Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Nov 21;73(Pt 12):1917–1920. doi: 10.1107/S2056989017016553

Crystal structure of cis-1-phenyl-8-(pyridin-2-ylmeth­yl)dibenzo[1,2-c:2,1-h]-2,14-dioxa-8-aza-1-borabi­cyclo­[4.4.0]deca-3,8-diene

Gabriela Ledesma a,*, Sandra Signorella a, Davi Back b, Ernesto Schulz Lang b
PMCID: PMC5730252  PMID: 29250415

The present work describes the synthesis and crystal structure of the new B-phenyl­oxaza­borocine, C26H23BN2O2. The title compound adopts a zwitterionic form with a significant intra­molecular N→B dative bond and inter­molecular C—H⋯O inter­actions connecting mol­ecules parallel to the b axis.

Keywords: crystal structure, B-phenyl­dioxaza­borocine, N—B dative bond, zwitterionic heterocycle, C—H⋯O inter­actions

Abstract

The title compound, C26H23BN2O2, was obtained as by product during synthetic attempts of a complexation reaction between the tripodal ligand H2 L [N,N-bis­(2-hy­droxy­benz­yl)(pyridin-2-yl)methyl­amine] and manganese(III) acetate in the presence of NaBPh4. The isolated B-phenyl dioxaza­borocine contains an N→B dative bond with a cis conformation. In the crystal, C—H⋯O hydrogen bonds define chains parallel to the b-axis direction. A comparative analysis with other structurally related derivatives is also included, together with a rationalization of the unexpected production of this zwitterionic heterocycle.

Chemical context  

As part of our research program directed at obtaining manganese complexes as bio-inspired mimetics with different nuclearity and properties (Ledesma et al., 2014, 2015), we were inter­ested in coordination reactions of the tripodal tetra­dentate ligand H2 L, namely N,N-bis­(2-hy­droxy­benz­yl)(pyrid-2-­yl)methyl­amine. We envisaged a systematic study comprising the use of several metal-to-ligand ratios, with the idea of varying the nuclearity of the resulting compounds. Unexpectedly, however, during consecutive attempts to obtain manganese complexes derived from H2 L, we isolated the B-phenyl dioxaza­borocine derivative, I. Here we report its synthesis and crystal structure and, in order to unravel its presence, we rationalize its production under the employed reaction conditions. A comparative analysis of its structural data with that of other dioxaza­borocines is also presented.graphic file with name e-73-01917-scheme1.jpg

Structural commentary  

The title compound I, Fig. 1, which represents one of the few examples of B-phenyl dioxaza­borocine derivatives reported in the literature, crystallizes in the triclinic space group P Inline graphic with two mol­ecules in the unit cell. The boron atom shows a distorted tetra­hedral coordination sphere described by one N atom (N1), two oxygen atoms (O1, O2) and one carbon atom from a phenyl ring (C15). The geometry about the intra­molecular N1—B1 bond is cis, as inferred from the spatial arrangement of atoms C15–B1–N1–C21. The B—O bond lengths are 1.446 (3) and 1.471 (3) Å and the B—N bond length is 1.674 (4) Å. The BNC3O six-membered rings adopt a half-chair conformation, with puckering parameters Q T = 0.502 (2) Å, θ2 = 135.4 (2)°, φ2 = −138.4 (4)° for B1/N1/C7/C6/C1/O1, and Q T = 0.525 (2) Å, θ2 = 132.2 (3)°, φ2 = −144.8 (4)° for B1/N1/C14/C13/C8/O2.

Figure 1.

Figure 1

The mol­ecular structure of the title mol­ecule, with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are omitted for clarity.

Supra­molecular features  

The crystal packing in I is defined by two sets of C—H⋯O hydrogen bonds. The first group implicates C2—H2⋯O1i atoms, giving rise to a dimeric system with a C—H⋯O angles of 167.5° (Fig. 2, Table 1). The remaining inter­action, C24—H24⋯O2ii, shows a small C—H⋯O angle of 129.4°, indicating that this C—H⋯O hydrogen bond is quite weak. The two inter­actions link mol­ecules into chains parallel to the b axis (Fig. 3), consolidating the three-dimensional mol­ecular packing.

Figure 2.

Figure 2

Detail of the inter­molecular inter­actions in the title compound forming a dimeric system through C—H⋯O hydrogen bonds (dashed lines). H atoms not involved in these hydrogen bonds are omitted [symmetry code: (i)= 1 − x, 2 − y, 2 − z].

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.95 2.57 3.503 (3) 168
C24—H24⋯O2ii 0.95 2.50 3.185 (3) 129

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 3.

Figure 3

Detail of C—H⋯O inter­actions in the title compound (grey and orange dashed lines denote C2—H2⋯O1i and C24—H24⋯O2ii inter­actions, respectively). H atoms not involved in these inter­actions are omitted for clarity [symmetry codes: (i) 1 − x, 2 − y, 2 − z; (ii) x, −1 + y, z].

Database survey  

A survey of the Cambridge Structural Database (CSD Version 5.38; Groom et al., 2016) showed a few reported examples of dioxaza­borocines (Geng & Wu, 2011; Gawdzik et al., 2009; Zhu et al., 2006; Thadani et al., 2001; Woodgate et al., 2000; Woodgate et al., 1999). Specifically, two members of this selected group are structurally related to the title compound: II (MAWDET; Woodgate et al., 1999) and the recently described compound III (EROJIF; Geng & Wu, 2011) (Fig. 4).

Figure 4.

Figure 4

Oxaza­borocine compounds structurally related to the title compound.

Table 2 summarizes relevant bond lengths and angles for I compared with those observed in II and III. The intra­molecular N—B bond lengths can vary, depending on the substituent groups to boron and nitro­gen atoms. In particular, the covalent N1—B1 bond distance for I [1.674 (4) Å] is in the range observed for III and II [1.641 (2)–1.674 (5) Å]. The N—B bond distance for III is shorter than that in II, quite probably due to the extra oxygen atom bonded to the boron atom (from the –OCH3 group).

Table 2. Structural data and calculated tetra­hedral character THCDA (Å, °) for compounds IIII .

  Compound I II (MAWDET)a III (EROJIF)b
Bond lengths      
B—N 1.674 (4) (B1—N1) 1.674 (5) (B1—N1) 1.641 (2) (B1—N2)
B—O 1.471 (3) (B1—O2) 1.443 (4) (B1—O2) 1.443 (2) (B1—O3)
B—O 1.446 (3) (B1—O1) 1.454 (4) (B1—O1) 1.463 (2) (B1—O5)
B—C 1.602 (4) (B1—C15) 1.608 (5) (B1—C15) 1.425 (2) (B1—O4)
Angles      
θ1 113.0 (2) (C15—B1—O2) 110.3 (3) (C15—B—O2) 113.34 (15) (O4—B1—O3)
θ2 109.5 (2) (C15—B1—O1) 115.5 (3) (C15—B—O1) 114.47 (16) (O4—B1—O5)
θ3 109.0 (2) (O2—B1—O1) 109.5 (3) (O2—B—O1) 108.60 (15) (O3—B1—O5)
θ4 113.5 (2) (N1—B1—C15) 110.0 (3) (N1—B—C15) 105.64 (14) (N2—B1—O4)
θ5 104.5 (2) (N1—B1—O2) 106.7 (3) (N1—B—O2) 108.45 (14) (N2—B1—O3)
θ6 107.1 (2) (N1—B1—O1) 104.4 (3) (N1—B—O1) 105.89 (13) (N2—B1—O5)
THCDA c 82.8 83.1 79.7

(a) Woodgate et al. (1999); (b) Geng et al. (2011); (c) Höpfl et al. (1999).

The crystal structure of I shows that the phenyl group at the boron atom and the N-pyridin-2-ylmethyl substituent adopts a cis conformation around the N→B dative bond, in total agreement with that reported for II and III. The C21—N1—B1—C15 torsion angle assumes a value of 57.8 (3)°. Analysis of the structural data for II showed the corresponding torsion angle (C37—N1—B1—C15) is 56.71°. In compound III, the corresponding angle (C13—N2—B1—O4) is 62.34°. These two examples display a cis geometry around the intra­molecular N—B bond, in concordance with compound I (Fig. 5).

Figure 5.

Figure 5

Comparison of the bonding environment at boron in I (title compound), II (MAWDET) and III (EROJIF). For clarity, only atoms closely involved in the N→B dative bonds are shown.

We have performed an analysis of the experimental data of compounds I--III and calculated the tetra­hedral character (THCDA) at the boron atom (Höpfl et al., 1999), making use of the values of the six angles around the boron atom (θ1–θ6). The quite high value of 82.8% for I is in the range observed for compounds II and III. Altogether, this parameter and the measured N—B bond lengths can be considered a clear indication of sp 3-hybridization of the boron atom and of a resident negative charge (Sarina et al., 2015). Therefore, we confirm that compound I adopts a zwitterionic form with a significant intra­molecular N→B dative bond.

Based on previous observations (Barnes et al., 1998), we hypothesize that employing an aqueous solution of NaBPh4 led to the unexpected isolation of I. It is well known that NaBPh4 in the presence of oxygen leads to the production of phenyl­boronic acid PhB(OH)2 and phenol. Then, the in situ generated phenyl­boronic acid (derived in turn from an excess of NaBPh4) is capable of reacting with the tripodal ligand H2 L, leading to the formation of compound I (Fig. 6).

Figure 6.

Figure 6

Synthesis of the title compound.

Inspection of the reaction conditions already reported by Woodgate et al. (1999) indicates that compound II was obtained by reaction of phenyl­boronic acid and the corres­ponding tertiary amine. In turn, the authors reported that compound III was obtained unintentionally when using salicyl­aldehyde benzyl­amine and boron compounds (Geng et al., 2011). We hypothesize that, in the case of I, the use of NaBPh4 determined the course of the reaction, leading to the formation of the zwitterionic heterocycle in the described reaction conditions.

Synthesis and crystallization  

H2 L (0.064 g; 0.2 mmol) was dissolved in methanol (4 mL), then solid manganese(III) acetate dihydrate (0.052 g; 0.2 mmol) was added. Immediately after, an excess of NaBPh4 (0.2065 g, 0.60 mmol) in 2 mL of methanol/water was added to the reaction flask. The resulting dark-brown solution was sonicated at 313 K for 15 min and then stirred at reflux for additional 16 h (overnight). After cooling, the obtained precipitate was collected by filtration, washed with diethyl ether and dried in vacuo. Recrystallization from methanol gave colourless crystals of I suitable for X-ray diffraction. Yield: 21%. IR spectrum: ν(cm−1): 3043, 1630 (C=N), 1626, 1608 (C=C aromatic), 1462 (br, B—O), 1273, 1248, 1200, 1050 (C—O), 1002 (B—N), 702.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms were placed at calculated positions, with d(C—H) = 0.95−0.99 Å and U iso(H) = 1.2U eq(C).

Table 3. Experimental details.

Crystal data
Chemical formula C26H23BN2O2
M r 406.27
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 100
a, b, c (Å) 8.8803 (7), 10.0871 (8), 11.7586 (10)
α, β, γ (°) 97.298 (2), 98.464 (2), 98.234 (2)
V3) 1019.21 (14)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.22 × 0.16 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Gaussian (XPREP and SADABS; Bruker, 2008)
T min, T max 0.780, 0.875
No. of measured, independent and observed [I > 2σ(I)] reflections 8344, 4004, 2161
R int 0.088
(sin θ/λ)max−1) 0.617
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.059, 0.115, 0.92
No. of reflections 4004
No. of parameters 280
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.31

Computer programs: APEX2 and SAINT (Bruker, 2008), SHELXS97 and SHELXTL (Sheldrick, 2008), SHELXL2016 (Sheldrick, 2015) and DIAMOND (Brandenburg, 2012).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989017016553/rz5224sup1.cif

e-73-01917-sup1.cif (27.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017016553/rz5224Isup2.hkl

e-73-01917-Isup2.hkl (219.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017016553/rz5224Isup3.cml

CCDC reference: 1586032

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C26H23BN2O2 Z = 2
Mr = 406.27 F(000) = 428
Triclinic, P1 Dx = 1.324 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.8803 (7) Å Cell parameters from 5951 reflections
b = 10.0871 (8) Å θ = 2.4–28.2°
c = 11.7586 (10) Å µ = 0.08 mm1
α = 97.298 (2)° T = 100 K
β = 98.464 (2)° Prism, colourless
γ = 98.234 (2)° 0.22 × 0.16 × 0.12 mm
V = 1019.21 (14) Å3

Data collection

Bruker APEXII CCD diffractometer 2161 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.088
φ and ω scans θmax = 26.0°, θmin = 2.4°
Absorption correction: gaussian (XPREP and SADABS; Bruker, 2008) h = −10→10
Tmin = 0.780, Tmax = 0.875 k = −12→10
8344 measured reflections l = −14→14
4004 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115 H-atom parameters constrained
S = 0.92 w = 1/[σ2(Fo2) + (0.0336P)2] where P = (Fo2 + 2Fc2)/3
4004 reflections (Δ/σ)max < 0.001
280 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.31 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O2 0.33571 (19) 0.80339 (16) 0.66654 (14) 0.0162 (4)
C7 0.2240 (3) 0.5768 (2) 0.7698 (2) 0.0154 (6)
H7A 0.186984 0.481569 0.777707 0.018*
H7B 0.15142 0.602455 0.707238 0.018*
O1 0.45343 (19) 0.81457 (16) 0.86313 (14) 0.0155 (4)
N1 0.3811 (2) 0.58730 (19) 0.73635 (17) 0.0142 (5)
N2 0.3294 (3) 0.3306 (2) 0.87553 (18) 0.0228 (6)
C1 0.3311 (3) 0.7832 (2) 0.9193 (2) 0.0141 (6)
C15 0.6210 (3) 0.7798 (2) 0.7133 (2) 0.0145 (6)
C6 0.2247 (3) 0.6666 (2) 0.8822 (2) 0.0143 (6)
C8 0.2760 (3) 0.7354 (2) 0.5582 (2) 0.0149 (6)
C22 0.4325 (3) 0.3686 (2) 0.8075 (2) 0.0164 (6)
C20 0.6479 (3) 0.8046 (2) 0.6034 (2) 0.0168 (6)
H20 0.562356 0.799166 0.543102 0.02*
C14 0.3653 (3) 0.5215 (2) 0.6124 (2) 0.0159 (6)
H14A 0.469245 0.515167 0.593371 0.019*
H14B 0.307445 0.428216 0.603349 0.019*
C13 0.2833 (3) 0.5988 (2) 0.5288 (2) 0.0154 (6)
C2 0.3191 (3) 0.8716 (3) 1.0178 (2) 0.0184 (6)
H2 0.391788 0.952737 1.042134 0.022*
C19 0.7968 (3) 0.8371 (3) 0.5794 (2) 0.0218 (7)
H19 0.811445 0.851654 0.503233 0.026*
C3 0.2016 (3) 0.8410 (3) 1.0797 (2) 0.0209 (7)
H3 0.192493 0.901899 1.145982 0.025*
C26 0.4860 (3) 0.2759 (2) 0.7329 (2) 0.0183 (6)
H26 0.56079 0.305733 0.687579 0.022*
C5 0.1087 (3) 0.6353 (3) 0.9472 (2) 0.0195 (6)
H5 0.036794 0.553633 0.923746 0.023*
C9 0.2030 (3) 0.8050 (3) 0.4773 (2) 0.0190 (7)
H9 0.198548 0.898346 0.497886 0.023*
C16 0.7521 (3) 0.7913 (2) 0.7980 (2) 0.0197 (7)
H16 0.738836 0.77471 0.873908 0.024*
C12 0.2147 (3) 0.5337 (3) 0.4180 (2) 0.0183 (6)
H12 0.216587 0.439785 0.397566 0.022*
C4 0.0970 (3) 0.7221 (3) 1.0458 (2) 0.0226 (7)
H4 0.017669 0.699995 1.089651 0.027*
C25 0.4296 (3) 0.1387 (3) 0.7247 (2) 0.0222 (7)
H25 0.464256 0.073442 0.673508 0.027*
C17 0.9002 (3) 0.8257 (3) 0.7761 (2) 0.0217 (7)
H17 0.986288 0.834068 0.836496 0.026*
C10 0.1376 (3) 0.7395 (3) 0.3682 (2) 0.0223 (7)
H10 0.087663 0.787534 0.313513 0.027*
C21 0.4862 (3) 0.5193 (2) 0.8156 (2) 0.0168 (6)
H21A 0.591196 0.534146 0.795601 0.02*
H21B 0.492924 0.562668 0.896988 0.02*
C24 0.3225 (3) 0.0994 (3) 0.7923 (2) 0.0204 (7)
H24 0.2805 0.006461 0.788101 0.024*
C11 0.1438 (3) 0.6029 (3) 0.3371 (2) 0.0224 (7)
H11 0.099895 0.557761 0.260997 0.027*
C18 0.9221 (3) 0.8480 (2) 0.6656 (2) 0.0226 (7)
H18 1.023545 0.870859 0.649451 0.027*
C23 0.2776 (3) 0.1973 (3) 0.8658 (2) 0.0239 (7)
H23 0.204908 0.168795 0.913098 0.029*
B1 0.4511 (3) 0.7520 (3) 0.7450 (3) 0.0153 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O2 0.0199 (11) 0.0149 (10) 0.0135 (10) 0.0035 (8) 0.0013 (8) 0.0025 (8)
C7 0.0131 (15) 0.0146 (15) 0.0167 (15) −0.0010 (12) 0.0014 (12) 0.0005 (12)
O1 0.0169 (10) 0.0147 (10) 0.0132 (10) −0.0016 (8) 0.0041 (8) −0.0008 (8)
N1 0.0138 (12) 0.0135 (12) 0.0141 (12) 0.0002 (9) 0.0017 (10) 0.0012 (9)
N2 0.0325 (15) 0.0179 (14) 0.0204 (14) 0.0036 (11) 0.0096 (12) 0.0061 (11)
C1 0.0124 (15) 0.0148 (15) 0.0151 (15) 0.0013 (12) 0.0020 (12) 0.0038 (12)
C15 0.0188 (15) 0.0087 (14) 0.0155 (15) 0.0021 (11) 0.0023 (12) 0.0002 (11)
C6 0.0158 (15) 0.0140 (15) 0.0131 (14) 0.0009 (12) 0.0021 (12) 0.0043 (12)
C8 0.0127 (14) 0.0195 (15) 0.0113 (14) −0.0002 (12) 0.0030 (12) 0.0000 (12)
C22 0.0192 (16) 0.0147 (15) 0.0143 (15) 0.0030 (12) −0.0025 (13) 0.0046 (12)
C20 0.0165 (16) 0.0133 (15) 0.0195 (16) −0.0007 (12) 0.0029 (13) 0.0018 (12)
C14 0.0213 (16) 0.0119 (14) 0.0131 (14) 0.0016 (12) 0.0041 (12) −0.0036 (11)
C13 0.0164 (15) 0.0186 (15) 0.0120 (14) 0.0025 (12) 0.0037 (12) 0.0043 (12)
C2 0.0231 (17) 0.0171 (15) 0.0140 (15) 0.0029 (13) 0.0009 (13) 0.0013 (12)
C19 0.0253 (17) 0.0179 (15) 0.0210 (16) −0.0003 (13) 0.0055 (14) 0.0015 (13)
C3 0.0284 (17) 0.0200 (16) 0.0146 (15) 0.0036 (13) 0.0080 (13) −0.0008 (12)
C26 0.0182 (16) 0.0173 (16) 0.0209 (16) 0.0019 (12) 0.0071 (13) 0.0052 (12)
C5 0.0200 (16) 0.0170 (15) 0.0196 (16) −0.0012 (12) 0.0022 (13) 0.0018 (12)
C9 0.0208 (16) 0.0172 (15) 0.0208 (16) 0.0049 (12) 0.0065 (13) 0.0043 (13)
C16 0.0224 (17) 0.0198 (16) 0.0170 (16) 0.0034 (13) 0.0049 (13) 0.0021 (12)
C12 0.0174 (15) 0.0202 (15) 0.0174 (16) 0.0014 (12) 0.0049 (13) 0.0029 (12)
C4 0.0281 (18) 0.0237 (17) 0.0183 (16) 0.0047 (14) 0.0095 (14) 0.0051 (13)
C25 0.0270 (17) 0.0165 (16) 0.0229 (16) 0.0074 (13) 0.0031 (14) −0.0005 (12)
C17 0.0152 (16) 0.0222 (16) 0.0258 (17) 0.0028 (13) 0.0003 (13) −0.0001 (13)
C10 0.0196 (16) 0.0322 (17) 0.0162 (16) 0.0085 (13) 0.0012 (13) 0.0056 (13)
C21 0.0193 (15) 0.0170 (15) 0.0137 (15) 0.0050 (12) −0.0010 (12) 0.0028 (12)
C24 0.0257 (17) 0.0131 (15) 0.0217 (16) 0.0003 (12) 0.0027 (13) 0.0049 (12)
C11 0.0181 (16) 0.0306 (17) 0.0155 (15) −0.0012 (13) 0.0013 (13) 0.0001 (13)
C18 0.0218 (17) 0.0160 (16) 0.0307 (18) 0.0002 (13) 0.0111 (15) 0.0019 (13)
C23 0.0266 (18) 0.0220 (17) 0.0259 (17) 0.0037 (13) 0.0094 (14) 0.0089 (13)
B1 0.0192 (18) 0.0107 (16) 0.0141 (17) 0.0007 (13) 0.0022 (14) −0.0022 (13)

Geometric parameters (Å, º)

O2—C8 1.360 (3) C2—H2 0.95
O2—B1 1.471 (3) C19—C18 1.372 (4)
C7—N1 1.497 (3) C19—H19 0.95
C7—C6 1.504 (3) C3—C4 1.382 (4)
C7—H7A 0.99 C3—H3 0.95
C7—H7B 0.99 C26—C25 1.389 (4)
O1—C1 1.372 (3) C26—H26 0.95
O1—B1 1.446 (3) C5—C4 1.387 (3)
N1—C14 1.501 (3) C5—H5 0.95
N1—C21 1.517 (3) C9—C10 1.370 (4)
N1—B1 1.674 (4) C9—H9 0.95
N2—C23 1.343 (3) C16—C17 1.381 (4)
N2—C22 1.348 (3) C16—H16 0.95
C1—C6 1.378 (3) C12—C11 1.381 (3)
C1—C2 1.396 (3) C12—H12 0.95
C15—C20 1.396 (3) C4—H4 0.95
C15—C16 1.396 (3) C25—C24 1.374 (3)
C15—B1 1.602 (4) C25—H25 0.95
C6—C5 1.395 (3) C17—C18 1.383 (3)
C8—C13 1.391 (3) C17—H17 0.95
C8—C9 1.391 (3) C10—C11 1.391 (4)
C22—C26 1.383 (3) C10—H10 0.95
C22—C21 1.513 (3) C21—H21A 0.99
C20—C19 1.394 (4) C21—H21B 0.99
C20—H20 0.95 C24—C23 1.371 (3)
C14—C13 1.501 (3) C24—H24 0.95
C14—H14A 0.99 C11—H11 0.95
C14—H14B 0.99 C18—H18 0.95
C13—C12 1.391 (3) C23—H23 0.95
C2—C3 1.380 (3)
C8—O2—B1 121.39 (18) C22—C26—C25 119.4 (2)
N1—C7—C6 111.9 (2) C22—C26—H26 120.3
N1—C7—H7A 109.2 C25—C26—H26 120.3
C6—C7—H7A 109.2 C4—C5—C6 120.8 (3)
N1—C7—H7B 109.2 C4—C5—H5 119.6
C6—C7—H7B 109.2 C6—C5—H5 119.6
H7A—C7—H7B 107.9 C10—C9—C8 120.3 (2)
C1—O1—B1 120.8 (2) C10—C9—H9 119.9
C7—N1—C14 108.67 (19) C8—C9—H9 119.9
C7—N1—C21 110.68 (18) C17—C16—C15 122.9 (2)
C14—N1—C21 110.23 (16) C17—C16—H16 118.6
C7—N1—B1 107.64 (16) C15—C16—H16 118.6
C14—N1—B1 108.46 (18) C11—C12—C13 121.2 (2)
C21—N1—B1 111.07 (19) C11—C12—H12 119.4
C23—N2—C22 116.7 (2) C13—C12—H12 119.4
O1—C1—C6 121.5 (2) C3—C4—C5 119.5 (3)
O1—C1—C2 118.0 (2) C3—C4—H4 120.3
C6—C1—C2 120.5 (2) C5—C4—H4 120.3
C20—C15—C16 115.9 (2) C24—C25—C26 118.6 (2)
C20—C15—B1 122.7 (2) C24—C25—H25 120.7
C16—C15—B1 121.2 (2) C26—C25—H25 120.7
C1—C6—C5 119.0 (2) C16—C17—C18 119.5 (3)
C1—C6—C7 121.8 (2) C16—C17—H17 120.3
C5—C6—C7 119.1 (2) C18—C17—H17 120.3
O2—C8—C13 121.4 (2) C9—C10—C11 120.4 (2)
O2—C8—C9 118.4 (2) C9—C10—H10 119.8
C13—C8—C9 120.3 (2) C11—C10—H10 119.8
N2—C22—C26 122.3 (2) C22—C21—N1 113.5 (2)
N2—C22—C21 116.5 (2) C22—C21—H21A 108.9
C26—C22—C21 121.2 (2) N1—C21—H21A 108.9
C19—C20—C15 121.9 (3) C22—C21—H21B 108.9
C19—C20—H20 119 N1—C21—H21B 108.9
C15—C20—H20 119 H21A—C21—H21B 107.7
C13—C14—N1 112.13 (17) C23—C24—C25 118.5 (3)
C13—C14—H14A 109.2 C23—C24—H24 120.8
N1—C14—H14A 109.2 C25—C24—H24 120.8
C13—C14—H14B 109.2 C12—C11—C10 119.2 (3)
N1—C14—H14B 109.2 C12—C11—H11 120.4
H14A—C14—H14B 107.9 C10—C11—H11 120.4
C8—C13—C12 118.6 (2) C19—C18—C17 119.7 (3)
C8—C13—C14 121.8 (2) C19—C18—H18 120.1
C12—C13—C14 119.6 (2) C17—C18—H18 120.1
C3—C2—C1 119.9 (3) N2—C23—C24 124.5 (3)
C3—C2—H2 120.1 N2—C23—H23 117.8
C1—C2—H2 120.1 C24—C23—H23 117.8
C18—C19—C20 120.1 (3) O1—B1—O2 108.95 (17)
C18—C19—H19 120 O1—B1—C15 109.5 (2)
C20—C19—H19 120 O2—B1—C15 113.0 (2)
C2—C3—C4 120.3 (2) O1—B1—N1 107.1 (2)
C2—C3—H3 119.8 O2—B1—N1 104.5 (2)
C4—C3—H3 119.8 C15—B1—N1 113.46 (17)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2···O1i 0.95 2.57 3.503 (3) 168
C24—H24···O2ii 0.95 2.50 3.185 (3) 129

Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) x, y−1, z.

Funding Statement

This work was funded by Universidad Nacional de Rosario grant . Consejo Nacional de Investigaciones Científicas y Técnicas grant . Coordenação de Aperfeiçoamento de Pessoal de Nível Superior grant . Conselho Nacional de Desenvolvimento Científico e Tecnológico grant .

References

  1. Barnes, M. J. (1998). Technical Report: Decomposition of Sodium Tetraphenylborate. https://digital. library. unt. edu/ark:/67531/metadc684438/.
  2. Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Gawdzik, B., Iwanek, W., Hoser, A. & Woźniak, K. (2009). Z. Kristallogr. 224, 515–518.
  5. Geng, Y. & Wu, W. (2011). Acta Cryst. E67, o1380. [DOI] [PMC free article] [PubMed]
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Höpfl, H. (1999). J. Organomet. Chem. 581, 129–149.
  8. Ledesma, G. N., Anxolabéhère-Mallart, E., Rivière, E., Mallet-Ladeira, S., Hureau, C. & Signorella, S. R. (2014). Inorg. Chem. 53, 2545–2553. [DOI] [PubMed]
  9. Ledesma, G. N., Eury, H., Anxolabéhère-Mallart, E., Hureau, C. & Signorella, S. R. (2015). J. Inorg. Biochem. 146, 69–76. [DOI] [PubMed]
  10. Sarina, E. A., Olmstead, M. M., Kanichar, D. & Groziak, M. P. (2015). Acta Cryst. C71, 1085–1088. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  13. Thadani, A. N., Batey, R. A. & Lough, A. J. (2001). Acta Cryst. E57, o762–o763.
  14. Woodgate, P., Horner, G., Maynard, N. & Rickard, C. (1999). J. Organomet. Chem. 592, 180–193.
  15. Woodgate, P., Horner, G., Maynard, N. & Rickard, C. (2000). J. Organomet. Chem. 595, 215–223.
  16. Zhu, L., Shabbir, S., Gray, M., Lynch, V., Sorey, S. & Anslyn, E. (2006). J. Am. Chem. Soc. 128, 1222–1232. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989017016553/rz5224sup1.cif

e-73-01917-sup1.cif (27.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017016553/rz5224Isup2.hkl

e-73-01917-Isup2.hkl (219.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017016553/rz5224Isup3.cml

CCDC reference: 1586032

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES