentz, D. & Preugschat, D. (1993). Acta Cryst. C49, 52–54.
  12. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  13. Noland, W. E., Rieger, J. L., Tu, Z. H. & Tritch, K. J. (2017). Acta Cryst. E73, 1743–1746. [DOI] [PMC free article] [PubMed]
  14. Olivier, S. C. J. (1926). Recl Trav. Chim. Pays Bas, 45, 296–306.
  15. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  16. Pink, M., Britton, D., Noland, W. E. & Pinnow, M. J. (2000). Acta Cryst. C56, 1271–1273. [DOI] [PubMed]
  17. Rij, C. van & Britton, D. (1981). Cryst. Struct. Commun. 10, 175–178.
  18. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  19. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  20. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  21. Solyntjes, S., Neumann, B., Stammler, H.-G., Ignat’ev, N. & Hoge, B. (2016). Eur. J. Inorg. Chem. 2016, 3999–4010.
  22. Thomson, R. I., Pask, C. M., Lloyd, G. O., Mito, M. & Rawson, J. M. (2012). Chem. Eur. J. 18, 8629–8633. [DOI] [PubMed]
  23. Tritch, K. J. (2017). PhD thesis, University of Minnesota, Minneapolis, MN, USA.
  24. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) RCN, RNC. DOI: 10.1107/S2056989017016395/lh5859sup1.cif

e-73-01913-sup1.cif (558.9KB, cif)

Structure factors: contains datablock(s) RCN. DOI: 10.1107/S2056989017016395/lh5859RCNsup2.hkl

e-73-01913-RCNsup2.hkl (74.4KB, hkl)

Structure factors: contains datablock(s) RNC. DOI: 10.1107/S2056989017016395/lh5859RNCsup3.hkl

e-73-01913-RNCsup3.hkl (87.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017016395/lh5859RCNsup4.cml

Supporting information file. DOI: 10.1107/S2056989017016395/lh5859RNCsup5.cml

CCDC references: 1525809, 1525810

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES