Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Nov 28;73(Pt 12):1937–1941. doi: 10.1107/S2056989017016784

Crystal structure, thermal and fluorescence properties of 2,2′:6′,2′′-terpyridine-1,1′,1′′-triium tetra­chlorido­nickelate(II) chloride

Ouahida Zeghouan a,b, Lamia Bendjeddou a,*, Hocine Merazig a, Jean Claude Daran c
PMCID: PMC5730256  PMID: 29250419

The synthesis, and structural determination of 2,2′:6′,2′′-terpyridine-1,1′,1′′-triium tetra­chlorido­nickelate(II) chloride are reported. The crystal structure features N—H⋯Cl and C—H⋯Cl hydrogen bonds and Ni—Cl⋯π ring inter­actions.

Keywords: crystal structure, nickel(II) complex, terpyridinium cation, protonation, hydrogen bonds, fluorescence

Abstract

The title compound, (C15H14N3)[NiCl4]Cl, comprises an NiII cation tetra­hedrally coordinated by four chloride anions, a non-coordinating chloride anion and an essentially planar terpyridinium trication (tpyH3 3+), in which the central pyridinium ring forms dihedral angles of 5.7 (2) and 6.0 (2)° with the peripheral pyridinium rings. Three inter-species N—H⋯Cl hydrogen bonds are formed with the Cl anion, which also forms a link between the (tpyH3 3+) cations through an aromatic C—H⋯Cl inter­action, forming a zigzag chain extending along the 21 (b) screw axis. Two of the anionic Cl atoms of the [NiCl4]2− anions form Ni—Cl⋯π inter­actions with separate pyridinium rings [Ni⋯Cg = 3.669 (3) and 3.916 (4) Å]. In the crystal, successive undulating inorganic and organic layers are formed, extending across the (100) plane. Thermogravimetric and differential thermal analysis (TGA/DTA) indicate that the compound starts to decompose at 313 K and may be a candidate for use as a blue-light luminescent material.

Chemical context  

The 2,2′:6′,2′′-terpyridine mol­ecule (tpy) has been the object of numerous studies because of its excellent complexing properties on metal ions. The multitude of applications of this cation motivated a large development in the synthesis of terpyridines during the last decade. The compounds derived from the terpyridine mol­ecule can be used in photochemistry for the realization of luminescent materials (Adeloye et al., 2012), the assembly of electrochemical sensors (Indelli et al., 1998), in photocatalysis (Mori et al., 2012) and as a sensitizing agent in photovoltaic conversion processes (Kohle et al., 1996). The literature reports some hybrid complexes of transition metal species incorporating tpy as a neutral ligand as well as complexes with its protonated forms [(tpyH+), (tpyH2 2+), (tpyH3 3+)] (Kochel, 2006). The title compound, which is a new hybrid complex, was characterized using IR spectroscopy and X-ray crystallography and its thermal and fluorescence properties have also been recorded.

Structural commentary  

Crystals of (C15H14N3)[NiCl4]Cl, (I), are monoclinic (space group P21), the asymmetric unit comprising an organic terpyridinium (tpyH3 3+) cation, a tetra­chloro­nickelate(II) [NiCl4]2− dianion and a free chloride anion (Cl5) (Fig. 1).graphic file with name e-73-01937-scheme1.jpg

Figure 1.

Figure 1

The asymmetric unit of (C15H14N3)[NiCl4]Cl, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

The (tpyH3 3+) cation has the ciscis conformation and is essentially planar, with dihedral angles between the central pyridine ring and the two peripheral ring moieties of the ligand of 5.7 (2) and 6.0 (2)°. The three protonated N atoms (N1, N2 and N3) form hydrogen bonds with the chloride counter-anion (Cl5) (Table 1), giving short H11⋯H22 and H22⋯H33 contacts (1.70 and 1.68 Å, respectively), which are comparable to those reported for tpyH3Cl(PF6)2 (H⋯H range: 1.667–1.684 Å; Yoshikawa et al., 2016). The complete protonation of an aromatic mol­ecule that is nitro­gen-enriched (a polynitro­genous derivative) is rarely observed, probably because of an unfavorable charge distribution resulting from the proximity of the nitro­gen H atoms, as previously indicated in this structure. This results in an opening of the inter­nal angles of the three N atoms [C1—N1—C5 = 124.0 (4), C10—N2—C6 = 118.9 (3) and C15—N3—C11 = 123.2 (3)°]. These values are comparable to those found in the literature for (tpyH3 3+). In 2,2′:6′,2′′-terpyridine­triium bis­(hexa­fluorido­phosphate) chloride (Yoshikawa et al., 2016), C1—N1—C5 = 122.90, C6—N2—C10 = 117.60 and C11—N3—C15 = 123.27, C16—N4—C20 = 123.69, C21—N5—C25 = 118.22 and C26—N6—C30 = 123.97° and in catena-[(2,2′:6′,2′′-terpyridin­ium)(μ3-sulfato)­sulfato­dioxouranium) nitrate dihydrate] (Jie Ling et al., 2010), C1—N1—C5 = 123.33, C6—N2—C10 = 118.03 and C11—N3—C15 = 123.29°. The inter­nal angles for a deprotonated terpyridine are C1—N1—C5 = 116.9 (8), C10—N2—C6 = 119.6 (11) and C15—N3—C11 = 117.1 (8)° (Maynard et al., 2009).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11⋯Cl5 0.86 2.26 3.026 (4) 149
N2—H22⋯Cl5 0.86 2.67 3.532 (4) 178
N3—H33⋯Cl5 0.86 2.25 3.010 (4) 148
C14—H14⋯Cl5i 0.93 2.78 3.421 (6) 127

Symmetry code: (i) Inline graphic.

The nickel(II) centre of the dianion has a quasi-regular tetra­hedral environment [Ni—Cl bond length range, 2.185 (2)–2.201 (2) Å and Cl—Ni—Cl bond angle range, 108.08 (5)–111.59 (5)°] (Fig. 2). The inter­atomic distance and angle values are in good agreement with those taken from the literature (Igashira-Kamiyama et al., 2013).

Figure 2.

Figure 2

The nickel tetra­hedral environment.

Supra­molecular features  

The previously described inter-species unit formed through the three individual N—H⋯Cl hydrogen bonds between the (tpyH3 3+) cation and the Cl5 anion (Table 1) is extended through a C14—H14⋯Cl5i hydrogen bond into chains extending along the 21 screw axis of the unit cell. Convoluted layers comprising successive [tpyH3 3+, Cl] (type A) and [NiCl4]2− (type B) ions extend across the (100) plane (Figs. 3 and 4). Two of the anionic Cl atoms of the [NiCl4]2− anion form Ni—Cl⋯π inter­actions with separate pyridine ring moieties of the cation within the asymmetric unit: Ni1—Cl1⋯Cg1 = 3.916 (4) Å and Ni1—Cl2⋯Cg2 = 3.669 (3) Å, where Cg1 and Cg2 are the centroids of the N1/C1–C5 and N2/C6–C10 rings, respectively (Fig. 3).

Figure 3.

Figure 3

A view of the two-dimensional network of (I), showing the N—H⋯Cl and C—H⋯Cl hydrogen bonds (red dashed lines) and Ni—Cl⋯π inter­actions (blue dashed lines).

Figure 4.

Figure 4

A perspective view of layers A and B.

Thermogravimetric analysis (TGA)  

Thermal analyses were performed on a SETARM 92-16.18 PC/PG 1 instrument from 303 to 1273 K under a dynamic air atmosphere and under nitro­gen at 200.0 ml min−1 with a heating rate of 10 K min−1.

The stability of the (C15H14N3)[NiCl4]Cl complex was measured by TGA and the experimental results are in agreement with the calculated data. As shown in Fig. 5, the first weight loss of 16.5% (calculated 15.21%) at 40–126 K corresponds to the loss of the two coordinated chloride anions and the second loss of 48.6% (calculated 49.9%) at 126–281 K corresponds to the loss of the organic mol­ecule tpyH3 3+, and then the two coordinated and free chloride anions gradually decompose (ΔP/P = 23.14%, calculated = 22.51%). In addition, the corresponding endothermic peaks (at 394.16; 554.63°C and at 638 K) in the differential scanning ATD curve also record the processes of weight loss.

Figure 5.

Figure 5

The thermogravimetric (TG) and differential thermal analysis (DTA) curves.

Luminescent properties  

Photoluminescence spectra were measured using a Cary Eclipse (Agilent Technologies) fluorescence spectrophotometer.

The fluorescence properties of (C15H14N3)[NiCl4]Cl and the free ligand tpy were investigated in the solid state at 298 K. As depicted in Fig. 6, the new compound (I) exhibits fluorescence emission at ca 481 nm (excited at 250 nm) compared to that of tpy (425 nm, excited at 250 nm), which can be attributed to π–π* electronic transitions. Thus, the title compound may be a candidate for use as a blue-light luminescent material and it is believed that more transition metal heterocyclic compounds with good luminescent properties may be developed (Wen et al., 2007; Zhang et al., 2010; Huang et al., 2013).

Figure 6.

Figure 6

The solid-state fluorescence spectrum of tpy and the title compound (I) (excitation at 250 nm).

Database survey  

A search of the Cambridge Structural Database (Version 5.38; Groom et al., 2016) shows 4279 hits comprising the terpyridine species. However, only two structures containing the (tpyH3 3+) form are present (Ling et al., 2010; Yoshikawa et al., 2016).

Synthesis and crystallization  

All the chemicals and solvents were purchased commercially and used as received. The infrared spectra were recorded on a Perkin–Elmer spectrometer at room temperature in the range of 4000–500 cm−1. tpy (1.67 g, 10 mmol) was dissolved in a 50/50 mixture of water and ethanol (20 ml) in a 50 ml round-bottom flask. Nickel(II) chloride (2.50 g, 10 mmol) was added to the flask to give a green-coloured solution that was stirred for 3 h under gentle heat, producing a green-coloured precipitate. The precipitate was filtered and washed twice with cold water/ethanol solvent then dried under vacuum for 20 min, producing a green powder (2.7g, 64% yield). Green prismatic crystals of the title complex (I) suitable for X-ray analysis were obtained from water/ethanol solvent. IR of (I) (cm−1): 3390 (v/s), 2930 (v/s), 1667.8 (s), 1622.4 (s), 1417.4 (m), 987.6 (w), 540.6 (w).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were placed at calculated positions and refined as riding atoms, with C—H = 0.93 Å, N—H = 0.86 Å and with U iso(H) = 1.2U eq(C,N). Although not of relevance with this achiral mol­ecule, the Flack parameter (Flack, 1983) was determined as 0.178 (16) for 4425 Friedel pairs. Minor non-merohedral twinning was identified and allowed for in the refinement, giving a BASF factor of 0.1783.

Table 2. Experimental details.

Crystal data
Chemical formula (C15H14N3)[NiCl4]Cl
M r 472.25
Crystal system, space group Monoclinic, P21
Temperature (K) 293
a, b, c (Å) 6.689 (5), 13.809 (5), 10.620 (5)
β (°) 101.271 (5)
V3) 962.0 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.71
Crystal size (mm) 0.20 × 0.10 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 36239, 8772, 6308
R int 0.031
(sin θ/λ)max−1) 0.828
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.059, 0.150, 1.15
No. of reflections 8772
No. of parameters 218
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.54, −0.51

Computer programs: APEX2 and SAINT (Bruker, 2006), SHELXS97 and SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2008) and POVRay (Persistence of Vision, 2004).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017016784/zs2392sup1.cif

e-73-01937-sup1.cif (24.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017016784/zs2392Isup2.hkl

e-73-01937-Isup2.hkl (420.4KB, hkl)

CCDC reference: 1587116

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

(C15H14N3)[NiCl4]Cl F(000) = 476
Mr = 472.25 Dx = 1.630 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 6308 reflections
a = 6.689 (5) Å θ = 3.0–36.1°
b = 13.809 (5) Å µ = 1.71 mm1
c = 10.620 (5) Å T = 293 K
β = 101.271 (5)° Prism, green
V = 962.0 (9) Å3 0.20 × 0.10 × 0.08 mm
Z = 2

Data collection

Bruker APEXII CCD diffractometer 6308 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.031
Graphite monochromator θmax = 36.1°, θmin = 3.0°
φ and ω scans h = −11→10
36239 measured reflections k = −22→22
8772 independent reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150 H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0529P)2 + 0.6276P] where P = (Fo2 + 2Fc2)/3
8772 reflections (Δ/σ)max < 0.001
218 parameters Δρmax = 0.54 e Å3
1 restraint Δρmin = −0.51 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2>2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.6965 (5) 0.0120 (2) 0.2808 (3) 0.0423 (8)
N2 0.6834 (4) 0.1969 (2) 0.2073 (2) 0.0345 (7)
N3 0.3276 (4) 0.2445 (2) 0.0620 (3) 0.0378 (8)
C1 0.6807 (7) −0.0822 (3) 0.3068 (4) 0.0564 (14)
C2 0.8509 (9) −0.1305 (4) 0.3730 (5) 0.0682 (16)
C3 1.0290 (9) −0.0823 (4) 0.4081 (5) 0.0704 (16)
C4 1.0401 (7) 0.0151 (4) 0.3788 (4) 0.0570 (14)
C5 0.8694 (5) 0.0637 (3) 0.3144 (3) 0.0400 (9)
C6 0.8612 (5) 0.1667 (3) 0.2779 (3) 0.0377 (8)
C7 1.0221 (6) 0.2299 (4) 0.3166 (4) 0.0514 (13)
C8 0.9989 (6) 0.3259 (3) 0.2837 (5) 0.0566 (11)
C9 0.8147 (6) 0.3578 (3) 0.2109 (4) 0.0510 (11)
C10 0.6616 (5) 0.2905 (2) 0.1750 (3) 0.0360 (8)
C11 0.4595 (5) 0.3173 (2) 0.0989 (3) 0.0374 (8)
C12 0.3955 (7) 0.4115 (3) 0.0654 (4) 0.0493 (11)
C13 0.1989 (7) 0.4256 (3) −0.0041 (4) 0.0555 (14)
C14 0.0724 (7) 0.3501 (4) −0.0406 (4) 0.0574 (14)
C15 0.1389 (6) 0.2582 (3) −0.0065 (4) 0.0496 (11)
Ni1 0.67429 (7) 0.12776 (3) 0.66208 (4) 0.0431 (1)
Cl1 0.53022 (16) −0.01301 (7) 0.60866 (11) 0.0556 (3)
Cl2 0.55986 (17) 0.23114 (8) 0.50704 (10) 0.0576 (3)
Cl3 0.6050 (2) 0.18121 (10) 0.84272 (11) 0.0672 (4)
Cl4 1.00476 (14) 0.11245 (9) 0.68627 (12) 0.0629 (4)
Cl5 0.27653 (15) 0.03265 (7) 0.11437 (12) 0.0576 (3)
H1 0.55780 −0.11470 0.28090 0.0680*
H2 0.84260 −0.19570 0.39320 0.0820*
H3 1.14390 −0.11440 0.45200 0.0840*
H4 1.16290 0.04800 0.40240 0.0680*
H7 1.14480 0.20740 0.36450 0.0620*
H8 1.10530 0.36920 0.30980 0.0680*
H9 0.79550 0.42250 0.18730 0.0610*
H11 0.58970 0.04130 0.24020 0.0510*
H12 0.48240 0.46380 0.08890 0.0590*
H13 0.15350 0.48820 −0.02590 0.0670*
H14 −0.05810 0.36030 −0.08820 0.0690*
H15 0.05350 0.20540 −0.03080 0.0600*
H22 0.58510 0.15670 0.18310 0.0410*
H33 0.36610 0.18630 0.08330 0.0450*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0412 (14) 0.0405 (14) 0.0434 (14) 0.0049 (11) 0.0040 (11) 0.0059 (11)
N2 0.0329 (11) 0.0359 (12) 0.0329 (11) −0.0041 (9) 0.0023 (9) −0.0026 (10)
N3 0.0373 (13) 0.0349 (13) 0.0394 (13) 0.0067 (10) 0.0029 (10) −0.0032 (10)
C1 0.069 (3) 0.044 (2) 0.057 (2) 0.0067 (19) 0.014 (2) 0.0092 (17)
C2 0.099 (4) 0.050 (2) 0.059 (2) 0.021 (3) 0.024 (3) 0.017 (2)
C3 0.067 (3) 0.081 (3) 0.061 (2) 0.032 (3) 0.007 (2) 0.016 (2)
C4 0.047 (2) 0.073 (3) 0.048 (2) 0.0178 (19) 0.0019 (16) 0.0088 (19)
C5 0.0381 (15) 0.0508 (18) 0.0295 (13) 0.0063 (14) 0.0024 (11) 0.0005 (12)
C6 0.0330 (13) 0.0479 (17) 0.0306 (13) −0.0024 (12) 0.0024 (11) −0.0055 (12)
C7 0.0339 (15) 0.069 (3) 0.0476 (19) −0.0069 (16) −0.0011 (14) −0.0065 (18)
C8 0.0444 (19) 0.061 (2) 0.063 (2) −0.0246 (17) 0.0074 (18) −0.0163 (19)
C9 0.052 (2) 0.0391 (17) 0.064 (2) −0.0166 (15) 0.0168 (18) −0.0104 (16)
C10 0.0373 (14) 0.0345 (14) 0.0361 (14) −0.0030 (11) 0.0070 (12) −0.0056 (11)
C11 0.0431 (16) 0.0350 (14) 0.0352 (14) 0.0037 (12) 0.0106 (12) −0.0022 (11)
C12 0.061 (2) 0.0354 (16) 0.053 (2) 0.0041 (15) 0.0147 (17) 0.0042 (14)
C13 0.068 (3) 0.050 (2) 0.0486 (19) 0.0185 (19) 0.0118 (18) 0.0102 (17)
C14 0.057 (2) 0.062 (3) 0.049 (2) 0.024 (2) 0.0004 (17) 0.0058 (18)
C15 0.0417 (18) 0.055 (2) 0.0487 (19) 0.0085 (15) 0.0002 (15) −0.0056 (16)
Ni1 0.0447 (2) 0.0389 (2) 0.0450 (2) 0.0022 (2) 0.0074 (2) −0.0037 (2)
Cl1 0.0557 (5) 0.0396 (4) 0.0668 (6) −0.0065 (4) 0.0008 (4) −0.0078 (4)
Cl2 0.0582 (6) 0.0542 (5) 0.0578 (5) 0.0045 (4) 0.0048 (4) 0.0156 (4)
Cl3 0.0789 (7) 0.0736 (7) 0.0531 (5) 0.0027 (6) 0.0231 (5) −0.0196 (5)
Cl4 0.0395 (4) 0.0623 (7) 0.0851 (7) 0.0057 (4) 0.0075 (4) −0.0053 (5)
Cl5 0.0413 (4) 0.0435 (5) 0.0823 (7) −0.0114 (4) −0.0017 (4) 0.0015 (5)

Geometric parameters (Å, º)

Ni1—Cl1 2.194 (2) C7—C8 1.372 (7)
Ni1—Cl2 2.201 (2) C8—C9 1.392 (6)
Ni1—Cl3 2.188 (2) C9—C10 1.380 (5)
Ni1—Cl4 2.185 (2) C10—C11 1.480 (5)
N1—C5 1.347 (5) C11—C12 1.394 (5)
N1—C1 1.338 (5) C12—C13 1.390 (7)
N2—C6 1.342 (4) C13—C14 1.351 (7)
N2—C10 1.338 (4) C14—C15 1.370 (7)
N3—C15 1.341 (5) C1—H1 0.9300
N3—C11 1.344 (4) C2—H2 0.9300
N1—H11 0.8600 C3—H3 0.9300
N2—H22 0.8600 C4—H4 0.9300
N3—H33 0.8600 C7—H7 0.9300
C1—C2 1.387 (7) C8—H8 0.9300
C2—C3 1.352 (8) C9—H9 0.9300
C3—C4 1.386 (8) C12—H12 0.9300
C4—C5 1.384 (6) C13—H13 0.9300
C5—C6 1.472 (6) C14—H14 0.9300
C6—C7 1.384 (6) C15—H15 0.9300
Cl1—Ni1—Cl4 109.13 (5) N2—C10—C9 122.8 (3)
Cl1—Ni1—Cl2 108.08 (5) N3—C11—C10 116.7 (3)
Cl1—Ni1—Cl3 111.59 (5) N3—C11—C12 118.2 (3)
Cl3—Ni1—Cl4 108.20 (5) C10—C11—C12 125.1 (3)
Cl2—Ni1—Cl3 109.57 (5) C11—C12—C13 118.5 (4)
Cl2—Ni1—Cl4 110.28 (5) C12—C13—C14 121.3 (4)
C1—N1—C5 124.0 (4) C13—C14—C15 119.1 (4)
C6—N2—C10 118.9 (3) N3—C15—C14 119.8 (4)
C11—N3—C15 123.2 (3) N1—C1—H1 121.00
C5—N1—H11 118.00 C2—C1—H1 121.00
C1—N1—H11 118.00 C1—C2—H2 120.00
C10—N2—H22 121.00 C3—C2—H2 120.00
C6—N2—H22 121.00 C4—C3—H3 120.00
C15—N3—H33 118.00 C2—C3—H3 120.00
C11—N3—H33 118.00 C3—C4—H4 120.00
N1—C1—C2 118.8 (4) C5—C4—H4 120.00
C1—C2—C3 119.7 (5) C6—C7—H7 120.00
C2—C3—C4 119.9 (5) C8—C7—H7 120.00
C3—C4—C5 120.4 (5) C9—C8—H8 120.00
N1—C5—C4 117.2 (4) C7—C8—H8 120.00
C4—C5—C6 125.7 (4) C8—C9—H9 121.00
N1—C5—C6 117.2 (3) C10—C9—H9 121.00
N2—C6—C5 115.5 (3) C11—C12—H12 121.00
N2—C6—C7 121.5 (4) C13—C12—H12 121.00
C5—C6—C7 123.0 (3) C14—C13—H13 119.00
C6—C7—C8 119.4 (4) C12—C13—H13 119.00
C7—C8—C9 119.4 (4) C13—C14—H14 121.00
C8—C9—C10 118.0 (4) C15—C14—H14 120.00
N2—C10—C11 115.1 (3) C14—C15—H15 120.00
C9—C10—C11 122.1 (3) N3—C15—H15 120.00
C5—N1—C1—C2 0.4 (6) C4—C5—C6—N2 175.1 (3)
C1—N1—C5—C4 0.5 (5) C4—C5—C6—C7 −7.0 (6)
C1—N1—C5—C6 179.7 (3) N2—C6—C7—C8 0.9 (6)
C10—N2—C6—C5 177.3 (3) C5—C6—C7—C8 −176.8 (4)
C10—N2—C6—C7 −0.7 (5) C6—C7—C8—C9 −0.7 (7)
C6—N2—C10—C9 0.2 (5) C7—C8—C9—C10 0.2 (6)
C6—N2—C10—C11 −179.1 (3) C8—C9—C10—N2 0.1 (6)
C15—N3—C11—C10 179.5 (3) C8—C9—C10—C11 179.3 (4)
C15—N3—C11—C12 0.8 (5) N2—C10—C11—N3 −5.3 (4)
C11—N3—C15—C14 −0.8 (6) N2—C10—C11—C12 173.4 (3)
N1—C1—C2—C3 −1.0 (7) C9—C10—C11—N3 175.5 (3)
C1—C2—C3—C4 0.6 (8) C9—C10—C11—C12 −5.9 (5)
C2—C3—C4—C5 0.4 (7) N3—C11—C12—C13 0.1 (6)
C3—C4—C5—N1 −1.0 (6) C10—C11—C12—C13 −178.5 (4)
C3—C4—C5—C6 179.9 (4) C11—C12—C13—C14 −1.0 (6)
N1—C5—C6—N2 −4.0 (4) C12—C13—C14—C15 1.0 (7)
N1—C5—C6—C7 173.9 (3) C13—C14—C15—N3 −0.1 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H11···Cl5 0.86 2.26 3.026 (4) 149
N1—H11···N2 0.86 2.28 2.666 (4) 107
N2—H22···Cl5 0.86 2.67 3.532 (4) 178
N2—H22···N3 0.86 2.29 2.654 (4) 106
N3—H33···Cl5 0.86 2.25 3.010 (4) 148
C14—H14···Cl5i 0.93 2.78 3.421 (6) 127

Symmetry code: (i) −x, y+1/2, −z.

Funding Statement

This work was funded by Unité de Recherche de Chimie de l’Environnement et Moléculaire Structurale grant . Université Frères Mentouri Constantine, Algeria grant . Biotechnology Research Center (CRBt), Constantine, Algeria grant . Ministère de l’Enseignement Supérieur et de la Recherche Scientifique, Direction Générale de la Recherche Scientifique et du Développement Technologique grant .

References

  1. Adeloye, A. O., Olomola, T. O., Adebayo, A. I. & Ajibade, P. A. (2012). Int. J. Mol. Sci. 13, 3511–3526. [DOI] [PMC free article] [PubMed]
  2. Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Huang, F.-P., Yang, Z.-M., Yao, P.-F., Yu, Q., Tian, J.-L., Bian, H.-D., Yan, S.-P., Liao, D.-Z. & Cheng, P. (2013). CrystEngComm, 15, 2657–2668.
  7. Igashira-Kamiyama, A., Itai, T., Arai, Y. & Konno, T. (2013). Acta Cryst. E69, m339. [DOI] [PMC free article] [PubMed]
  8. Indelli, M. T., Bignozzi, C. A., Scandola, F. & Collin, J. P. (1998). Inorg. Chem. 37, 6084–6089. [DOI] [PubMed]
  9. Kochel, A. (2006). Acta Cryst. E62, m37–m38.
  10. Kohle, O., Ruile, S. & Grätzel, M. (1996). Inorg. Chem. 35, 4779–4787.
  11. Ling, J., Sigmon, G. E., Ward, M., Roback, N. & Carman Burns, P. (2010). Z. Kristallogr. 225, 230–239.
  12. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  13. Maynard, B. A., Smith, P. A. & Sykora, R. E. (2009). Acta Cryst. E65, m1132–m1133. [DOI] [PMC free article] [PubMed]
  14. Mori, K., Watanabe, K., Fuku, K. & Yamashita, H. (2012). Chem. Eur. J. 18, 415–418. [DOI] [PubMed]
  15. Persistence of Vision (2004). POVRay. Persistence of Vision Raytracer Pty. Ltd, Victoria, Australia.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Wen, L., Lu, Z., Lin, J., Tian, Z., Zhu, H. & Meng, Q. (2007). Cryst. Growth Des. 7, 93–99.
  18. Yoshikawa, N., Yamabe, S., Kanehisa, N., Inoue, T. & Takashima, H. (2016). J. Phys. Org. Chem. 29, 269–275.
  19. Zhang, L.-P., Ma, J.-F., Yang, J., Pang, Y.-Y. & Ma, J.-C. (2010). Inorg. Chem. 49, 1535–1550. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017016784/zs2392sup1.cif

e-73-01937-sup1.cif (24.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017016784/zs2392Isup2.hkl

e-73-01937-Isup2.hkl (420.4KB, hkl)

CCDC reference: 1587116

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES