Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Nov 28;73(Pt 12):1952–1955. doi: 10.1107/S2056989017016759

Crystal structure of mer-tris­{2,6-di­fluoro-3-[5-(2-fluoro­phen­yl)pyridin-2-yl-κN]pyridin-4-yl-κC 4}iridium(III) di­chloro­methane hemisolvate n-hexane hemisolvate

Youngjin Kang a, Ki-Min Park b,*, Jinho Kim a,*
PMCID: PMC5730259  PMID: 29250422

Iridium(III) complexes based on 2,3′-bi­pyridine ligands are known to exhibit strong emission from blue to green that makes them of inter­est for organic light-emitting diodes and organic lighting uses. In the title compound, the IrIII ion adopts a distorted octa­hedral coordination environment defined by three C,N-chelating 2,6-di­fluoro-3-[5-(2-fluoro­phen­yl)pyridin-2-yl]pyridin-4-yl ligands in a meridional manner. In the crystal, inter­molecular C—H⋯F and C—H⋯π hydrogen bonds, as well as inter­molecular C—F⋯π inter­actions, are present, leading to a two-dimensional network.

Keywords: crystal structure; iridium(III) complex; C,N-chelating ligand; mer-C3N3 coordination set; hydrogen bonds; C—F⋯π inter­actions

Abstract

The asymmetric unit of the title compound, [Ir(C17H11F2N2)3]·0.5CH3(CH2)4CH3·0.5CH2Cl2, comprises one IrIII atom, three 2,6-di­fluoro-3-[5-(2-fluoro­phen­yl)pyridin-2-yl]pyridin-4-yl ligands and half each of an n-hexane and a di­chloro­methane solvent mol­ecule located about crystallographic inversion centres. The IrIII atom displays a distorted octa­hedral coordination geometry, having three C,N-chelating 2,6-di­fluoro-3-[5-(2-fluoro­phen­yl)pyridin-2-yl]pyridin-4-yl ligands arranged in a meridional manner. The IrIII ion lies almost in the equatorial plane [deviation = 0.0069 (15) Å]. The average distance [2.041 (3) Å] of Ir—C bonds is slightly shorter than that [2.076 (3) Å] of Ir—N bonds. A variety of intra- and inter­molecular C—H⋯F and C—H⋯π hydrogen bonds, as well as inter­molecular C—F⋯π inter­actions, contribute to the stabilization of the mol­ecular and crystal structures, and result in the formation of a two-dimensional network parallel to the ab plane. No inter­actions between n-hexane solvent mol­ecules and the other components in the title compound are observed.

Chemical context  

Phospho­rescent iridium(III) complexes are considered to be excellent candidates for triplet emitters in phospho­rescent organic light-emitting diodes (PHOLEDs) because of their high efficiency and high stability (Cho et al., 2016). In partic­ular, iridium(III) complexes with C,N-chelating 2,3′-bi­pyridine ligands have recently attracted much attention because of their deep-blue emission and easy tuning emission energy upon ligand substitution (Kim et al., 2017). However, many studies of the crystal structures of bi­pyridine-based iridium(III) derivatives are focused on the different substituents of the C-coordinating pyridine ring (Lee et al., 2014). Examples of iridium(III) complexes with substituents on the N-coordin­ating pyridine ring are relatively rare compared to those of C-coordination pyridine-functionalized iridium(III) complexes (Lee et al., 2016; Oh et al., 2013). Herein, we report the result of our investigation of the crystal structure of an iridium(III) complex with an o-tolyl group on the N-coordin­ating pyridine ring.

Structural commentary  

The mol­ecular structure of the title compound is shown in Fig. 1. The asymmetric unit consists of one IrIII atom, three 2,6-di­fluoro-3-[5-(2-fluoro­phen­yl)pyridin-2-yl]pyridin-4-yl ligands, and half each of the n-hexane and di­chloro­methane solvent mol­ecules located about crystallographic inversion centres. The IrIII atom is six-coordinated by three C,N-chelating 2,6-di­fluoro-3-[5-(2-fluoro­phen­yl)pyridin-2-yl]pyrid­in-4-yl ligands, forming a distorted octa­hedral coordination sphere due to narrow ligand bite angles, which range from 78.49 (12) to 80.32 (12)° (Table 1). The pyridyl N atoms of the three ligands are arranged in a mer-configuration around the octa­hedral IrIII ion (Fig. 1). The equatorial plane is defined by the N1/C1/N5/C18 atoms, the mean deviation from the least-squares plane being 0.0585 (14) Å. The IrIII ion lies almost in the equatorial plane with a deviation of 0.0069 (15) Å. As listed in Table 1, the Ir—C and Ir—N bond lengths in the title compound are within the ranges reported for similar IrIII compounds, for example, mer-[tris­[2′,6′-di­fluoro-2,3′-bipyri­dinato-k 2 C 4′,N]iridium(III)] (Jung et al., 2012). The average length [2.041 (3) Å] of the Ir—C bonds is slightly shorter than that [2.076 (3) Å] of the Ir—N bonds because of back bonding between the metal and an anionic C atom of the ligand. Within the ligands, the terminal pyridine rings are tilted slightly by 7.2 (2), 6.74 (19), and 6.29 (18)°, respectively, to the N1-, N3-, and N5-containing central pyridine rings, indicating that effective π conjugations of the two pyridine rings occur in the ligands. The terminal phenyl rings, however, are tilted by 51.79 (13), 46.74 (11), and 40.50 (12)° with respect to N1-, N3-, and N5-containing central pyridine rings, respectively. The mol­ecular structure of the IrIII complex is stabilized by weak intra­molecular C—H⋯F and C—H⋯N hydrogen bonds (Table 2, shown as dashed lines in Fig. 1).graphic file with name e-73-01952-scheme1.jpg

Figure 1.

Figure 1

View of the mol­ecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level; dashed lines represent intra­molecular C—H⋯F and C—H⋯N hydrogen bonds. The n-hexane and di­chloro­methane solvent mol­ecules are not shown for clarity.

Table 1. Selected geometric parameters (Å, °).

Ir1—C35 1.991 (3) Ir1—C1 2.061 (3)
Ir1—N5 2.030 (3) Ir1—C18 2.070 (3)
Ir1—N1 2.056 (3) Ir1—N3 2.143 (3)
       
C35—Ir1—N5 80.32 (12) N1—Ir1—C18 97.10 (12)
C35—Ir1—N1 98.62 (12) C1—Ir1—C18 173.39 (11)
N5—Ir1—N1 174.15 (10) C35—Ir1—N3 170.98 (11)
C35—Ir1—C1 92.12 (12) N5—Ir1—N3 94.39 (10)
N5—Ir1—C1 94.75 (12) N1—Ir1—N3 87.37 (10)
N1—Ir1—C1 79.51 (12) C1—Ir1—N3 95.61 (11)
C35—Ir1—C18 94.00 (13) C18—Ir1—N3 78.49 (12)
N5—Ir1—C18 88.72 (11)    

Table 2. Hydrogen-bond geometry (Å, °).

Cg3, Cg4 and Cg6 are the centroids of the N4/C18–C21, N5/C40–C44, and C45–C50 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯F2 0.95 2.29 2.895 (5) 121
C24—H24⋯F4 0.95 2.22 2.851 (4) 123
C36—H36⋯F2i 0.95 2.41 3.245 (4) 146
C41—H41⋯F6 0.95 2.32 2.917 (4) 121
C44—H44⋯N3 0.95 2.50 3.112 (4) 122
C46—H46⋯F3ii 0.95 2.50 3.067 (5) 119
C13—H13⋯Cg6iii 0.95 2.98 3.777 (7) 142
C55—H55ACg4ii 0.99 2.96 3.326 (9) 103
C55—H55BCg3ii 0.99 3.00 3.718 (10) 131
C55—H55BCg4ii 0.99 2.78 3.326 (10) 116

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Supra­molecular features  

Inter­molecular C—H⋯F hydrogen bonds (Table 2, yellow dashed lines in Fig. 2) between adjacent IrIII complexes lead to the formation of one-dimensional chains propagating along the [110] direction. These chains are further inter­linked by C13—H⋯π inter­actions (Table 2, black dashed lines in Fig. 2), resulting in the formation of a two-dimensional supra­molecular network extending parallel to the ab plane. In addition, weak inter­molecular C—F⋯π inter­actions [F2⋯Cg1i = 3.268 (3) Å; F4⋯Cg1iii = 3.411 (3) Å; F4⋯Cg2iii = 3.387 (3) Å; F6⋯Cg5iv = 3.291 (3) Å; Cg1, Cg2, and Cg5 are the centroids of the N1/C6–C10, N3/C23–C27, and N6/C35–C39 rings, respectively; symmetry codes: (i) −x + 2, −y + 1, −z + 1; (iii) −x + 2, −y + 2, −z + 1; (iv) −x + 1, −y + 1, −z + 1] contribute to the stabilization of the crystal structure. Inter­molecular C55—H⋯π inter­actions (Table 2) between the IrIII complexes and the disordered di­chloro­methane solvent mol­ecules also occur in the crystal structure of the title compound (not shown in Fig. 2).

Figure 2.

Figure 2

The two-dimensional supra­molecular network formed through inter­molecular C—H⋯F hydrogen bonds (yellow dashed lines) and C—H⋯π (black dashed lines) and inter­molecular C—F⋯π inter­actions (red dashed lines). H atoms not involved in inter­molecular inter­actions and the lattice solvent mol­ecules are not shown for clarity.

No inter­actions between the n-hexane solvent mol­ecules and the other components of the title compound are observed.

Synthesis and crystallization  

The title complex was synthesized according to a previous report (Lee et al., 2017). Slow evaporation from a di­chloro­methane/hexane solution afforded yellow crystals suitable for X-ray crystallography analysis. 1H NMR(400 MHz, CD2Cl2): δ 8.89 (dd, J = 6.2, 1.4 Hz, 1H), 8.30 (dd, J = 8.8, 1.0 Hz, 1H), 8.27–8.21 (m, 2H), 8.01 (d, J = 2.0 Hz, 1H), 7.91 (d, J = 1.2 Hz, 1H), 7.76–7.70 (m, 3H), 7.59 (d, J = 1.6 Hz, 1H), 7.2–6.95 (m, 12H), 6.31 (t, J = 3.2 Hz, 1H), 5.94 (t, J = 2.4 Hz, 1H), 5.83 (t, J = 2.0 Hz, 1H), 1.94 (s, 3H), 1.93 (s, 3H), 1.79 (s, 3H).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The di­chloro­methane mol­ecule is disordered over two sets of sites about an inversion centre with equal occupancy. The C—Cl bond lengths were restrained using the DFIX instructions in SHELXL2014/7 (Sheldrick, 2015). The anisotropic displacement ellipsoid of a chloride atom (Cl1) in the disordered di­chloro­methane solvent mol­ecule was very elongated and therefore an ISOR restraint was applied for this atom (McArdle, 1995; Sheldrick, 2008). All H atoms were positioned geometrically and refined as riding: C—H = 0.95 Å for Csp 2—H, 0.99 Å for methyl­ene C—H, and 0.98 Å for methyl C—H, with U iso(H) = 1.2–1.5U eq(C).

Table 3. Experimental details.

Crystal data
Chemical formula [Ir(C17H11F2N2)3]·0.5C6H14·0.5CH2Cl2
M r 1121.58
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 173
a, b, c (Å) 12.5753 (2), 14.4054 (3), 14.8668 (3)
α, β, γ (°) 117.0678 (5), 101.9336 (6), 97.2102 (6)
V3) 2270.58 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 3.07
Crystal size (mm) 0.42 × 0.23 × 0.21
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014)
T min, T max 0.532, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 40374, 11187, 10233
R int 0.035
(sin θ/λ)max−1) 0.666
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.030, 0.080, 1.04
No. of reflections 11187
No. of parameters 625
No. of restraints 16
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.38, −2.06

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXS97 and SHELXTL (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), DIAMOND (Brandenburg, 2010) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989017016759/hg5501sup1.cif

e-73-01952-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017016759/hg5501Isup2.hkl

e-73-01952-Isup2.hkl (887.3KB, hkl)

CCDC reference: 1586829

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[Ir(C17H11F2N2)3]·0.5C6H14·0.5CH2Cl2 Z = 2
Mr = 1121.58 F(000) = 1116
Triclinic, P1 Dx = 1.640 Mg m3
a = 12.5753 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 14.4054 (3) Å Cell parameters from 9893 reflections
c = 14.8668 (3) Å θ = 2.3–28.2°
α = 117.0678 (5)° µ = 3.07 mm1
β = 101.9336 (6)° T = 173 K
γ = 97.2102 (6)° Block, yellow
V = 2270.58 (8) Å3 0.42 × 0.23 × 0.21 mm

Data collection

Bruker APEXII CCD diffractometer 10233 reflections with I > 2σ(I)
φ and ω scans Rint = 0.035
Absorption correction: multi-scan (SADABS; Bruker, 2014) θmax = 28.3°, θmin = 1.6°
Tmin = 0.532, Tmax = 0.746 h = −16→16
40374 measured reflections k = −19→19
11187 independent reflections l = −18→19

Refinement

Refinement on F2 16 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030 H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.047P)2 + 1.7767P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.003
11187 reflections Δρmax = 2.38 e Å3
625 parameters Δρmin = −2.06 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ir1 0.80627 (2) 0.75047 (2) 0.53831 (2) 0.01827 (4)
F1 0.8673 (2) 0.6415 (2) 0.8511 (2) 0.0543 (7)
F2 1.12093 (19) 0.59363 (19) 0.6739 (2) 0.0429 (6)
N1 0.9274 (2) 0.6888 (2) 0.4727 (2) 0.0208 (5)
N2 0.9932 (3) 0.6203 (2) 0.7616 (3) 0.0340 (7)
C1 0.8725 (2) 0.6929 (2) 0.6358 (3) 0.0212 (6)
C2 0.8363 (3) 0.6866 (3) 0.7161 (3) 0.0276 (7)
H2 0.7702 0.7072 0.7304 0.033*
C3 0.8993 (3) 0.6498 (3) 0.7734 (3) 0.0341 (8)
C4 1.0248 (3) 0.6251 (3) 0.6851 (3) 0.0298 (7)
C5 0.9706 (3) 0.6581 (2) 0.6176 (3) 0.0232 (6)
C6 1.0025 (2) 0.6582 (2) 0.5291 (3) 0.0229 (6)
C7 1.0955 (3) 0.6311 (3) 0.4960 (3) 0.0303 (7)
H7 1.1495 0.6127 0.5356 0.036*
C8 1.1101 (3) 0.6307 (3) 0.4064 (3) 0.0330 (8)
H8 1.1749 0.6136 0.3859 0.040*
C9 1.0306 (3) 0.6551 (3) 0.3459 (3) 0.0300 (7)
C10 0.9416 (3) 0.6851 (2) 0.3839 (3) 0.0252 (7)
H10 0.8873 0.7041 0.3450 0.030*
C11 1.0395 (3) 0.6562 (3) 0.2480 (3) 0.0339 (8)
C12 1.1385 (4) 0.7141 (4) 0.2506 (4) 0.0489 (11)
H12 1.2007 0.7477 0.3130 0.059*
C13 1.1479 (5) 0.7235 (4) 0.1634 (5) 0.0611 (14)
H13 1.2159 0.7634 0.1662 0.073*
C14 1.0573 (5) 0.6742 (4) 0.0724 (4) 0.0597 (14)
H14 1.0625 0.6816 0.0131 0.072*
C15 0.9605 (5) 0.6148 (4) 0.0677 (4) 0.0510 (11)
H15 0.8996 0.5801 0.0042 0.061*
C16 0.9490 (4) 0.6041 (3) 0.1545 (3) 0.0388 (9)
C17 0.8413 (4) 0.5336 (4) 0.1405 (4) 0.0510 (11)
H17A 0.8564 0.4994 0.1840 0.077*
H17B 0.8090 0.4780 0.0659 0.077*
H17C 0.7882 0.5775 0.1625 0.077*
F3 0.5772 (3) 0.7962 (2) 0.2111 (2) 0.0757 (10)
F4 0.8327 (2) 1.08740 (18) 0.4761 (2) 0.0466 (6)
N3 0.9257 (2) 0.9044 (2) 0.6254 (2) 0.0202 (5)
N4 0.7040 (3) 0.9417 (3) 0.3469 (3) 0.0402 (8)
C18 0.7582 (3) 0.8195 (3) 0.4460 (3) 0.0242 (6)
C19 0.6756 (3) 0.7747 (3) 0.3490 (3) 0.0350 (8)
H19 0.6349 0.7013 0.3136 0.042*
C20 0.6547 (4) 0.8392 (4) 0.3060 (3) 0.0440 (10)
C21 0.7826 (3) 0.9830 (3) 0.4368 (3) 0.0321 (8)
C22 0.8172 (3) 0.9295 (3) 0.4913 (3) 0.0236 (6)
C23 0.9103 (3) 0.9743 (2) 0.5882 (3) 0.0229 (6)
C24 0.9824 (3) 1.0773 (3) 0.6421 (3) 0.0299 (7)
H24 0.9710 1.1270 0.6179 0.036*
C25 1.0702 (3) 1.1068 (3) 0.7304 (3) 0.0307 (7)
H25 1.1189 1.1771 0.7667 0.037*
C26 1.0887 (3) 1.0351 (3) 0.7673 (3) 0.0241 (6)
C27 1.0117 (2) 0.9351 (2) 0.7118 (3) 0.0212 (6)
H27 1.0204 0.8854 0.7365 0.025*
C28 1.1851 (3) 1.0651 (3) 0.8603 (3) 0.0259 (7)
C29 1.2073 (3) 1.1663 (3) 0.9495 (3) 0.0377 (8)
H29 1.1586 1.2118 0.9500 0.045*
C30 1.2990 (4) 1.2017 (3) 1.0375 (3) 0.0457 (10)
H30 1.3132 1.2709 1.0976 0.055*
C31 1.3691 (3) 1.1359 (4) 1.0369 (3) 0.0459 (11)
H31 1.4327 1.1599 1.0964 0.055*
C32 1.3476 (3) 1.0351 (3) 0.9502 (3) 0.0380 (9)
H32 1.3965 0.9903 0.9516 0.046*
C33 1.2560 (3) 0.9967 (3) 0.8603 (3) 0.0293 (7)
C34 1.2406 (3) 0.8875 (3) 0.7682 (3) 0.0349 (8)
H34A 1.2296 0.8922 0.7033 0.052*
H34B 1.1748 0.8377 0.7613 0.052*
H34C 1.3075 0.8611 0.7796 0.052*
F5 0.5676 (2) 0.34823 (18) 0.2318 (2) 0.0532 (7)
F6 0.38409 (17) 0.55554 (19) 0.4386 (2) 0.0466 (6)
N5 0.6894 (2) 0.8035 (2) 0.6117 (2) 0.0210 (5)
N6 0.4774 (3) 0.4534 (3) 0.3367 (3) 0.0386 (8)
C35 0.6786 (3) 0.6197 (3) 0.4518 (3) 0.0232 (6)
C36 0.6739 (3) 0.5210 (3) 0.3648 (3) 0.0298 (7)
H36 0.7383 0.5075 0.3418 0.036*
C37 0.5732 (3) 0.4448 (3) 0.3142 (3) 0.0356 (8)
C38 0.4829 (3) 0.5465 (3) 0.4172 (3) 0.0324 (8)
C39 0.5777 (3) 0.6319 (3) 0.4795 (3) 0.0255 (7)
C40 0.5854 (3) 0.7342 (3) 0.5712 (3) 0.0246 (6)
C41 0.5035 (3) 0.7659 (3) 0.6217 (3) 0.0325 (8)
H41 0.4299 0.7199 0.5929 0.039*
C42 0.5293 (3) 0.8633 (3) 0.7127 (3) 0.0339 (8)
H42 0.4734 0.8836 0.7469 0.041*
C43 0.6366 (3) 0.9335 (3) 0.7561 (3) 0.0256 (7)
C44 0.7122 (3) 0.8998 (3) 0.6997 (3) 0.0243 (6)
H44 0.7842 0.9473 0.7245 0.029*
C45 0.6669 (3) 1.0390 (3) 0.8546 (3) 0.0288 (7)
C46 0.5870 (3) 1.0993 (3) 0.8704 (3) 0.0356 (8)
H46 0.5167 1.0726 0.8173 0.043*
C47 0.6081 (4) 1.1971 (3) 0.9618 (3) 0.0428 (9)
H47 0.5525 1.2367 0.9713 0.051*
C48 0.7093 (4) 1.2364 (3) 1.0383 (3) 0.0456 (10)
H48 0.7247 1.3038 1.1009 0.055*
C49 0.7893 (3) 1.1773 (3) 1.0239 (3) 0.0385 (9)
H49 0.8592 1.2055 1.0778 0.046*
C50 0.7712 (3) 1.0787 (3) 0.9339 (3) 0.0311 (7)
C51 0.8620 (3) 1.0185 (4) 0.9291 (3) 0.0417 (9)
H51A 0.8275 0.9409 0.8916 0.063*
H51B 0.9071 1.0410 1.0011 0.063*
H51C 0.9104 1.0347 0.8915 0.063*
C52 0.3642 (9) 0.5534 (10) 0.1629 (11) 0.164 (5)
H52A 0.3244 0.5125 0.1889 0.246*
H52B 0.4233 0.6141 0.2223 0.246*
H52C 0.3111 0.5806 0.1289 0.246*
C53 0.4179 (10) 0.4784 (9) 0.0806 (10) 0.143 (4)
H53A 0.4697 0.4498 0.1153 0.171*
H53B 0.3576 0.4164 0.0220 0.171*
C54 0.4771 (10) 0.5289 (7) 0.0381 (9) 0.140 (4)
H54A 0.4255 0.5619 0.0091 0.168*
H54C 0.5386 0.5887 0.0977 0.168*
C55 0.4858 (8) 1.0429 (5) 0.4679 (6) 0.070 (3) 0.5
H55A 0.5258 1.0535 0.4212 0.084* 0.5
H55B 0.4281 1.0844 0.4747 0.084* 0.5
Cl1 0.4193 (4) 0.9067 (4) 0.4086 (4) 0.245 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ir1 0.01779 (6) 0.01590 (6) 0.02123 (7) 0.00411 (4) 0.00436 (4) 0.00994 (5)
F1 0.0766 (18) 0.0687 (17) 0.0456 (15) 0.0301 (14) 0.0258 (14) 0.0449 (14)
F2 0.0406 (12) 0.0478 (13) 0.0472 (14) 0.0263 (10) 0.0083 (10) 0.0272 (12)
N1 0.0205 (12) 0.0147 (12) 0.0255 (14) 0.0042 (9) 0.0059 (10) 0.0090 (11)
N2 0.0455 (17) 0.0254 (15) 0.0286 (16) 0.0110 (13) 0.0018 (14) 0.0147 (13)
C1 0.0210 (13) 0.0137 (13) 0.0243 (16) −0.0001 (11) 0.0012 (12) 0.0092 (12)
C2 0.0326 (17) 0.0247 (16) 0.0260 (17) 0.0048 (13) 0.0065 (14) 0.0144 (15)
C3 0.049 (2) 0.0285 (18) 0.0264 (18) 0.0083 (16) 0.0070 (16) 0.0173 (16)
C4 0.0316 (17) 0.0196 (15) 0.0303 (18) 0.0082 (13) −0.0005 (14) 0.0096 (14)
C5 0.0233 (14) 0.0149 (14) 0.0267 (16) 0.0040 (11) 0.0009 (12) 0.0096 (13)
C6 0.0216 (14) 0.0151 (14) 0.0260 (16) 0.0038 (11) 0.0032 (12) 0.0071 (13)
C7 0.0259 (15) 0.0233 (16) 0.036 (2) 0.0095 (13) 0.0059 (14) 0.0102 (15)
C8 0.0266 (16) 0.0265 (17) 0.041 (2) 0.0090 (13) 0.0154 (15) 0.0103 (16)
C9 0.0368 (18) 0.0184 (15) 0.0346 (19) 0.0066 (13) 0.0173 (15) 0.0103 (15)
C10 0.0331 (16) 0.0166 (14) 0.0278 (17) 0.0061 (12) 0.0122 (14) 0.0114 (13)
C11 0.050 (2) 0.0235 (16) 0.040 (2) 0.0162 (15) 0.0278 (18) 0.0172 (16)
C12 0.057 (3) 0.042 (2) 0.053 (3) 0.009 (2) 0.032 (2) 0.022 (2)
C13 0.071 (3) 0.057 (3) 0.083 (4) 0.018 (3) 0.053 (3) 0.044 (3)
C14 0.092 (4) 0.056 (3) 0.061 (3) 0.035 (3) 0.051 (3) 0.038 (3)
C15 0.079 (3) 0.048 (3) 0.047 (3) 0.029 (2) 0.034 (2) 0.030 (2)
C16 0.057 (2) 0.0300 (19) 0.040 (2) 0.0194 (17) 0.0244 (19) 0.0198 (18)
C17 0.062 (3) 0.052 (3) 0.040 (2) 0.010 (2) 0.013 (2) 0.026 (2)
F3 0.092 (2) 0.0570 (17) 0.0537 (18) 0.0057 (16) −0.0304 (16) 0.0328 (15)
F4 0.0643 (15) 0.0293 (11) 0.0506 (15) 0.0084 (10) 0.0053 (12) 0.0290 (11)
N3 0.0202 (11) 0.0174 (12) 0.0256 (14) 0.0064 (9) 0.0090 (10) 0.0115 (11)
N4 0.0490 (19) 0.0394 (18) 0.0415 (19) 0.0159 (15) 0.0069 (16) 0.0291 (17)
C18 0.0242 (15) 0.0263 (16) 0.0272 (17) 0.0100 (12) 0.0090 (13) 0.0159 (14)
C19 0.0382 (19) 0.0275 (18) 0.0309 (19) 0.0045 (14) −0.0030 (15) 0.0142 (16)
C20 0.051 (2) 0.044 (2) 0.034 (2) 0.0133 (18) −0.0040 (18) 0.0230 (19)
C21 0.0415 (19) 0.0271 (17) 0.036 (2) 0.0128 (15) 0.0114 (16) 0.0215 (16)
C22 0.0267 (15) 0.0240 (15) 0.0264 (17) 0.0110 (12) 0.0096 (13) 0.0156 (14)
C23 0.0246 (14) 0.0194 (14) 0.0286 (17) 0.0084 (12) 0.0109 (13) 0.0132 (14)
C24 0.0330 (17) 0.0217 (16) 0.039 (2) 0.0084 (13) 0.0110 (15) 0.0181 (16)
C25 0.0341 (17) 0.0158 (15) 0.035 (2) 0.0017 (13) 0.0069 (15) 0.0095 (15)
C26 0.0235 (14) 0.0197 (15) 0.0266 (17) 0.0031 (12) 0.0092 (13) 0.0093 (14)
C27 0.0184 (13) 0.0195 (14) 0.0249 (16) 0.0033 (11) 0.0063 (12) 0.0108 (13)
C28 0.0231 (14) 0.0242 (16) 0.0265 (17) −0.0021 (12) 0.0050 (13) 0.0125 (14)
C29 0.041 (2) 0.0283 (18) 0.033 (2) −0.0028 (15) 0.0063 (16) 0.0110 (17)
C30 0.049 (2) 0.037 (2) 0.030 (2) −0.0120 (18) 0.0022 (18) 0.0100 (18)
C31 0.037 (2) 0.052 (3) 0.038 (2) −0.0142 (18) −0.0050 (17) 0.027 (2)
C32 0.0257 (16) 0.044 (2) 0.042 (2) −0.0016 (15) 0.0002 (16) 0.027 (2)
C33 0.0223 (15) 0.0310 (18) 0.0323 (19) −0.0002 (13) 0.0052 (14) 0.0167 (16)
C34 0.0271 (16) 0.0335 (19) 0.041 (2) 0.0092 (14) 0.0068 (15) 0.0174 (18)
F5 0.0495 (14) 0.0276 (12) 0.0478 (15) −0.0026 (10) 0.0112 (12) −0.0048 (11)
F6 0.0240 (10) 0.0421 (13) 0.0539 (15) −0.0029 (9) 0.0100 (10) 0.0113 (12)
N5 0.0172 (11) 0.0211 (13) 0.0258 (14) 0.0053 (9) 0.0044 (10) 0.0131 (11)
N6 0.0332 (16) 0.0273 (16) 0.0378 (18) −0.0041 (12) 0.0028 (14) 0.0082 (14)
C35 0.0220 (14) 0.0212 (15) 0.0263 (16) 0.0028 (11) 0.0032 (12) 0.0139 (14)
C36 0.0281 (16) 0.0230 (16) 0.0315 (18) 0.0040 (13) 0.0058 (14) 0.0098 (15)
C37 0.0369 (19) 0.0219 (17) 0.034 (2) 0.0007 (14) 0.0062 (16) 0.0063 (16)
C38 0.0230 (15) 0.0324 (18) 0.038 (2) 0.0016 (13) 0.0072 (14) 0.0162 (17)
C39 0.0247 (15) 0.0232 (16) 0.0270 (17) 0.0042 (12) 0.0065 (13) 0.0120 (14)
C40 0.0197 (14) 0.0234 (15) 0.0288 (17) 0.0038 (12) 0.0054 (13) 0.0124 (14)
C41 0.0215 (15) 0.0345 (19) 0.036 (2) 0.0012 (13) 0.0090 (14) 0.0140 (17)
C42 0.0262 (16) 0.038 (2) 0.038 (2) 0.0101 (14) 0.0149 (15) 0.0172 (18)
C43 0.0255 (15) 0.0276 (16) 0.0273 (17) 0.0091 (13) 0.0081 (13) 0.0157 (15)
C44 0.0226 (14) 0.0244 (16) 0.0284 (17) 0.0069 (12) 0.0090 (13) 0.0143 (14)
C45 0.0320 (16) 0.0278 (17) 0.0304 (18) 0.0093 (13) 0.0150 (14) 0.0146 (15)
C46 0.0383 (19) 0.037 (2) 0.036 (2) 0.0157 (16) 0.0150 (16) 0.0181 (17)
C47 0.054 (2) 0.039 (2) 0.042 (2) 0.0218 (19) 0.026 (2) 0.0185 (19)
C48 0.066 (3) 0.030 (2) 0.034 (2) 0.0056 (19) 0.024 (2) 0.0084 (18)
C49 0.040 (2) 0.037 (2) 0.0301 (19) −0.0029 (16) 0.0104 (16) 0.0135 (17)
C50 0.0311 (17) 0.0330 (18) 0.0300 (18) 0.0037 (14) 0.0116 (15) 0.0164 (16)
C51 0.0281 (18) 0.056 (3) 0.036 (2) 0.0114 (17) 0.0069 (16) 0.019 (2)
C52 0.114 (8) 0.181 (12) 0.207 (14) 0.014 (8) 0.007 (8) 0.126 (11)
C53 0.183 (11) 0.123 (8) 0.161 (11) 0.051 (8) 0.048 (9) 0.100 (8)
C54 0.172 (10) 0.068 (6) 0.172 (12) 0.019 (6) 0.064 (8) 0.050 (7)
C55 0.070 (3) 0.071 (3) 0.071 (3) 0.020 (2) 0.023 (2) 0.035 (2)
Cl1 0.210 (2) 0.257 (3) 0.244 (3) 0.0489 (18) 0.0950 (19) 0.0951 (18)

Geometric parameters (Å, º)

Ir1—C35 1.991 (3) C29—C30 1.387 (6)
Ir1—N5 2.030 (3) C29—H29 0.9500
Ir1—N1 2.056 (3) C30—C31 1.372 (7)
Ir1—C1 2.061 (3) C30—H30 0.9500
Ir1—C18 2.070 (3) C31—C32 1.378 (6)
Ir1—N3 2.143 (3) C31—H31 0.9500
F1—C3 1.349 (4) C32—C33 1.396 (5)
F2—C4 1.359 (4) C32—H32 0.9500
N1—C10 1.346 (4) C33—C34 1.496 (5)
N1—C6 1.378 (4) C34—H34A 0.9800
N2—C4 1.307 (5) C34—H34B 0.9800
N2—C3 1.323 (5) C34—H34C 0.9800
C1—C2 1.397 (5) F5—C37 1.352 (4)
C1—C5 1.421 (4) F6—C38 1.352 (4)
C2—C3 1.369 (5) N5—C44 1.346 (4)
C2—H2 0.9500 N5—C40 1.367 (4)
C4—C5 1.389 (5) N6—C38 1.310 (5)
C5—C6 1.453 (5) N6—C37 1.322 (5)
C6—C7 1.393 (5) C35—C36 1.405 (5)
C7—C8 1.378 (5) C35—C39 1.420 (4)
C7—H7 0.9500 C36—C37 1.371 (5)
C8—C9 1.392 (5) C36—H36 0.9500
C8—H8 0.9500 C38—C39 1.389 (5)
C9—C10 1.386 (5) C39—C40 1.456 (5)
C9—C11 1.490 (5) C40—C41 1.400 (5)
C10—H10 0.9500 C41—C42 1.372 (5)
C11—C12 1.392 (5) C41—H41 0.9500
C11—C16 1.404 (6) C42—C43 1.401 (5)
C12—C13 1.390 (7) C42—H42 0.9500
C12—H12 0.9500 C43—C44 1.384 (5)
C13—C14 1.385 (8) C43—C45 1.483 (5)
C13—H13 0.9500 C44—H44 0.9500
C14—C15 1.366 (7) C45—C46 1.396 (5)
C14—H14 0.9500 C45—C50 1.413 (5)
C15—C16 1.401 (6) C46—C47 1.384 (6)
C15—H15 0.9500 C46—H46 0.9500
C16—C17 1.502 (6) C47—C48 1.367 (6)
C17—H17A 0.9800 C47—H47 0.9500
C17—H17B 0.9800 C48—C49 1.385 (6)
C17—H17C 0.9800 C48—H48 0.9500
F3—C20 1.345 (5) C49—C50 1.386 (5)
F4—C21 1.346 (4) C49—H49 0.9500
N3—C27 1.343 (4) C50—C51 1.513 (5)
N3—C23 1.367 (4) C51—H51A 0.9800
N4—C21 1.305 (5) C51—H51B 0.9800
N4—C20 1.316 (5) C51—H51C 0.9800
C18—C19 1.392 (5) C52—C53 1.562 (14)
C18—C22 1.429 (4) C52—H52A 0.9800
C19—C20 1.369 (5) C52—H52B 0.9800
C19—H19 0.9500 C52—H52C 0.9800
C21—C22 1.394 (5) C53—C54 1.400 (13)
C22—C23 1.460 (5) C53—H53A 0.9900
C23—C24 1.395 (4) C53—H53B 0.9900
C24—C25 1.377 (5) C54—C54i 1.358 (18)
C24—H24 0.9500 C54—H54A 0.9900
C25—C26 1.396 (5) C54—H54C 0.9900
C25—H25 0.9500 C55—Cl1ii 1.727 (3)
C26—C27 1.389 (4) C55—Cl1 1.741 (3)
C26—C28 1.483 (5) C55—H55A 0.9900
C27—H27 0.9500 C55—H55B 0.9900
C28—C29 1.395 (5) Cl1—C55ii 1.727 (4)
C28—C33 1.410 (5)
C35—Ir1—N5 80.32 (12) C29—C28—C33 119.4 (3)
C35—Ir1—N1 98.62 (12) C29—C28—C26 118.1 (3)
N5—Ir1—N1 174.15 (10) C33—C28—C26 122.4 (3)
C35—Ir1—C1 92.12 (12) C30—C29—C28 121.3 (4)
N5—Ir1—C1 94.75 (12) C30—C29—H29 119.4
N1—Ir1—C1 79.51 (12) C28—C29—H29 119.4
C35—Ir1—C18 94.00 (13) C31—C30—C29 119.3 (4)
N5—Ir1—C18 88.72 (11) C31—C30—H30 120.3
N1—Ir1—C18 97.10 (12) C29—C30—H30 120.3
C1—Ir1—C18 173.39 (11) C30—C31—C32 120.2 (4)
C35—Ir1—N3 170.98 (11) C30—C31—H31 119.9
N5—Ir1—N3 94.39 (10) C32—C31—H31 119.9
N1—Ir1—N3 87.37 (10) C31—C32—C33 122.0 (4)
C1—Ir1—N3 95.61 (11) C31—C32—H32 119.0
C18—Ir1—N3 78.49 (12) C33—C32—H32 119.0
C10—N1—C6 119.6 (3) C32—C33—C28 117.7 (3)
C10—N1—Ir1 123.6 (2) C32—C33—C34 118.6 (3)
C6—N1—Ir1 116.6 (2) C28—C33—C34 123.6 (3)
C4—N2—C3 114.9 (3) C33—C34—H34A 109.5
C2—C1—C5 117.7 (3) C33—C34—H34B 109.5
C2—C1—Ir1 129.4 (2) H34A—C34—H34B 109.5
C5—C1—Ir1 112.8 (2) C33—C34—H34C 109.5
C3—C2—C1 117.8 (3) H34A—C34—H34C 109.5
C3—C2—H2 121.1 H34B—C34—H34C 109.5
C1—C2—H2 121.1 C44—N5—C40 120.0 (3)
N2—C3—F1 113.6 (3) C44—N5—Ir1 122.9 (2)
N2—C3—C2 126.4 (4) C40—N5—Ir1 117.0 (2)
F1—C3—C2 120.0 (4) C38—N6—C37 114.1 (3)
N2—C4—F2 113.9 (3) C36—C35—C39 116.7 (3)
N2—C4—C5 126.7 (3) C36—C35—Ir1 128.7 (2)
F2—C4—C5 119.4 (3) C39—C35—Ir1 114.4 (2)
C4—C5—C1 116.4 (3) C37—C36—C35 117.6 (3)
C4—C5—C6 126.8 (3) C37—C36—H36 121.2
C1—C5—C6 116.8 (3) C35—C36—H36 121.2
N1—C6—C7 118.6 (3) N6—C37—F5 113.9 (3)
N1—C6—C5 112.9 (3) N6—C37—C36 127.4 (4)
C7—C6—C5 128.5 (3) F5—C37—C36 118.6 (3)
C8—C7—C6 120.9 (3) N6—C38—F6 113.8 (3)
C8—C7—H7 119.6 N6—C38—C39 126.6 (3)
C6—C7—H7 119.6 F6—C38—C39 119.5 (3)
C7—C8—C9 120.5 (3) C38—C39—C35 117.4 (3)
C7—C8—H8 119.8 C38—C39—C40 127.0 (3)
C9—C8—H8 119.8 C35—C39—C40 115.6 (3)
C10—C9—C8 116.5 (3) N5—C40—C41 118.9 (3)
C10—C9—C11 119.3 (3) N5—C40—C39 112.5 (3)
C8—C9—C11 124.1 (3) C41—C40—C39 128.6 (3)
N1—C10—C9 123.8 (3) C42—C41—C40 120.1 (3)
N1—C10—H10 118.1 C42—C41—H41 120.0
C9—C10—H10 118.1 C40—C41—H41 120.0
C12—C11—C16 119.2 (4) C41—C42—C43 121.2 (3)
C12—C11—C9 119.0 (4) C41—C42—H42 119.4
C16—C11—C9 121.7 (3) C43—C42—H42 119.4
C13—C12—C11 121.1 (5) C44—C43—C42 115.9 (3)
C13—C12—H12 119.5 C44—C43—C45 121.8 (3)
C11—C12—H12 119.5 C42—C43—C45 122.3 (3)
C14—C13—C12 119.4 (4) N5—C44—C43 123.7 (3)
C14—C13—H13 120.3 N5—C44—H44 118.1
C12—C13—H13 120.3 C43—C44—H44 118.1
C15—C14—C13 120.3 (5) C46—C45—C50 119.1 (3)
C15—C14—H14 119.9 C46—C45—C43 118.1 (3)
C13—C14—H14 119.9 C50—C45—C43 122.7 (3)
C14—C15—C16 121.4 (5) C47—C46—C45 121.4 (4)
C14—C15—H15 119.3 C47—C46—H46 119.3
C16—C15—H15 119.3 C45—C46—H46 119.3
C15—C16—C11 118.7 (4) C48—C47—C46 119.7 (4)
C15—C16—C17 117.6 (4) C48—C47—H47 120.2
C11—C16—C17 123.6 (4) C46—C47—H47 120.2
C16—C17—H17A 109.5 C47—C48—C49 119.6 (4)
C16—C17—H17B 109.5 C47—C48—H48 120.2
H17A—C17—H17B 109.5 C49—C48—H48 120.2
C16—C17—H17C 109.5 C48—C49—C50 122.5 (4)
H17A—C17—H17C 109.5 C48—C49—H49 118.8
H17B—C17—H17C 109.5 C50—C49—H49 118.8
C27—N3—C23 119.4 (3) C49—C50—C45 117.7 (3)
C27—N3—Ir1 124.7 (2) C49—C50—C51 118.0 (3)
C23—N3—Ir1 115.9 (2) C45—C50—C51 124.3 (3)
C21—N4—C20 114.6 (3) C50—C51—H51A 109.5
C19—C18—C22 116.7 (3) C50—C51—H51B 109.5
C19—C18—Ir1 129.1 (3) H51A—C51—H51B 109.5
C22—C18—Ir1 114.1 (2) C50—C51—H51C 109.5
C20—C19—C18 118.2 (3) H51A—C51—H51C 109.5
C20—C19—H19 120.9 H51B—C51—H51C 109.5
C18—C19—H19 120.9 C53—C52—H52A 109.5
N4—C20—F3 114.1 (3) C53—C52—H52B 109.5
N4—C20—C19 127.1 (4) H52A—C52—H52B 109.5
F3—C20—C19 118.8 (4) C53—C52—H52C 109.5
N4—C21—F4 113.4 (3) H52A—C52—H52C 109.5
N4—C21—C22 126.5 (3) H52B—C52—H52C 109.5
F4—C21—C22 120.1 (3) C54—C53—C52 114.3 (9)
C21—C22—C18 116.9 (3) C54—C53—H53A 108.7
C21—C22—C23 126.1 (3) C52—C53—H53A 108.7
C18—C22—C23 117.0 (3) C54—C53—H53B 108.7
N3—C23—C24 119.5 (3) C52—C53—H53B 108.7
N3—C23—C22 114.0 (3) H53A—C53—H53B 107.6
C24—C23—C22 126.4 (3) C54i—C54—C53 120.0 (12)
C25—C24—C23 119.9 (3) C54i—C54—H54A 107.3
C25—C24—H24 120.0 C53—C54—H54A 107.3
C23—C24—H24 120.0 C54i—C54—H54C 107.3
C24—C25—C26 121.1 (3) C53—C54—H54C 107.3
C24—C25—H25 119.5 H54A—C54—H54C 106.9
C26—C25—H25 119.5 Cl1ii—C55—Cl1 113.6 (6)
C27—C26—C25 115.9 (3) Cl1ii—C55—H55A 108.8
C27—C26—C28 122.8 (3) Cl1—C55—H55A 108.8
C25—C26—C28 121.4 (3) Cl1ii—C55—H55B 108.8
N3—C27—C26 124.1 (3) Cl1—C55—H55B 108.8
N3—C27—H27 117.9 H55A—C55—H55B 107.7
C26—C27—H27 117.9 C55ii—Cl1—C55 66.4 (6)
C5—C1—C2—C3 1.5 (5) C22—C23—C24—C25 −177.0 (3)
Ir1—C1—C2—C3 −176.6 (3) C23—C24—C25—C26 0.1 (5)
C4—N2—C3—F1 178.4 (3) C24—C25—C26—C27 −2.0 (5)
C4—N2—C3—C2 −1.9 (6) C24—C25—C26—C28 178.1 (3)
C1—C2—C3—N2 0.9 (6) C23—N3—C27—C26 −0.5 (5)
C1—C2—C3—F1 −179.5 (3) Ir1—N3—C27—C26 179.8 (2)
C3—N2—C4—F2 −179.5 (3) C25—C26—C27—N3 2.2 (5)
C3—N2—C4—C5 0.4 (5) C28—C26—C27—N3 −177.8 (3)
N2—C4—C5—C1 1.9 (5) C27—C26—C28—C29 −134.7 (4)
F2—C4—C5—C1 −178.2 (3) C25—C26—C28—C29 45.2 (5)
N2—C4—C5—C6 −176.6 (3) C27—C26—C28—C33 47.1 (5)
F2—C4—C5—C6 3.4 (5) C25—C26—C28—C33 −133.0 (4)
C2—C1—C5—C4 −2.7 (4) C33—C28—C29—C30 1.2 (6)
Ir1—C1—C5—C4 175.7 (2) C26—C28—C29—C30 −177.0 (3)
C2—C1—C5—C6 175.8 (3) C28—C29—C30—C31 −0.2 (6)
Ir1—C1—C5—C6 −5.7 (3) C29—C30—C31—C32 −0.8 (6)
C10—N1—C6—C7 4.3 (4) C30—C31—C32—C33 0.8 (6)
Ir1—N1—C6—C7 −170.7 (2) C31—C32—C33—C28 0.2 (6)
C10—N1—C6—C5 −175.1 (3) C31—C32—C33—C34 178.2 (4)
Ir1—N1—C6—C5 9.9 (3) C29—C28—C33—C32 −1.2 (5)
C4—C5—C6—N1 175.8 (3) C26—C28—C33—C32 176.9 (3)
C1—C5—C6—N1 −2.6 (4) C29—C28—C33—C34 −179.0 (3)
C4—C5—C6—C7 −3.5 (5) C26—C28—C33—C34 −0.9 (5)
C1—C5—C6—C7 178.1 (3) C39—C35—C36—C37 −0.2 (5)
N1—C6—C7—C8 −2.5 (5) Ir1—C35—C36—C37 −176.3 (3)
C5—C6—C7—C8 176.8 (3) C38—N6—C37—F5 179.3 (3)
C6—C7—C8—C9 −1.4 (5) C38—N6—C37—C36 −0.3 (6)
C7—C8—C9—C10 3.5 (5) C35—C36—C37—N6 1.1 (6)
C7—C8—C9—C11 −179.8 (3) C35—C36—C37—F5 −178.5 (3)
C6—N1—C10—C9 −2.2 (5) C37—N6—C38—F6 178.9 (3)
Ir1—N1—C10—C9 172.4 (2) C37—N6—C38—C39 −1.6 (6)
C8—C9—C10—N1 −1.7 (5) N6—C38—C39—C35 2.4 (6)
C11—C9—C10—N1 −178.6 (3) F6—C38—C39—C35 −178.1 (3)
C10—C9—C11—C12 126.0 (4) N6—C38—C39—C40 −177.8 (4)
C8—C9—C11—C12 −50.7 (5) F6—C38—C39—C40 1.8 (6)
C10—C9—C11—C16 −51.4 (5) C36—C35—C39—C38 −1.3 (5)
C8—C9—C11—C16 131.9 (4) Ir1—C35—C39—C38 175.4 (3)
C16—C11—C12—C13 1.8 (6) C36—C35—C39—C40 178.8 (3)
C9—C11—C12—C13 −175.6 (4) Ir1—C35—C39—C40 −4.5 (4)
C11—C12—C13—C14 −0.2 (7) C44—N5—C40—C41 1.0 (5)
C12—C13—C14—C15 −1.5 (7) Ir1—N5—C40—C41 177.7 (3)
C13—C14—C15—C16 1.5 (7) C44—N5—C40—C39 −177.0 (3)
C14—C15—C16—C11 0.2 (6) Ir1—N5—C40—C39 −0.3 (4)
C14—C15—C16—C17 −177.5 (4) C38—C39—C40—N5 −176.8 (3)
C12—C11—C16—C15 −1.8 (5) C35—C39—C40—N5 3.1 (4)
C9—C11—C16—C15 175.5 (3) C38—C39—C40—C41 5.5 (6)
C12—C11—C16—C17 175.8 (4) C35—C39—C40—C41 −174.6 (3)
C9—C11—C16—C17 −6.9 (6) N5—C40—C41—C42 −2.6 (5)
C22—C18—C19—C20 −1.9 (5) C39—C40—C41—C42 175.0 (4)
Ir1—C18—C19—C20 176.1 (3) C40—C41—C42—C43 1.0 (6)
C21—N4—C20—F3 −177.2 (4) C41—C42—C43—C44 2.1 (5)
C21—N4—C20—C19 1.7 (7) C41—C42—C43—C45 −179.7 (3)
C18—C19—C20—N4 −0.6 (7) C40—N5—C44—C43 2.3 (5)
C18—C19—C20—F3 178.3 (4) Ir1—N5—C44—C43 −174.2 (2)
C20—N4—C21—F4 179.1 (4) C42—C43—C44—N5 −3.8 (5)
C20—N4—C21—C22 −0.2 (6) C45—C43—C44—N5 178.0 (3)
N4—C21—C22—C18 −2.2 (6) C44—C43—C45—C46 139.1 (4)
F4—C21—C22—C18 178.5 (3) C42—C43—C45—C46 −39.0 (5)
N4—C21—C22—C23 175.5 (4) C44—C43—C45—C50 −43.0 (5)
F4—C21—C22—C23 −3.7 (6) C42—C43—C45—C50 138.8 (4)
C19—C18—C22—C21 3.2 (5) C50—C45—C46—C47 0.2 (6)
Ir1—C18—C22—C21 −175.2 (3) C43—C45—C46—C47 178.2 (4)
C19—C18—C22—C23 −174.8 (3) C45—C46—C47—C48 0.4 (6)
Ir1—C18—C22—C23 6.8 (4) C46—C47—C48—C49 −0.6 (6)
C27—N3—C23—C24 −1.6 (5) C47—C48—C49—C50 0.2 (6)
Ir1—N3—C23—C24 178.2 (2) C48—C49—C50—C45 0.5 (6)
C27—N3—C23—C22 177.4 (3) C48—C49—C50—C51 −176.9 (4)
Ir1—N3—C23—C22 −2.9 (3) C46—C45—C50—C49 −0.7 (5)
C21—C22—C23—N3 179.7 (3) C43—C45—C50—C49 −178.5 (3)
C18—C22—C23—N3 −2.5 (4) C46—C45—C50—C51 176.5 (4)
C21—C22—C23—C24 −1.5 (6) C43—C45—C50—C51 −1.3 (6)
C18—C22—C23—C24 176.3 (3) C52—C53—C54—C54i −176.7 (15)
N3—C23—C24—C25 1.8 (5) Cl1ii—C55—Cl1—C55ii 0.000 (1)

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, −y+2, −z+1.

Hydrogen-bond geometry (Å, º)

Cg3, Cg4 and Cg6 are the centroids of the N4/C18–C21, N5/C40–C44, and C45–C50 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C7—H7···F2 0.95 2.29 2.895 (5) 121
C24—H24···F4 0.95 2.22 2.851 (4) 123
C36—H36···F2iii 0.95 2.41 3.245 (4) 146
C41—H41···F6 0.95 2.32 2.917 (4) 121
C44—H44···N3 0.95 2.50 3.112 (4) 122
C46—H46···F3ii 0.95 2.50 3.067 (5) 119
C13—H13···Cg6iv 0.95 2.98 3.777 (7) 142
C55—H55A···Cg4ii 0.99 2.96 3.326 (9) 103
C55—H55B···Cg3ii 0.99 3.00 3.718 (10) 131
C55—H55B···Cg4ii 0.99 2.78 3.326 (10) 116

Symmetry codes: (ii) −x+1, −y+2, −z+1; (iii) −x+2, −y+1, −z+1; (iv) −x+2, −y+2, −z+1.

Funding Statement

This work was funded by Kangwon National University grant 520170523.

References

  1. Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cho, H., Joo, C. W., Lee, J., Lee, H., Moon, J., Lee, J.-I., Lee, J. Y., Kang, Y. & Cho, N. S. (2016). Opt. Express, 24, 24161–24168. [DOI] [PubMed]
  4. Jung, N., Lee, E., Kim, J., Park, H., Park, K.-M. & Kang, Y. (2012). Bull. Korean Chem. Soc. 33, 183–188.
  5. Kim, M., Oh, S., Kim, J., Park, K.-M. & Kang, Y. (2017). Dyes Pigments, 146, 386–391.
  6. Lee, C., Kim, J., Choi, J. M., Lee, J.-Y. & Kang, Y. (2017). Dyes Pigments, 137, 378–383.
  7. Lee, C.-H., Moon, S.-H., Park, K.-M. & Kang, Y. (2016). Acta Cryst. E72, 1768–1770. [DOI] [PMC free article] [PubMed]
  8. Lee, J., Oh, H., Kim, J., Park, K.-M., Yook, K. S., Lee, J. Y. & Kang, Y. (2014). J. Mater. Chem. C. 2, 6040–6047.
  9. McArdle, P. (1995). J. Appl. Cryst. 28, 65. [DOI] [PMC free article] [PubMed]
  10. Oh, H., Park, K.-M., Hwang, H., Oh, S., Lee, J. H., Lu, J. S., Wang, S. & Kang, Y. (2013). Organometallics, 32, 6427–6436.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  13. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989017016759/hg5501sup1.cif

e-73-01952-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017016759/hg5501Isup2.hkl

e-73-01952-Isup2.hkl (887.3KB, hkl)

CCDC reference: 1586829

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES