Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Nov 24;73(Pt 12):1931–1936. doi: 10.1107/S205698901701667X

Crystal structure of 3,6,6-trimethyl-4-oxo-1-(pyridin-2-yl)-4,5,6,7-tetra­hydro-1H-indazol-7-aminium chloride and its monohydrate

Anatoly Mishnev a,*, Alvis Mengots b, Māris Turks b
PMCID: PMC5730255  PMID: 29250418

In the title compounds 1 and 2, the organic moieties adopt flattened conformations stabilized by an intra­molecular N—H⋯N hydrogen bonds formed by the protonated amino group and the N atom of the pyridyl substituent. In 1, the organic moieties are linked with two N—H⋯Cl-type hydrogen bonds, forming a C(4) graph-set. In its monohydrate, 2, the Cl anion and a water mol­ecule assemble the moieties into infinite bands showing hydrogen-bond patterns with graph sets C(6), Inline graphic(12) and Inline graphic(8). Both crystals display π–π stacked supra­molecular structures running along the b axis.

Keywords: crystal structure, tetra­hydro­indazole, tetra­hydro­indazolone, hydro­chloride, hydrate

Abstract

The title compounds, C15H19N4O+·Cl and C15H19N4O+·Cl·H2O, obtained in attempts to synthesize metal complexes using tetra­hydro­indazole as a ligand, were characterized by NMR, IR and X-ray diffraction techniques. The partially saturated ring in the tetra­hydro­indazole core adopts a sofa conformation. An intra­molecular N—H⋯N hydrogen bond formed by the protonated amino group and the N atom of the pyridyl substituent is found in the first structure. In the hydro­chloride, the organic moieties are linked by two N—H⋯Cl hydrogen bonds, forming a C(4) graph-set. In the hydrate crystal, a Cl anion and a water mol­ecule assemble the moieties into infinite bands showing hydrogen-bond patterns with graph sets C(6), R 6 4(12) and R 4 2(8). Organic moieties form π–π stacked supra­molecular structures running along the b axis in both structures.

Chemical context  

Tetra­hydro­indazoles can be regarded as annulated pyrazole analogs (Ansari et al., 2017) or as partially saturated indazoles (Gaikwad et al., 2015). In either of these categories they play an important role in medicinal chemistry. Tetra­hydro­indazoles are reported to be peripherally selective cannabinoid-1 receptor inverse agonists (Matthews et al., 2016), sigma-2 receptor ligands(Wu et al., 2015), and inter­leukin-2 inducible T-cell kinase inhibitors (Burch et al., 2015; Heifetz et al., 2016). Heterocyclic compounds containing a tetra­hydro­indazole core have been researched as anti­viral agents (Bassyouni et al., 2016) and compounds with anti­oxidant properties (Polo et al., 2016). With appropriate side-chain decorations, they also possess COX-2 inhibitory activity (Abdel-Rahman et al., 2012) and can inhibit bacterial type II topoisomerases (Wiener et al., 2007). The latter has led to the development of compounds with both anti­tumor and anti­microbial activity (Faidallah et al., 2013), including novel anti­tuberculosis agents (Guo et al., 2010).graphic file with name e-73-01931-scheme1.jpg

The broad application spectrum of tetra­hydro­indazoles has led to the development of synthetic methodologies. Thus, traditional approaches using a combination of either α,β-unsaturated ketones (Nakhai & Bergman, 2009) or dicarbonyl compounds (Murugavel et al., 2010), or tricarbonyl compounds (Kim et al., 2010; Scala et al., 2015) with hydrazines have been significantly updated and improved. In addition, the microwave-assisted synthesis of tetra­hydro­indazoles has been reported (Silva et al., 2006; Polo et al., 2016). It is inter­esting to note that compounds possessing free NH-functionality in the pyrazole ring have been studied thoroughly for their tautomeric equilibria (Claramunt et al., 2006). Additionally, tetra­hydro­indazolones substituted with 2-amino­benzamides have been studied as fluorescent probes (Jia et al., 2012). Other studies on side-chain modifications include the synthesis of polyfluoro­alkyl-substituted analogs (Khlebnikova et al., 2012), triazole-functionalized tetra­hydro­indazolones (Strakova et al., 2009) and their conjugation with biologically active natural products such as lupane triterpenoids (Khlebnicova et al., 2017). Among other synthetic approaches, the Ritter reaction provides a fast entry into structural modifications and is applicable to obtain a combinatorial library of compounds (Turks et al., 2012). Combinatorial chemistry methodology has been reported for the construction of tetra­hydro­indazolones in enanti­omerically pure pairs (Song et al., 2012). Also, enanti­omerically pure 7-amino-tetra­hydro­indazolones (Strakova et al., 2011) have been obtained. For these reasons, we were inter­ested in the synthesis of 7-amino-3,6,6-trimethyl-1-(pyridin-2-yl)-1,5,6,7-tetra­hydro-4H-indazol-4-one for use as a starting material for further structural modifications. Herein, the structures of the corresponding hydro­chloride 1 and its hydrate 2 are reported.

Structural commentary  

Figs. 1 and 2 show the asymmetric units of the hydro­chloride (1) and its hydrate (2) with the symmetry-independent hydrogen bonds. The geometry and conformation of the organic cation in compounds 1 and 2 are substanti­ally similar. The pyrazole ring is planar within an r.m.s. deviation of the fitted atoms of 0.0059 Å in 1 and 0.0092 Å in 2. In both structures, the partially saturated ring adopts a sofa conformation. The distance of atom C6 from the mean plane formed by atoms C3–C5/C7/C8 (r.m.s. deviation of fitted atoms = 0.0495 Å in 1 and 0.0558 Å in 2) is 0.639 (2) Å in 1 and 0.642 (2) Å in 2. The dihedral angle between the latter plane and pyrazole ring is 5.79 (6)° in 1 and 6.48 (4)° in 2. On the other hand, the dihedral angle between the pyrazole ring and its pyridyl substituent is 11.91 (6)° [torsion angle N4—N3—C11—C12 = 10.7 (2)°] in 1 and 7.22 (5)° [torsion angle N4—N3—C11—C12 = 4.6 (2)°] in 2. An intra­molecular N—H⋯N hydrogen bond formed by the protonated amino group and nitro­gen atom of pyridyl substituent is found in 1 (Table 1).

Figure 1.

Figure 1

ORTEP view of the asymmetric unit of 1 showing the atom-numbering scheme and 50% probability displacement ellipsoids. The intra­molecular hydrogen bond is shown with dashed lines.

Figure 2.

Figure 2

ORTEP view of the asymmetric unit of 2 showing the atom-numbering scheme and 50% probability displacement ellipsoids. The intra­molecular hydrogen bonds are shown with dashed lines.

Table 1. Hydrogen-bond geometry (Å, °) for (1) .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯N2 0.97 (2) 2.42 (2) 2.928 (2) 112 (2)
N1—H2N1⋯Cl1i 0.97 (2) 2.08 (2) 3.034 (2) 168 (2)
N1—H3N1⋯Cl1ii 0.93 (2) 2.27 (2) 3.188 (2) 167 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Supra­molecular features  

In the crystal of compound 1, the organic moieties are linked by two types of N—H⋯Cl hydrogen bonds into infinite chains along the b-axis direction (Table 1). According to Etter (1990), the hydrogen-bond pattern in 1 can be described by a C(4) graph set. The packing of 1 is shown in Fig. 3. In the structure of 2, in addition to participating in an intra­molecular hydrogen bond, the protonated amino group also forms two inter­molecular hydrogen bonds with the Cl anion and a water mol­ecule (Table 2). Each Cl anion and water mol­ecule takes part in three inter­molecular hydrogen bonds. The organic cations are bridged by a pair of Cl anions and a water mol­ecule, thus assembling the moieties into infinite bands running along the b-axis direction. The hydrogen-bond pattern can be described by graph sets C(6), Inline graphic(12) and Inline graphic(8). The packing of 2 is shown in Fig. 4.

Figure 3.

Figure 3

The crystal packing of compound 1, viewed along the a axis. The hydrogen bonds are shown as dashed lines (see Table 1).

Table 2. Hydrogen-bond geometry (Å, °) for (2) .

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯Cl1i 0.80 (3) 2.39 (3) 3.185 (2) 176 (3)
O1W—H2W⋯Cl1 0.94 (3) 2.31 (3) 3.247 (2) 179 (2)
N1—H1N1⋯Cl1ii 0.85 (2) 2.40 (2) 3.228 (2) 165 (2)
N1—H3N1⋯O1W 0.95 (2) 1.85 (3) 2.775 (2) 162 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 4.

Figure 4

The crystal packing of compound 2, viewed along the c axis. The hydrogen bonds are shown as dashed lines (see Table 2).

In the crystal of 1, the organic moieties form stacks running along the b axis which are stabilized by π–π inter­actions (Fig. 5). The distance between the centroids of the pyridine and pyrazole rings of adjacent mol­ecules is 3.585 (2) Å. The shortest contact is 3.239 (2) Å between atoms N2 and N4 of two inversion-related mol­ecules (Fig. 5). In the crystal of 2, the organic moieties also form π–π-stacked supra­molecular structures running along the b-axis direction (Fig. 6). The distance between the centroids of the pyridine rings of adjacent mol­ecules is 3.748 (2) Å. The shortest contact is 3.170 (2) Å between the N3 atoms of two inversion-related mol­ecules (Fig. 6).

Figure 5.

Figure 5

View of stacks of organic moieties in the crystal structure of 1. H atoms and chloride anions are not shown for clarity.

Figure 6.

Figure 6

View of stacks of organic moieties in the crystal structure of 2. H atoms, chloride anions and water mol­ecules are not shown for clarity.

Database survey  

A search of the Cambridge Structural Database (Version 5.38; Groom et al., 2016) for the 3,6,6-trimethyl-4-oxo-4,5,6,7-tetra­hydro-1H-indazole core revealed five structurally close compounds: UXAQUG, UXARAN, UXARER, UXARIV, UXAROB (Strakova et al., 2011). These compounds differ from compounds 1 and 2 by the substituents at the positions of atoms N3 and C5. In all examples, the partially saturated ring in the indazole fragment adopts a sofa conformation. However, the phenyl ring at the position N3 forms much larger dihedral angles with the pyrazole ring than with the pyridyl substituent in the structures reported here.

Synthesis and crystallization  

The synthesis of the title compounds is depicted in the reaction scheme below. The 7-amino­tetra­hydro­indazolone derivative 4 was prepared by an analogy of the procedure published by Strakova et al. (2011) from the known precursor 3 (Strakova et al., 2009). In our attempts to synthesize metal complexes with ligand 4, we obtained the hydro­chloride salt 1 in its anhydrous form. It can be explained by the acidity of cobalt chloride hexa­hydrate, which was used in the selected experiment. This prompted us to develop a preparative synthesis of the hydro­chloride salt. This was achieved by the formation and precipitation of crude hydro­chloride in ethyl acetate solution. Its crystallization from water provided the hydro­chloride hydrate 2.graphic file with name e-73-01931-scheme2.jpg

7-Amino-3,6,6-trimethyl-1-(pyridin-2-yl)-1,5,6,7-tetra­hydro-4 H -indazol-4-one (4): Gaseous H2 was bubbled for 10 min. through a solution/suspension of compound 3 (0.80 g, 2.7 mmol) and 10% Pd/C (80 mg) in a mixture of EtOH (10 mL) and THF (2 mL). The resulting reaction mixture was stirred under an H2 atmosphere at standard temperature and pressure for 3 h (TLC control). The catalyst was filtered through a celite pad and the filtrate was evaporated to dryness. The resulting amorphous solid was dried under reduced pressure to yield amine 4 (0.71 g, 97%) as a colorless powder. M.p. 390–392 K; R f = 0.14 (Hex:EtOAc:Et3N = 8:1:0.5). IR (KBr), υ (cm−1): 3360, 3295, 3055, 2985, 2955, 2945, 2930, 2890, 2865, 1670, 1590, 1575, 1540, 1465, 1455, 1285, 1250, 1145, 1085, 1075, 1035, 995. 1H NMR (CDCl3, 300 MHz) δ (ppm): 8.48 [m, 1H, H-C(Py)], 7.99 [d, J = 8.3 Hz, 1H, H-C(Py)], 7.87 [m, 1H, H-C(Py)], 7.26 [m, 1H, H-C(Py)], 4.27 (s, 1H, H-C7), 2.82 (d, J = 16.8 Hz, 1H, Ha-C5), 2.54 (s, 3H, H3C-C3), 2.18 (d, J = 16.8 Hz, 1H, Hb-C5), 2.08 (bs, 2H, H2N-C7) 1.26, 1.02 (2s, 6H, H3C-C6).13C NMR (75.5 MHz, CDCl3), δ (ppm): 194.1, 153.9, 152.4, 150.4, 148.0, 139.1, 122.1, 116.5, 115.9, 53.8, 47.8, 38.4, 27.3, 26.6, 13.7. Analysis calculated: (C15H18N4O) C, 66.64; H, 6.71; N, 20.73. Found: C, 66.56; H, 6.68; N, 20.74.

3,6,6-Trimethyl-4-oxo-1-(pyridin-2-yl)-4,5,6,7-tetra­hydro-1 H -indazol-7-aminium chloride (1): A solution of CoCl2·6H2O (24 mg, 0.1 mmol) in ethanol (2 mL) was added to a solution of amine 4 (27 mg, 0.1 mmol) in ethanol (2 mL). The resulting reaction mixture was maturated at ambient temperature for 24 h. Then a part of it (1.2 mL) was transferred into an NMR tube and Et2O (0.8 mL) was added carefully on the top of the ethanol solution. After two days, colorless crystals of 1 were collected form the wall of the NMR tube. The product was characterized spectroscopically in its hydrate form (see below).

3,6,6-Trimethyl-4-oxo-1-(pyridin-2-yl)-4,5,6,7-tetra­hydro-1 H -indazol-7-aminium chloride hydrate (2): A solution of HCl in EtOAc (0.5 M, 1.48 mL, 0.74 mmol, 1.0 equiv.) was added to a solution of amine 4 (0.20 g, 0.74 mmol, 1.0 equiv.) in EtOAc (2 mL) at ambient temperature. The resulting precipitate was filtered and washed on the filter with DCM. The the crude product was crystallized from water to obtain colorless crystals of 2 (195 mg, 81%) suitable for X-ray analysis. M.p. 543 K (decomp.); IR (KBr), υ (cm−1): 3430 (br.s), 3145, 3100, 3035, 2965, 2880, 2750, 2575, 1955 (br.s), 1685, 1600, 1545, 1520, 1490, 1465, 1450, 1400, 1375, 1360, 1295, 1245, 1140, 1045, 1000, 955. 1H NMR (300MHz, D2O), δ (ppm): δ 8.55 [m, 1H, H-C(Py)], 8.12 [m,1H,H-C (Py)], 7.90 [d, J = 8.3 Hz, 1H, H-C(Py)], 7.53 [m, 1H, H-C(Py)], 4.84 (s, 1H, H-C7), 3.00 (d, J =17.8 Hz, 1H, Ha-C5), 2.54 (s, 3H, H3C-C3), 2.45 (d, J = 17.8Hz,1H,Hb-C5), 1.36, 1.10 (2s, 6H, H3C-C6). 13C NMR (75.5 MHz, DMSO-d 6), δ (ppm):192.3, 151.4, 149.0, 148.0, 144.4, 140.1, 122.8, 118.0, 114.6, 51.4, 47.1, 37.2, 26.8, 25.4, 13.2. Analysis calculated: (C15H18N4O·HCl·H2O) C, 55.47; H, 6.52; N, 17.25. Found: C, 55.78; H,6.40; N, 17.29.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. Hydrogen atoms bonded to heteroatoms were refined isotropically. Other H atoms were included in the refinement at geometrically calculated positions with C—H = 0.95–0.99Å and treated as riding with U iso(H) = 1.2U eq(C) or 1.5U eq(C-methyl).

Table 3. Experimental details.

  (1) (2)
Crystal data
Chemical formula C15H19N4O+·Cl C15H19N4O+·Cl·H2O
M r 306.79 324.81
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 190 190
a, b, c (Å) 13.5411 (4), 7.7421 (2), 19.2457 (5) 10.1855 (2), 7.4951 (2), 20.7961 (4)
β (°) 130.493 (2) 100.545 (1)
V3) 1534.39 (8) 1560.79 (6)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.25 0.26
Crystal size (mm) 0.38 × 0.32 × 0.15 0.42 × 0.25 × 0.14
 
Data collection
Diffractometer Nonius KappaCCD Nonius KappaCCD
No. of measured, independent and observed [I > 2σ(I)] reflections 5860, 3486, 2715 5549, 3552, 2874
R int 0.027 0.023
(sin θ/λ)max−1) 0.649 0.654
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.043, 0.101, 1.03 0.039, 0.102, 1.06
No. of reflections 3486 3552
No. of parameters 205 222
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.29, −0.25 0.29, −0.28

Computer programs: COLLECT (Bruker, 2004), SCALEPACK (Otwinowski & Minor, 1997), DENZO (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), SHELXL2017 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) 1, 2, global. DOI: 10.1107/S205698901701667X/eb2002sup1.cif

e-73-01931-sup1.cif (434.6KB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S205698901701667X/eb20021sup2.hkl

e-73-01931-1sup2.hkl (278.3KB, hkl)

Supporting information file. DOI: 10.1107/S205698901701667X/eb20021sup4.mol

Structure factors: contains datablock(s) 2. DOI: 10.1107/S205698901701667X/eb20022sup3.hkl

e-73-01931-2sup3.hkl (283.5KB, hkl)

Supporting information file. DOI: 10.1107/S205698901701667X/eb20022sup5.mol

Supporting information file. DOI: 10.1107/S205698901701667X/eb20021sup6.cml

Supporting information file. DOI: 10.1107/S205698901701667X/eb20022sup7.cml

CCDC references: 1586488, 1586487

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

3,6,6-Trimethyl-4-oxo-1-(pyridin-2-yl)-4,5,6,7-tetrahydro-1H-indazol-7-aminium chloride (1) . Crystal data

C15H19N4O+·Cl F(000) = 648
Mr = 306.79 Dx = 1.328 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 13.5411 (4) Å Cell parameters from 6801 reflections
b = 7.7421 (2) Å θ = 1.0–27.5°
c = 19.2457 (5) Å µ = 0.25 mm1
β = 130.493 (2)° T = 190 K
V = 1534.39 (8) Å3 Block, colourless
Z = 4 0.38 × 0.32 × 0.15 mm

3,6,6-Trimethyl-4-oxo-1-(pyridin-2-yl)-4,5,6,7-tetrahydro-1H-indazol-7-aminium chloride (1) . Data collection

Nonius KappaCCD diffractometer Rint = 0.027
Radiation source: fine-focus sealed tube θmax = 27.5°, θmin = 3.0°
CCD scans h = −17→17
5860 measured reflections k = −10→9
3486 independent reflections l = −24→24
2715 reflections with I > 2σ(I)

3,6,6-Trimethyl-4-oxo-1-(pyridin-2-yl)-4,5,6,7-tetrahydro-1H-indazol-7-aminium chloride (1) . Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0363P)2 + 0.7495P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
3486 reflections Δρmax = 0.29 e Å3
205 parameters Δρmin = −0.25 e Å3

3,6,6-Trimethyl-4-oxo-1-(pyridin-2-yl)-4,5,6,7-tetrahydro-1H-indazol-7-aminium chloride (1) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

3,6,6-Trimethyl-4-oxo-1-(pyridin-2-yl)-4,5,6,7-tetrahydro-1H-indazol-7-aminium chloride (1) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.63264 (4) 0.65297 (6) 0.33536 (3) 0.03342 (14)
O1 0.98736 (12) −0.08281 (19) 0.66919 (8) 0.0361 (3)
N3 0.59725 (12) 0.17416 (17) 0.53425 (8) 0.0187 (3)
N4 0.65309 (13) 0.13670 (18) 0.62325 (9) 0.0219 (3)
C4 0.67526 (15) 0.1258 (2) 0.51633 (10) 0.0193 (3)
N2 0.41873 (13) 0.26763 (19) 0.38981 (9) 0.0230 (3)
C12 0.42625 (16) 0.3337 (2) 0.51532 (11) 0.0232 (4)
H12 0.471148 0.327724 0.577688 0.028*
C11 0.47588 (15) 0.2621 (2) 0.47773 (10) 0.0190 (3)
N1 0.55052 (14) 0.0192 (2) 0.35950 (9) 0.0220 (3)
C13 0.30686 (17) 0.4145 (2) 0.45593 (12) 0.0282 (4)
H13 0.267881 0.460408 0.477604 0.034*
C3 0.78494 (15) 0.0540 (2) 0.59559 (10) 0.0211 (3)
C6 0.78026 (16) 0.1295 (2) 0.44709 (11) 0.0246 (4)
C15 0.30553 (16) 0.3529 (2) 0.33478 (12) 0.0276 (4)
H15 0.265092 0.362741 0.273282 0.033*
C8 0.88681 (16) −0.0231 (2) 0.59948 (11) 0.0244 (4)
C5 0.65109 (15) 0.1485 (2) 0.42887 (10) 0.0207 (3)
H5 0.616867 0.265008 0.405413 0.025*
C2 0.76718 (16) 0.0664 (2) 0.66070 (11) 0.0224 (4)
C10 0.75046 (18) 0.1108 (3) 0.35558 (12) 0.0325 (4)
H10A 0.830139 0.113448 0.366104 0.049*
H10B 0.695686 0.204248 0.315864 0.049*
H10C 0.706960 0.002985 0.327613 0.049*
C14 0.24569 (17) 0.4268 (2) 0.36430 (13) 0.0297 (4)
H14 0.166419 0.483251 0.323640 0.036*
C7 0.85647 (16) −0.0288 (2) 0.50865 (11) 0.0253 (4)
H7A 0.806434 −0.132217 0.476113 0.030*
H7B 0.937384 −0.037310 0.520035 0.030*
C1 0.85803 (17) 0.0141 (3) 0.75907 (11) 0.0312 (4)
H1A 0.809647 −0.005846 0.778844 0.047*
H1B 0.920174 0.104542 0.795200 0.047*
H1C 0.902572 −0.089806 0.766326 0.047*
C9 0.86206 (17) 0.2931 (2) 0.49510 (13) 0.0301 (4)
H9A 0.815252 0.391477 0.456570 0.045*
H9B 0.942494 0.281965 0.507027 0.045*
H9C 0.879617 0.308100 0.551734 0.045*
H1N1 0.487 (2) 0.000 (3) 0.3670 (14) 0.046 (6)*
H2N1 0.503 (2) 0.062 (3) 0.2980 (16) 0.054 (7)*
H3N1 0.584 (2) −0.088 (3) 0.3627 (14) 0.042 (6)*

3,6,6-Trimethyl-4-oxo-1-(pyridin-2-yl)-4,5,6,7-tetrahydro-1H-indazol-7-aminium chloride (1) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0363 (3) 0.0353 (3) 0.0225 (2) 0.0052 (2) 0.01632 (19) −0.00482 (19)
O1 0.0235 (7) 0.0442 (8) 0.0281 (6) 0.0113 (6) 0.0113 (6) 0.0038 (6)
N3 0.0190 (7) 0.0211 (7) 0.0168 (6) 0.0005 (6) 0.0119 (5) 0.0004 (6)
N4 0.0244 (7) 0.0234 (7) 0.0184 (6) −0.0002 (6) 0.0141 (6) 0.0012 (6)
C4 0.0189 (8) 0.0186 (8) 0.0210 (7) −0.0011 (6) 0.0132 (7) −0.0020 (7)
N2 0.0207 (7) 0.0263 (7) 0.0216 (7) 0.0011 (6) 0.0136 (6) 0.0027 (6)
C12 0.0272 (9) 0.0200 (8) 0.0268 (8) 0.0003 (7) 0.0195 (7) 0.0005 (7)
C11 0.0189 (8) 0.0157 (8) 0.0232 (8) −0.0015 (6) 0.0140 (7) −0.0004 (7)
N1 0.0204 (7) 0.0266 (8) 0.0191 (7) 0.0023 (6) 0.0129 (6) −0.0013 (6)
C13 0.0299 (9) 0.0235 (9) 0.0400 (10) 0.0021 (8) 0.0267 (8) −0.0010 (8)
C3 0.0187 (8) 0.0209 (8) 0.0194 (7) −0.0011 (7) 0.0105 (6) −0.0019 (7)
C6 0.0218 (8) 0.0297 (9) 0.0264 (8) 0.0031 (7) 0.0176 (7) 0.0007 (8)
C15 0.0230 (8) 0.0299 (9) 0.0252 (8) 0.0022 (8) 0.0136 (7) 0.0063 (8)
C8 0.0203 (8) 0.0213 (8) 0.0254 (8) −0.0005 (7) 0.0122 (7) −0.0016 (7)
C5 0.0205 (8) 0.0220 (8) 0.0212 (7) 0.0022 (7) 0.0143 (7) 0.0010 (7)
C2 0.0214 (8) 0.0212 (8) 0.0201 (8) −0.0022 (7) 0.0114 (7) −0.0010 (7)
C10 0.0285 (9) 0.0455 (12) 0.0315 (9) 0.0064 (9) 0.0230 (8) 0.0043 (9)
C14 0.0224 (9) 0.0245 (9) 0.0379 (10) 0.0048 (7) 0.0176 (8) 0.0055 (8)
C7 0.0198 (8) 0.0281 (9) 0.0290 (9) 0.0042 (7) 0.0163 (7) −0.0020 (8)
C1 0.0291 (9) 0.0364 (11) 0.0205 (8) 0.0007 (8) 0.0127 (8) 0.0025 (8)
C9 0.0251 (9) 0.0299 (10) 0.0390 (10) 0.0022 (8) 0.0224 (8) 0.0014 (8)

3,6,6-Trimethyl-4-oxo-1-(pyridin-2-yl)-4,5,6,7-tetrahydro-1H-indazol-7-aminium chloride (1) . Geometric parameters (Å, º)

O1—C8 1.223 (2) C6—C10 1.537 (2)
N3—C4 1.360 (2) C6—C7 1.544 (2)
N3—N4 1.3811 (18) C6—C5 1.552 (2)
N3—C11 1.424 (2) C15—C14 1.380 (3)
N4—C2 1.325 (2) C15—H15 0.9300
C4—C3 1.378 (2) C8—C7 1.515 (2)
C4—C5 1.502 (2) C5—H5 0.9800
N2—C11 1.328 (2) C2—C1 1.496 (2)
N2—C15 1.341 (2) C10—H10A 0.9600
C12—C13 1.383 (2) C10—H10B 0.9600
C12—C11 1.383 (2) C10—H10C 0.9600
C12—H12 0.9300 C14—H14 0.9300
N1—C5 1.509 (2) C7—H7A 0.9700
N1—H1N1 0.97 (2) C7—H7B 0.9700
N1—H2N1 0.97 (2) C1—H1A 0.9600
N1—H3N1 0.93 (2) C1—H1B 0.9600
C13—C14 1.381 (3) C1—H1C 0.9600
C13—H13 0.9300 C9—H9A 0.9600
C3—C2 1.424 (2) C9—H9B 0.9600
C3—C8 1.459 (2) C9—H9C 0.9600
C6—C9 1.535 (3)
C4—N3—N4 111.53 (12) C3—C8—C7 114.43 (14)
C4—N3—C11 129.76 (13) C4—C5—N1 109.18 (13)
N4—N3—C11 118.61 (12) C4—C5—C6 110.02 (13)
C2—N4—N3 105.47 (13) N1—C5—C6 111.99 (13)
N3—C4—C3 106.66 (13) C4—C5—H5 108.5
N3—C4—C5 127.76 (14) N1—C5—H5 108.5
C3—C4—C5 125.56 (14) C6—C5—H5 108.5
C11—N2—C15 116.33 (14) N4—C2—C3 110.63 (14)
C13—C12—C11 116.96 (15) N4—C2—C1 120.64 (15)
C13—C12—H12 121.5 C3—C2—C1 128.72 (16)
C11—C12—H12 121.5 C6—C10—H10A 109.5
N2—C11—C12 125.07 (15) C6—C10—H10B 109.5
N2—C11—N3 114.67 (13) H10A—C10—H10B 109.5
C12—C11—N3 120.26 (14) C6—C10—H10C 109.5
C5—N1—H1N1 110.3 (13) H10A—C10—H10C 109.5
C5—N1—H2N1 110.9 (14) H10B—C10—H10C 109.5
H1N1—N1—H2N1 106.3 (18) C15—C14—C13 118.12 (16)
C5—N1—H3N1 114.2 (13) C15—C14—H14 120.9
H1N1—N1—H3N1 107.5 (19) C13—C14—H14 120.9
H2N1—N1—H3N1 107.3 (19) C8—C7—C6 114.06 (14)
C14—C13—C12 119.76 (16) C8—C7—H7A 108.7
C14—C13—H13 120.1 C6—C7—H7A 108.7
C12—C13—H13 120.1 C8—C7—H7B 108.7
C4—C3—C2 105.68 (14) C6—C7—H7B 108.7
C4—C3—C8 121.68 (14) H7A—C7—H7B 107.6
C2—C3—C8 132.55 (15) C2—C1—H1A 109.5
C9—C6—C10 108.51 (15) C2—C1—H1B 109.5
C9—C6—C7 109.37 (14) H1A—C1—H1B 109.5
C10—C6—C7 110.59 (14) C2—C1—H1C 109.5
C9—C6—C5 108.97 (14) H1A—C1—H1C 109.5
C10—C6—C5 109.35 (13) H1B—C1—H1C 109.5
C7—C6—C5 110.02 (14) C6—C9—H9A 109.5
N2—C15—C14 123.68 (16) C6—C9—H9B 109.5
N2—C15—H15 118.2 H9A—C9—H9B 109.5
C14—C15—H15 118.2 C6—C9—H9C 109.5
O1—C8—C3 123.57 (16) H9A—C9—H9C 109.5
O1—C8—C7 121.97 (15) H9B—C9—H9C 109.5
C4—N3—N4—C2 0.69 (18) N3—C4—C5—N1 −74.7 (2)
C11—N3—N4—C2 −176.00 (14) C3—C4—C5—N1 107.05 (18)
N4—N3—C4—C3 0.27 (18) N3—C4—C5—C6 162.06 (16)
C11—N3—C4—C3 176.49 (15) C3—C4—C5—C6 −16.2 (2)
N4—N3—C4—C5 −178.26 (15) C9—C6—C5—C4 −74.59 (17)
C11—N3—C4—C5 −2.0 (3) C10—C6—C5—C4 166.95 (14)
C15—N2—C11—C12 1.4 (2) C7—C6—C5—C4 45.31 (18)
C15—N2—C11—N3 −178.55 (14) C9—C6—C5—N1 163.80 (14)
C13—C12—C11—N2 1.1 (3) C10—C6—C5—N1 45.35 (19)
C13—C12—C11—N3 −178.92 (15) C7—C6—C5—N1 −76.29 (16)
C4—N3—C11—N2 14.7 (2) N3—N4—C2—C3 −1.36 (18)
N4—N3—C11—N2 −169.29 (14) N3—N4—C2—C1 177.90 (15)
C4—N3—C11—C12 −165.27 (16) C4—C3—C2—N4 1.55 (19)
N4—N3—C11—C12 10.7 (2) C8—C3—C2—N4 −174.86 (17)
C11—C12—C13—C14 −2.6 (3) C4—C3—C2—C1 −177.64 (17)
N3—C4—C3—C2 −1.05 (18) C8—C3—C2—C1 6.0 (3)
C5—C4—C3—C2 177.52 (15) N2—C15—C14—C13 1.0 (3)
N3—C4—C3—C8 175.84 (15) C12—C13—C14—C15 1.7 (3)
C5—C4—C3—C8 −5.6 (3) O1—C8—C7—C6 −145.62 (17)
C11—N2—C15—C14 −2.5 (3) C3—C8—C7—C6 36.1 (2)
C4—C3—C8—O1 177.45 (17) C9—C6—C7—C8 62.12 (18)
C2—C3—C8—O1 −6.6 (3) C10—C6—C7—C8 −178.44 (14)
C4—C3—C8—C7 −4.4 (2) C5—C6—C7—C8 −57.54 (19)
C2—C3—C8—C7 171.59 (17)

3,6,6-Trimethyl-4-oxo-1-(pyridin-2-yl)-4,5,6,7-tetrahydro-1H-indazol-7-aminium chloride (1) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C12—H12···Cl1i 0.93 2.80 3.4470 (17) 127
C14—H14···O1ii 0.93 2.44 3.277 (2) 150
C7—H7A···Cl1iii 0.97 2.71 3.6401 (18) 160
C1—H1B···O1iv 0.96 2.60 3.503 (2) 156
N1—H1N1···N4v 0.97 (2) 2.29 (2) 3.218 (2) 161 (2)
N1—H1N1···N2 0.97 (2) 2.42 (2) 2.928 (2) 112 (2)
N1—H2N1···Cl1vi 0.97 (2) 2.08 (2) 3.034 (2) 168 (2)
N1—H3N1···Cl1iii 0.93 (2) 2.27 (2) 3.188 (2) 167 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, −y+1/2, z−1/2; (iii) x, y−1, z; (iv) −x+2, y+1/2, −z+3/2; (v) −x+1, −y, −z+1; (vi) −x+1, y−1/2, −z+1/2.

3,6,6-Trimethyl-4-oxo-1-(pyridin-2-yl)-4,5,6,7-tetrahydro-1H-indazol-7-aminium chloride monohydrate (2) . Crystal data

C15H19N4O+·Cl·H2O F(000) = 688
Mr = 324.81 Dx = 1.382 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 10.1855 (2) Å Cell parameters from 8626 reflections
b = 7.4951 (2) Å θ = 1.0–27.5°
c = 20.7961 (4) Å µ = 0.26 mm1
β = 100.545 (1)° T = 190 K
V = 1560.79 (6) Å3 Block, colourless
Z = 4 0.42 × 0.25 × 0.14 mm

3,6,6-Trimethyl-4-oxo-1-(pyridin-2-yl)-4,5,6,7-tetrahydro-1H-indazol-7-aminium chloride monohydrate (2) . Data collection

Nonius KappaCCD diffractometer Rint = 0.023
Radiation source: fine-focus sealed tube θmax = 27.7°, θmin = 3.6°
CCD scans h = −13→13
5549 measured reflections k = −9→9
3552 independent reflections l = −27→26
2874 reflections with I > 2σ(I)

3,6,6-Trimethyl-4-oxo-1-(pyridin-2-yl)-4,5,6,7-tetrahydro-1H-indazol-7-aminium chloride monohydrate (2) . Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0426P)2 + 0.794P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
3552 reflections Δρmax = 0.29 e Å3
222 parameters Δρmin = −0.28 e Å3

3,6,6-Trimethyl-4-oxo-1-(pyridin-2-yl)-4,5,6,7-tetrahydro-1H-indazol-7-aminium chloride monohydrate (2) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

3,6,6-Trimethyl-4-oxo-1-(pyridin-2-yl)-4,5,6,7-tetrahydro-1H-indazol-7-aminium chloride monohydrate (2) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.06154 (4) 0.62526 (6) 0.39636 (2) 0.02975 (13)
O1 0.45919 (12) −0.12171 (17) 0.26173 (5) 0.0286 (3)
N2 0.33632 (13) 0.28400 (18) 0.51823 (6) 0.0210 (3)
O1W −0.00940 (13) 0.25508 (19) 0.46352 (7) 0.0328 (3)
N3 0.48296 (12) 0.17260 (17) 0.45521 (6) 0.0159 (3)
N1 0.18153 (14) 0.01688 (19) 0.43612 (7) 0.0183 (3)
N4 0.61172 (12) 0.13967 (18) 0.44629 (6) 0.0196 (3)
C5 0.24311 (14) 0.1376 (2) 0.39147 (7) 0.0155 (3)
H5 0.223932 0.261303 0.401963 0.019*
C12 0.57141 (16) 0.3394 (2) 0.55440 (8) 0.0219 (3)
H12 0.658465 0.326736 0.547312 0.026*
C11 0.46319 (15) 0.2686 (2) 0.51150 (7) 0.0174 (3)
C4 0.39179 (14) 0.1150 (2) 0.40322 (7) 0.0153 (3)
C6 0.18454 (15) 0.1060 (2) 0.31807 (7) 0.0176 (3)
C10 0.03220 (16) 0.0870 (2) 0.30801 (8) 0.0246 (4)
H10A 0.009876 −0.020414 0.328751 0.037*
H10B −0.003916 0.081667 0.262056 0.037*
H10C −0.004705 0.187831 0.326935 0.037*
C9 0.21584 (16) 0.2703 (2) 0.27933 (8) 0.0227 (3)
H9A 0.180810 0.375246 0.296617 0.034*
H9B 0.175456 0.256460 0.234144 0.034*
H9C 0.310786 0.282002 0.283039 0.034*
C3 0.46350 (15) 0.0404 (2) 0.35966 (7) 0.0166 (3)
C8 0.39804 (16) −0.0515 (2) 0.30028 (7) 0.0192 (3)
C15 0.31230 (18) 0.3783 (2) 0.56960 (8) 0.0270 (4)
H15 0.224058 0.395222 0.574240 0.032*
C7 0.24693 (16) −0.0608 (2) 0.29224 (7) 0.0213 (3)
H7A 0.223032 −0.164981 0.315275 0.026*
H7B 0.209284 −0.075806 0.246229 0.026*
C14 0.4120 (2) 0.4514 (2) 0.61590 (8) 0.0299 (4)
H14 0.391561 0.513786 0.651450 0.036*
C13 0.54279 (19) 0.4297 (2) 0.60821 (8) 0.0280 (4)
H13 0.611825 0.475897 0.639260 0.034*
C2 0.59994 (15) 0.0631 (2) 0.38810 (7) 0.0196 (3)
C1 0.72083 (17) 0.0203 (3) 0.36008 (9) 0.0295 (4)
H1A 0.799516 0.046429 0.391767 0.044*
H1B 0.720784 0.090854 0.321550 0.044*
H1C 0.720059 −0.104005 0.348878 0.044*
H1W −0.026 (3) 0.288 (4) 0.4977 (14) 0.063 (9)*
H2W 0.012 (3) 0.362 (4) 0.4440 (13) 0.066 (8)*
H1N1 0.1557 (19) −0.083 (3) 0.4188 (9) 0.024 (5)*
H2N1 0.244 (2) −0.009 (3) 0.4766 (11) 0.036 (5)*
H3N1 0.112 (2) 0.080 (3) 0.4513 (11) 0.049 (7)*

3,6,6-Trimethyl-4-oxo-1-(pyridin-2-yl)-4,5,6,7-tetrahydro-1H-indazol-7-aminium chloride monohydrate (2) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0343 (2) 0.0261 (2) 0.0301 (2) −0.00602 (18) 0.00909 (17) −0.00145 (17)
O1 0.0328 (7) 0.0360 (7) 0.0182 (6) 0.0076 (5) 0.0077 (5) −0.0040 (5)
N2 0.0237 (7) 0.0214 (7) 0.0185 (6) 0.0011 (6) 0.0053 (5) −0.0027 (6)
O1W 0.0343 (7) 0.0287 (7) 0.0385 (8) 0.0014 (6) 0.0152 (6) −0.0051 (6)
N3 0.0144 (6) 0.0174 (6) 0.0156 (6) −0.0002 (5) 0.0018 (5) 0.0000 (5)
N1 0.0185 (7) 0.0208 (7) 0.0162 (6) −0.0037 (6) 0.0045 (5) −0.0014 (6)
N4 0.0140 (6) 0.0226 (7) 0.0222 (7) 0.0005 (5) 0.0036 (5) 0.0019 (6)
C5 0.0155 (7) 0.0168 (7) 0.0143 (7) −0.0016 (6) 0.0026 (5) 0.0007 (6)
C12 0.0250 (8) 0.0171 (7) 0.0211 (8) −0.0021 (6) −0.0029 (6) 0.0022 (6)
C11 0.0226 (8) 0.0141 (7) 0.0147 (7) −0.0004 (6) 0.0018 (6) 0.0019 (6)
C4 0.0164 (7) 0.0153 (7) 0.0138 (7) −0.0017 (6) 0.0022 (5) 0.0020 (6)
C6 0.0156 (7) 0.0224 (8) 0.0140 (7) −0.0015 (6) 0.0003 (5) 0.0008 (6)
C10 0.0177 (8) 0.0332 (9) 0.0216 (8) −0.0044 (7) −0.0002 (6) −0.0003 (7)
C9 0.0221 (8) 0.0251 (9) 0.0193 (7) −0.0006 (7) −0.0004 (6) 0.0054 (7)
C3 0.0185 (7) 0.0171 (7) 0.0146 (7) 0.0000 (6) 0.0039 (6) 0.0017 (6)
C8 0.0262 (8) 0.0180 (7) 0.0139 (7) 0.0015 (6) 0.0045 (6) 0.0031 (6)
C15 0.0344 (9) 0.0263 (9) 0.0222 (8) 0.0030 (7) 0.0100 (7) −0.0024 (7)
C7 0.0244 (8) 0.0229 (8) 0.0163 (7) −0.0042 (7) 0.0033 (6) −0.0034 (6)
C14 0.0506 (12) 0.0225 (9) 0.0173 (7) −0.0006 (8) 0.0079 (7) −0.0035 (7)
C13 0.0427 (11) 0.0181 (8) 0.0189 (8) −0.0055 (7) −0.0061 (7) −0.0014 (7)
C2 0.0183 (8) 0.0210 (8) 0.0201 (7) 0.0016 (6) 0.0054 (6) 0.0036 (6)
C1 0.0205 (8) 0.0392 (11) 0.0310 (9) 0.0027 (8) 0.0109 (7) 0.0000 (8)

3,6,6-Trimethyl-4-oxo-1-(pyridin-2-yl)-4,5,6,7-tetrahydro-1H-indazol-7-aminium chloride monohydrate (2) . Geometric parameters (Å, º)

O1—C8 1.2207 (19) C6—C7 1.543 (2)
N2—C11 1.330 (2) C10—H10A 0.9600
N2—C15 1.340 (2) C10—H10B 0.9600
O1W—H1W 0.80 (3) C10—H10C 0.9600
O1W—H2W 0.94 (3) C9—H9A 0.9600
N3—C4 1.3601 (18) C9—H9B 0.9600
N3—N4 1.3800 (17) C9—H9C 0.9600
N3—C11 1.4196 (19) C3—C2 1.418 (2)
N1—C5 1.5127 (19) C3—C8 1.464 (2)
N1—H1N1 0.85 (2) C8—C7 1.519 (2)
N1—H2N1 0.98 (2) C15—C14 1.378 (3)
N1—H3N1 0.95 (2) C15—H15 0.9300
N4—C2 1.325 (2) C7—H7A 0.9700
C5—C4 1.499 (2) C7—H7B 0.9700
C5—C6 1.5522 (19) C14—C13 1.380 (3)
C5—H5 0.9800 C14—H14 0.9300
C12—C13 1.384 (2) C13—H13 0.9300
C12—C11 1.390 (2) C2—C1 1.491 (2)
C12—H12 0.9300 C1—H1A 0.9600
C4—C3 1.382 (2) C1—H1B 0.9600
C6—C10 1.534 (2) C1—H1C 0.9600
C6—C9 1.537 (2)
C11—N2—C15 116.89 (14) H10B—C10—H10C 109.5
H1W—O1W—H2W 103 (3) C6—C9—H9A 109.5
C4—N3—N4 111.34 (12) C6—C9—H9B 109.5
C4—N3—C11 129.57 (13) H9A—C9—H9B 109.5
N4—N3—C11 118.90 (12) C6—C9—H9C 109.5
C5—N1—H1N1 113.5 (13) H9A—C9—H9C 109.5
C5—N1—H2N1 111.4 (12) H9B—C9—H9C 109.5
H1N1—N1—H2N1 106.9 (18) C4—C3—C2 105.85 (13)
C5—N1—H3N1 108.9 (15) C4—C3—C8 122.00 (13)
H1N1—N1—H3N1 112.7 (19) C2—C3—C8 132.00 (14)
H2N1—N1—H3N1 102.9 (18) O1—C8—C3 123.26 (15)
C2—N4—N3 105.71 (12) O1—C8—C7 122.43 (14)
C4—C5—N1 110.64 (12) C3—C8—C7 114.23 (13)
C4—C5—C6 109.76 (12) N2—C15—C14 123.21 (17)
N1—C5—C6 112.59 (12) N2—C15—H15 118.4
C4—C5—H5 107.9 C14—C15—H15 118.4
N1—C5—H5 107.9 C8—C7—C6 113.45 (13)
C6—C5—H5 107.9 C8—C7—H7A 108.9
C13—C12—C11 116.49 (16) C6—C7—H7A 108.9
C13—C12—H12 121.8 C8—C7—H7B 108.9
C11—C12—H12 121.8 C6—C7—H7B 108.9
N2—C11—C12 124.81 (14) H7A—C7—H7B 107.7
N2—C11—N3 114.70 (13) C15—C14—C13 118.40 (16)
C12—C11—N3 120.48 (14) C15—C14—H14 120.8
N3—C4—C3 106.48 (13) C13—C14—H14 120.8
N3—C4—C5 128.05 (13) C14—C13—C12 120.12 (16)
C3—C4—C5 125.34 (13) C14—C13—H13 119.9
C10—C6—C9 107.73 (13) C12—C13—H13 119.9
C10—C6—C7 110.38 (13) N4—C2—C3 110.57 (13)
C9—C6—C7 109.20 (12) N4—C2—C1 120.48 (14)
C10—C6—C5 110.21 (12) C3—C2—C1 128.90 (15)
C9—C6—C5 108.27 (12) C2—C1—H1A 109.5
C7—C6—C5 110.96 (12) C2—C1—H1B 109.5
C6—C10—H10A 109.5 H1A—C1—H1B 109.5
C6—C10—H10B 109.5 C2—C1—H1C 109.5
H10A—C10—H10B 109.5 H1A—C1—H1C 109.5
C6—C10—H10C 109.5 H1B—C1—H1C 109.5
H10A—C10—H10C 109.5
C4—N3—N4—C2 0.70 (17) N3—C4—C3—C2 −1.90 (16)
C11—N3—N4—C2 −174.73 (13) C5—C4—C3—C2 174.12 (14)
C15—N2—C11—C12 1.5 (2) N3—C4—C3—C8 174.09 (13)
C15—N2—C11—N3 −178.02 (14) C5—C4—C3—C8 −9.9 (2)
C13—C12—C11—N2 1.0 (2) C4—C3—C8—O1 −178.45 (15)
C13—C12—C11—N3 −179.50 (14) C2—C3—C8—O1 −3.6 (3)
C4—N3—C11—N2 9.7 (2) C4—C3—C8—C7 −1.5 (2)
N4—N3—C11—N2 −175.82 (13) C2—C3—C8—C7 173.30 (16)
C4—N3—C11—C12 −169.86 (15) C11—N2—C15—C14 −2.8 (2)
N4—N3—C11—C12 4.6 (2) O1—C8—C7—C6 −148.01 (15)
N4—N3—C4—C3 0.81 (17) C3—C8—C7—C6 35.01 (18)
C11—N3—C4—C3 175.62 (14) C10—C6—C7—C8 179.76 (13)
N4—N3—C4—C5 −175.06 (14) C9—C6—C7—C8 61.51 (16)
C11—N3—C4—C5 −0.3 (2) C5—C6—C7—C8 −57.76 (16)
N1—C5—C4—N3 −72.98 (19) N2—C15—C14—C13 1.5 (3)
C6—C5—C4—N3 162.17 (14) C15—C14—C13—C12 1.2 (3)
N1—C5—C4—C3 111.88 (16) C11—C12—C13—C14 −2.3 (2)
C6—C5—C4—C3 −13.0 (2) N3—N4—C2—C3 −1.93 (17)
C4—C5—C6—C10 167.33 (13) N3—N4—C2—C1 175.62 (15)
N1—C5—C6—C10 43.61 (17) C4—C3—C2—N4 2.45 (18)
C4—C5—C6—C9 −75.07 (15) C8—C3—C2—N4 −172.97 (15)
N1—C5—C6—C9 161.21 (13) C4—C3—C2—C1 −174.84 (17)
C4—C5—C6—C7 44.75 (16) C8—C3—C2—C1 9.7 (3)
N1—C5—C6—C7 −78.96 (15)

3,6,6-Trimethyl-4-oxo-1-(pyridin-2-yl)-4,5,6,7-tetrahydro-1H-indazol-7-aminium chloride monohydrate (2) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C12—H12···Cl1i 0.93 2.90 3.7006 (17) 145
C14—H14···O1ii 0.93 2.41 3.244 (2) 149
O1W—H1W···Cl1iii 0.80 (3) 2.39 (3) 3.185 (2) 176 (3)
O1W—H2W···Cl1 0.94 (3) 2.31 (3) 3.247 (2) 179 (2)
N1—H1N1···Cl1iv 0.85 (2) 2.40 (2) 3.228 (2) 165 (2)
N1—H2N1···N4v 0.98 (2) 2.20 (2) 3.1475 (19) 164 (2)
N1—H3N1···O1W 0.95 (2) 1.85 (3) 2.775 (2) 162 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+1/2, z+1/2; (iii) −x, −y+1, −z+1; (iv) x, y−1, z; (v) −x+1, −y, −z+1.

Funding Statement

This work was funded by Latvian Council of Science grant 14.0593.

References

  1. Abdel-Rahman, H. M. & Ozadali, K. (2012). Arch. Pharm. Pharm. Med. Chem. 345, 878–883. [DOI] [PubMed]
  2. Ansari, A., Ali, A., Asif, M. & Shamsuzzaman (2017). New J. Chem. 41, 16–41.
  3. Bassyouni, F., El Din Gaffer, A., Roaiah, H., El-Senousy, W. M., El Nakkady, S. S. & &Rehim, M. A. (2016). Res. J. Pharm. Biol. Chem. Sci, 7, 24–37.
  4. Bruker (20014). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Burch, J. D., Barrett, K., Chen, Y., DeVoss, J., Eigenbrot, C., Goldsmith, R., Ismaili, M. H. A., Lau, K., Lin, Z., Ortwine, D. F., Zarrin, A. A., McEwan, P. A., Barker, J. J., Ellebrandt, C., Kordt, D., Stein, D. B., Wang, X., Chen, Y., Hu, B., Xu, X., Yuen, P.-W., Zhang, Y. & Pei, Z. (2015). J. Med. Chem. 58, 3806–3816. [DOI] [PubMed]
  6. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  7. Claramunt, R. M., López, C., Pérez-Medina, C., Pinilla, E., Torres, M. R. & Elguero, J. (2006). Tetrahedron, 62, 11704–11713.
  8. Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126.
  9. Faidallah, H. M., Khan, K. A., Rostom, S. A. F. & Asiri, A. M. (2013). J. Enzyme Inhib. Med. Chem. 28, 495–508. [DOI] [PubMed]
  10. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  11. Gaikwad, D. D., Chapolikar, A. D., Devkate, C. G., Warad, K. D., Tayade, A. P., Pawar, R. P. & Domb, A. J. (2015). Eur. J. Med. Chem. 90, 707–731. [DOI] [PubMed]
  12. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  13. Guo, S., Song, Y., Huang, Q., Yuan, H., Wan, B., Wang, Y., He, R., Beconi, M. G., Franzblau, S. G. & Kozikowski, A. P. (2010). J. Med. Chem. 53, 649–659. [DOI] [PubMed]
  14. Heifetz, A., Trani, G., Aldeghi, M., MacKinnon, C. H., McEwan, P. A., Brookfield, F. A., Chudyk, E. I., Bodkin, M., Pei, Z., Burch, J. D. & Ortwine, D. F. (2016). J. Med. Chem. 59, 4352–4363. [DOI] [PubMed]
  15. Jia, J., Xu, Q.-C., Li, R.-C., Tang, X., He, Y.-F., Zhang, M.-Y., Zhang, Y. & Xing, G.-W. (2012). Org. Biomol. Chem. 10, 6279–6286. [DOI] [PubMed]
  16. Khlebnicova, T. S., Piven, Y. A., Baranovsky, A. V., Lakhvich, F. A., Shishkina, S. V., Zicāne, D., Tetere, Z., Rāviņa, I., Kumpiņš, V., Rijkure, I., Mieriņa, I., Peipiņš, U. & Turks, M. (2017). Steroids, 117, 77–89. [DOI] [PubMed]
  17. Khlebnikova, T. S., Piven’, Y. A., Baranovskii, A. V. & Lakhvich, F. A. (2012). Russ. J. Org. Chem. 48, 411–418.
  18. Kim, J., Song, H. & Park, S. B. (2010). Eur. J. Org. Chem. pp. 3815–3822.
  19. Matthews, J. M., McNally, J. J., Connolly, P. J., Xia, M., Zhu, B., Black, S., Chen, C., Hou, C., Liang, Y., Tang, Y. & Macielag, M. J. (2016). Bioorg. Med. Chem. Lett. 26, 5346–5349. [DOI] [PubMed]
  20. Murugavel, K., Amirthaganesan, S. & R. T. S. (2010). Chem. Heterocycl. C. 46, 302–306.
  21. Nakhai, A. & Bergman, J. (2009). Tetrahedron, 65, 2298–2306.
  22. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  23. Polo, E., Trilleras, J., Ramos, J., Galdámez, A., Quiroga, J. & Gutierrez, M. (2016). Molecules, 21, article number 903. [DOI] [PMC free article] [PubMed]
  24. Scala, A., Piperno, A., Risitano, F., Cirmi, S., Navarra, M. & Grassi, G. (2015). Mol. Divers. 19, 473–480. [DOI] [PubMed]
  25. Sheldrick, G. M. (2015). Acta Cryst C71, 3–8.
  26. Silva, V. L. M., Silva, A. M. S., Pinto, D. C. G. A. & Cavaleiro, J. (2006). Synlett, pp. 1369–1373.
  27. Song, H., Lee, H., Kim, J. & Park, S. B. (2012). ACS Comb. Sci. 14, 66–74. [DOI] [PubMed]
  28. Strakova, I., Kumpiņa, I., Rjabovs, V., Lugiņina, J., Belyakov, S. & Turks, M. (2011). Tetrahedron Asymmetry, 22, 728–739.
  29. Strakova, I., Turks, M. & Strakovs, A. (2009). Tetrahedron Lett. 50, 3046–3049.
  30. Turks, M., Strakova, I., Gorovojs, K., Belyakov, S., Piven, Y. A., Khlebnicova, T. S. & Lakhvich, F. A. (2012). Tetrahedron, 68, 6131–6140.
  31. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  32. Wiener, J. J. M., Gomez, L., Venkatesan, H., Santillán, A. Jr, Allison, B. D., Schwarz, K. L., Shinde, S., Tang, L., Hack, M. D., Morrow, B. J., Motley, S. T., Goldschmidt, R. M., Shaw, K. J., Jones, T. K. & Grice, C. A. (2007). Bioorg. Med. Chem. Lett. 17, 2718–2722. [DOI] [PubMed]
  33. Wu, Z.-W., Song, S.-Y., Li, L., Lu, H.-L., Lieberman, B., Huang, Y.-S. & Mach, R. H. (2015). Bioorg. Med. Chem. 23, 1463–1471. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) 1, 2, global. DOI: 10.1107/S205698901701667X/eb2002sup1.cif

e-73-01931-sup1.cif (434.6KB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S205698901701667X/eb20021sup2.hkl

e-73-01931-1sup2.hkl (278.3KB, hkl)

Supporting information file. DOI: 10.1107/S205698901701667X/eb20021sup4.mol

Structure factors: contains datablock(s) 2. DOI: 10.1107/S205698901701667X/eb20022sup3.hkl

e-73-01931-2sup3.hkl (283.5KB, hkl)

Supporting information file. DOI: 10.1107/S205698901701667X/eb20022sup5.mol

Supporting information file. DOI: 10.1107/S205698901701667X/eb20021sup6.cml

Supporting information file. DOI: 10.1107/S205698901701667X/eb20022sup7.cml

CCDC references: 1586488, 1586487

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES