Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Nov 28;73(Pt 12):1956–1958. doi: 10.1107/S2056989017016929

Crystal structure of diethyl 3,3′-[(4-nitro­phen­yl)methyl­ene]bis­(1H-indole-2-carboxyl­ate)

Hong-Shun Sun a,*, Yu-Long Li a, Hong Jiang a, Yu-Liang Chen a, Ya-Di Hu a
PMCID: PMC5730260  PMID: 29250423

In the title compound, the two indole ring systems are approximately perpendicular to one another, making a dihedral angle of 89.7 (5)°. In the crystal, pairs of N—H⋯O hydrogen bonds link the mol­ecules into the inversion dimers, which are further linked into supra­molecular chains.

Keywords: crystal structure, bis­indole, crystal structure, MRI, contrast agent

Abstract

In the title compound, C29H25N3O6, the mean planes of the two indole ring systems (r.m.s. deviations = 0.0115 and 0.0082 Å) are approximately perpendic­ular to one another, making a dihedral angle of 89.7 (5)°; the benzene ring is twisted with respect to the two indole ring systems by 52.6 (4) and 88.2 (3)°. In the crystal, pairs of N—H⋯O hydrogen bonds link the mol­ecules into the inversion dimers, which are further linked into supra­molecular chains along the b-axis direction. Weak C—H⋯O hydrogen bonds and C—H⋯π inter­actions are also observed in the crystal.

Chemical context  

Bis(indol­yl)methane derivatives are abundantly present in various terrestrial and marine natural resources (Porter et al., 1977; Sundberg, 1996). They are important anti­biotics in the field of pharmaceuticals with diverse activities, such as anti­cancer, anti­leishmanial and anti­hyperlipidemic (Chang et al., 1999; Ge et al., 1999). On the other hand, bis­(indoly)methane derivatives can also be used as a precursor for MRI necrosis avid contrast agents (Ni, 2008). In recent years, we have reported the synthesis and crystal structures of some similar bis­(indoly)methane compounds (Sun et al., 2012, 2015; Li et al., 2014; Lu et al., 2014). Now we report herein on the crystal structure of the title bis­(indoly)methane compound.graphic file with name e-73-01956-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound is shown in Fig. 1. The overall conformation of the mol­ecule is affected by intra­molecular C10—H10ACg3 and C21—H21ACg1 inter­actions (Table 1). The two indole ring systems are nearly perpendicular to one another [dihedral angle = 89.7 (5)°] while the benzene ring (C2–C7) is twisted to the N2/C8–C15 and N3/C19–C26 indole ring systems by dihedral angles of 52.6 (4) and 88.2 (3)°, respectively. The carboxyl groups are approximately coplanar with the attached indole ring systems, the dihedral angles between the carboxyl groups and the mean plane of the N2/C8–C15 and N3/C19–C26 indole ring systems are 12.5 (4) and 4.9 (5)°, respectively.

Figure 1.

Figure 1

The mol­ecular structure of the title mol­ecule with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Table 1. Hydrogen-bond geometry (Å, °).

Cg1, Cg3 and Cg5 are the centroids of the N2/C8/C9/C14/C15 pyrrole, C2–C7 benzene and C21–C26 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3i 0.86 2.30 3.003 (3) 139
N3—H3A⋯O5ii 0.86 2.14 2.956 (3) 158
C11—H11A⋯O5iii 0.93 2.58 3.501 (4) 171
C17—H17B⋯O1iv 0.97 2.58 3.261 (5) 128
C29—H29A⋯O1v 0.96 2.51 3.281 (4) 137
C10—H10ACg3 0.93 2.69 3.431 (3) 138
C21—H21ACg1 0.93 2.88 3.570 (3) 132
C28—H28ACg5vi 0.97 2.85 3.718 (3) 150

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Supra­molecular features  

In the crystal, pairs of N2—H2A⋯O3i and N3—H3A⋯O5ii hydrogen bonds link the mol­ecules into the inversion dimers, which are further shown as supra­molecular chains propagating along the b-axis direction (Table 1 and Fig. 2). In the crystal, weak C—H⋯O hydrogen bonds and C—H⋯π inter­actions are also observed, linking the chains to form a three-dimensional supramolecular structure.

Figure 2.

Figure 2

A packing diagram of the title compound. The N—H⋯O Hydrogen bonds are shown as dashed lines.

Database survey  

Several similar structures have been reported previously, i.e. diethyl 3,3′-(phenyl­methyl­ene)bis­(1H-indole-2-carboxyl­ate) (Sun et al., 2012) and dimethyl 3,3′-[(4-fluoro­phen­yl)methyl­ene]bis­(1H-indole-2-carboxyl­ate) (Sun et al., 2015) and dimethyl 3,3′-[(4-chloro­phen­yl) methyl­ene]bis­(1H-indole-2-carboxyl­ate) (Li et al., 2014) and dimethyl 3,3′-[(3-fluoro­phen­yl)methyl­ene]bis­(1H-indole-2-carboxyl­ate) (Lu et al., 2014). In these structures, the two indole ring systems are also nearly perpendicular to one another, making dihedral angles of 82.0 (5), 84.0 (5), 79.5 (4) and 87.8 (5)°, respectively.

Synthesis and crystallization  

Ethyl indole-2-carboxyl­ate (1.88 g, 10 mmol) was dissolved in 20 ml ethanol; commercially available 4-nitro­benzaldehyde (0.76 g, 5 mmol) was added and the mixture was heated to reflux temperature. Concentrated HCl (0.5 ml) was added and the reaction was left for 1 h. After cooling, the yellow product was filtered off and washed thoroughly with ethanol. The reaction was monitored with TLC (AcOEt:hexane = 1:3). Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of a methanol solution (yield 93%).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were positioned geometrically with N—H = 0.86 Å and C—H = 0.93–0.98 Å, and constrained to ride on their parent atoms with U iso(H) = xU eq(C,N), where x = 1.5 for methyl H atoms and 1.2 for other H atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C29H25N3O6
M r 511.52
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 8.8040 (18), 15.804 (3), 18.266 (4)
β (°) 98.78 (3)
V3) 2511.7 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.30 × 0.20 × 0.10
 
Data collection
Diffractometer Nonius CAD-4
Absorption correction ψ scan (North et al., 1968)
T min, T max 0.972, 0.991
No. of measured, independent and observed [I > 2σ(I)] reflections 4925, 4611, 2963
R int 0.043
(sin θ/λ)max−1) 0.603
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.059, 0.164, 1.00
No. of reflections 4611
No. of parameters 343
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.39, −0.28

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995) and SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989017016929/xu5911sup1.cif

e-73-01956-sup1.cif (25.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017016929/xu5911Isup2.hkl

e-73-01956-Isup2.hkl (225.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017016929/xu5911Isup3.cml

CCDC reference: 1587329

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Crystal data

C29H25N3O6 F(000) = 1072
Mr = 511.52 Dx = 1.353 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 25 reflections
a = 8.8040 (18) Å θ = 9–13°
b = 15.804 (3) Å µ = 0.10 mm1
c = 18.266 (4) Å T = 293 K
β = 98.78 (3)° Block, colorless
V = 2511.7 (9) Å3 0.30 × 0.20 × 0.10 mm
Z = 4

Data collection

Nonius CAD-4 diffractometer 2963 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.043
Graphite monochromator θmax = 25.4°, θmin = 1.7°
ω/2θ scans h = 0→10
Absorption correction: ψ scan (North et al., 1968) k = 0→19
Tmin = 0.972, Tmax = 0.991 l = −22→22
4925 measured reflections 3 standard reflections every 200 reflections
4611 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.098P)2] where P = (Fo2 + 2Fc2)/3
4611 reflections (Δ/σ)max < 0.001
343 parameters Δρmax = 0.39 e Å3
0 restraints Δρmin = −0.28 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.3019 (3) 0.33359 (18) 0.86721 (14) 0.0648 (7)
C1 0.5958 (3) 0.31146 (14) 0.60845 (12) 0.0395 (5)
H1A 0.5204 0.3259 0.5650 0.047*
O1 0.3145 (3) 0.27719 (17) 0.91181 (14) 0.1013 (9)
N2 0.8861 (2) 0.47555 (13) 0.58612 (12) 0.0517 (6)
H2A 0.9392 0.5055 0.5600 0.062*
C2 0.5083 (3) 0.31093 (14) 0.67433 (13) 0.0394 (6)
O2 0.2403 (4) 0.39980 (19) 0.87776 (15) 0.1199 (11)
N3 0.6690 (2) 0.09119 (12) 0.55132 (10) 0.0435 (5)
H3A 0.6407 0.0442 0.5296 0.052*
O3 0.8106 (2) 0.45055 (14) 0.43699 (10) 0.0729 (6)
C3 0.4078 (3) 0.37605 (17) 0.68231 (14) 0.0546 (7)
H3B 0.3864 0.4157 0.6445 0.065*
O4 0.6050 (2) 0.37421 (13) 0.45415 (9) 0.0626 (5)
C4 0.3383 (3) 0.38418 (18) 0.74445 (15) 0.0590 (7)
H4A 0.2725 0.4291 0.7494 0.071*
O5 0.3605 (2) 0.08873 (11) 0.49279 (11) 0.0597 (5)
C5 0.3687 (3) 0.32430 (16) 0.79870 (14) 0.0485 (6)
O6 0.33771 (19) 0.22355 (10) 0.52526 (10) 0.0544 (5)
C6 0.4600 (3) 0.25512 (16) 0.79184 (14) 0.0488 (6)
H6A 0.4746 0.2137 0.8284 0.059*
C7 0.5301 (3) 0.24868 (15) 0.72855 (13) 0.0453 (6)
H7A 0.5920 0.2023 0.7226 0.054*
C8 0.7142 (3) 0.38043 (14) 0.61580 (13) 0.0413 (6)
C9 0.7960 (3) 0.41747 (15) 0.68231 (14) 0.0452 (6)
C10 0.7929 (3) 0.40819 (18) 0.75905 (14) 0.0569 (7)
H10A 0.7264 0.3696 0.7760 0.068*
C11 0.8885 (3) 0.45645 (19) 0.80769 (16) 0.0653 (8)
H11A 0.8854 0.4506 0.8581 0.078*
C12 0.9902 (3) 0.51407 (18) 0.78475 (16) 0.0610 (8)
H12A 1.0526 0.5464 0.8198 0.073*
C13 0.9999 (3) 0.52399 (16) 0.71204 (16) 0.0553 (7)
H13A 1.0699 0.5616 0.6966 0.066*
C14 0.9023 (3) 0.47627 (15) 0.66117 (14) 0.0479 (6)
C15 0.7728 (3) 0.42011 (15) 0.55827 (13) 0.0437 (6)
C16 0.7342 (3) 0.41604 (17) 0.47798 (15) 0.0518 (7)
C17 0.5564 (4) 0.3709 (3) 0.37461 (16) 0.0888 (11)
H17A 0.5529 0.4278 0.3545 0.107*
H17B 0.6304 0.3386 0.3519 0.107*
C18 0.4103 (5) 0.3332 (3) 0.3575 (2) 0.1267 (17)
H18A 0.3794 0.3330 0.3048 0.190*
H18B 0.3372 0.3649 0.3804 0.190*
H18C 0.4147 0.2761 0.3757 0.190*
C19 0.6591 (3) 0.22443 (14) 0.59271 (12) 0.0384 (5)
C20 0.8111 (3) 0.19214 (15) 0.61572 (13) 0.0431 (6)
C21 0.9467 (3) 0.22243 (18) 0.65751 (15) 0.0549 (7)
H21A 0.9506 0.2768 0.6771 0.066*
C22 1.0729 (3) 0.1716 (2) 0.66927 (17) 0.0656 (8)
H22A 1.1630 0.1920 0.6968 0.079*
C23 1.0702 (3) 0.0891 (2) 0.64087 (18) 0.0699 (9)
H23A 1.1584 0.0560 0.6499 0.084*
C24 0.9407 (3) 0.05644 (18) 0.60030 (16) 0.0593 (7)
H24A 0.9387 0.0017 0.5816 0.071*
C25 0.8115 (3) 0.10832 (16) 0.58803 (13) 0.0444 (6)
C26 0.5775 (3) 0.16072 (15) 0.55434 (12) 0.0414 (6)
C27 0.4159 (3) 0.15280 (15) 0.52078 (13) 0.0415 (6)
C28 0.1776 (3) 0.22520 (18) 0.49292 (16) 0.0582 (7)
H28A 0.1201 0.1837 0.5166 0.070*
H28B 0.1661 0.2126 0.4404 0.070*
C29 0.1216 (4) 0.3115 (2) 0.5050 (2) 0.0800 (10)
H29A 0.0149 0.3156 0.4843 0.120*
H29B 0.1797 0.3518 0.4813 0.120*
H29C 0.1340 0.3230 0.5571 0.120*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0613 (15) 0.0828 (19) 0.0541 (15) 0.0045 (14) 0.0213 (12) −0.0012 (14)
C1 0.0445 (13) 0.0358 (12) 0.0368 (13) −0.0016 (11) 0.0023 (10) −0.0019 (10)
O1 0.131 (2) 0.110 (2) 0.0739 (16) 0.0141 (17) 0.0519 (16) 0.0261 (15)
N2 0.0568 (13) 0.0472 (12) 0.0531 (14) −0.0065 (11) 0.0147 (11) 0.0026 (10)
C2 0.0426 (13) 0.0351 (12) 0.0395 (13) −0.0071 (10) 0.0026 (11) −0.0042 (10)
O2 0.168 (3) 0.117 (2) 0.0915 (19) 0.057 (2) 0.0745 (19) 0.0109 (16)
N3 0.0516 (13) 0.0353 (11) 0.0438 (12) −0.0017 (9) 0.0073 (10) −0.0073 (9)
O3 0.0749 (14) 0.0936 (16) 0.0510 (12) −0.0223 (12) 0.0125 (10) 0.0160 (11)
C3 0.0665 (18) 0.0512 (15) 0.0460 (16) 0.0097 (14) 0.0085 (13) 0.0022 (12)
O4 0.0659 (13) 0.0848 (14) 0.0364 (10) −0.0177 (11) 0.0052 (9) 0.0009 (9)
C4 0.0647 (18) 0.0619 (17) 0.0528 (17) 0.0138 (15) 0.0168 (14) −0.0025 (14)
O5 0.0555 (11) 0.0509 (11) 0.0695 (13) −0.0054 (9) −0.0010 (9) −0.0194 (9)
C5 0.0477 (15) 0.0562 (15) 0.0428 (14) −0.0033 (13) 0.0108 (12) −0.0044 (12)
O6 0.0485 (11) 0.0417 (10) 0.0691 (13) 0.0012 (8) −0.0038 (9) −0.0040 (9)
C6 0.0537 (16) 0.0494 (14) 0.0436 (15) −0.0069 (13) 0.0080 (12) 0.0046 (12)
C7 0.0471 (14) 0.0408 (13) 0.0480 (15) 0.0002 (11) 0.0077 (11) −0.0013 (11)
C8 0.0485 (14) 0.0363 (12) 0.0395 (13) −0.0006 (11) 0.0078 (11) −0.0013 (10)
C9 0.0521 (15) 0.0362 (13) 0.0477 (15) −0.0031 (11) 0.0093 (12) −0.0071 (11)
C10 0.0652 (18) 0.0632 (17) 0.0424 (15) −0.0160 (14) 0.0089 (13) −0.0068 (13)
C11 0.0708 (19) 0.077 (2) 0.0483 (16) −0.0150 (17) 0.0078 (14) −0.0159 (15)
C12 0.0602 (18) 0.0591 (17) 0.0608 (19) −0.0081 (14) 0.0005 (14) −0.0220 (14)
C13 0.0510 (16) 0.0396 (14) 0.075 (2) −0.0094 (12) 0.0088 (14) −0.0102 (13)
C14 0.0500 (15) 0.0401 (13) 0.0537 (16) 0.0002 (12) 0.0079 (12) −0.0026 (11)
C15 0.0494 (14) 0.0417 (13) 0.0406 (14) −0.0012 (12) 0.0084 (11) 0.0007 (11)
C16 0.0536 (16) 0.0558 (16) 0.0466 (15) −0.0012 (13) 0.0093 (13) 0.0070 (13)
C17 0.087 (2) 0.135 (3) 0.0402 (17) −0.019 (2) −0.0032 (16) 0.0002 (19)
C18 0.105 (3) 0.185 (5) 0.088 (3) −0.040 (3) 0.004 (3) −0.023 (3)
C19 0.0450 (14) 0.0379 (12) 0.0326 (12) −0.0029 (11) 0.0066 (10) −0.0029 (10)
C20 0.0454 (14) 0.0488 (14) 0.0355 (13) 0.0005 (12) 0.0073 (11) 0.0003 (11)
C21 0.0520 (16) 0.0590 (16) 0.0514 (16) −0.0032 (14) 0.0003 (13) −0.0079 (13)
C22 0.0505 (17) 0.075 (2) 0.068 (2) −0.0010 (16) −0.0007 (14) −0.0014 (16)
C23 0.0517 (18) 0.076 (2) 0.080 (2) 0.0135 (16) 0.0053 (16) 0.0071 (17)
C24 0.0564 (17) 0.0507 (16) 0.0708 (19) 0.0089 (14) 0.0100 (15) −0.0001 (14)
C25 0.0457 (14) 0.0463 (14) 0.0417 (14) −0.0009 (12) 0.0081 (11) 0.0025 (11)
C26 0.0454 (14) 0.0472 (14) 0.0316 (12) −0.0009 (11) 0.0060 (10) 0.0010 (10)
C27 0.0509 (15) 0.0385 (13) 0.0348 (13) −0.0035 (12) 0.0057 (11) −0.0028 (10)
C28 0.0465 (16) 0.0606 (17) 0.0643 (18) −0.0006 (13) −0.0016 (13) −0.0003 (14)
C29 0.070 (2) 0.068 (2) 0.099 (3) 0.0182 (17) 0.0043 (19) 0.0002 (18)

Geometric parameters (Å, º)

N1—O1 1.201 (3) C10—H10A 0.9300
N1—O2 1.208 (3) C11—C12 1.386 (4)
N1—C5 1.469 (3) C11—H11A 0.9300
C1—C8 1.500 (3) C12—C13 1.353 (4)
C1—C2 1.524 (3) C12—H12A 0.9300
C1—C19 1.528 (3) C13—C14 1.388 (4)
C1—H1A 0.9800 C13—H13A 0.9300
N2—C14 1.356 (3) C15—C16 1.455 (3)
N2—C15 1.366 (3) C17—C18 1.408 (5)
N2—H2A 0.8600 C17—H17A 0.9700
C2—C3 1.380 (3) C17—H17B 0.9700
C2—C7 1.388 (3) C18—H18A 0.9600
N3—C25 1.356 (3) C18—H18B 0.9600
N3—C26 1.369 (3) C18—H18C 0.9600
N3—H3A 0.8600 C19—C26 1.367 (3)
O3—C16 1.210 (3) C19—C20 1.434 (3)
C3—C4 1.375 (3) C20—C21 1.399 (3)
C3—H3B 0.9300 C20—C25 1.418 (3)
O4—C16 1.330 (3) C21—C22 1.361 (4)
O4—C17 1.452 (3) C21—H21A 0.9300
C4—C5 1.367 (4) C22—C23 1.402 (4)
C4—H4A 0.9300 C22—H22A 0.9300
O5—C27 1.204 (3) C23—C24 1.363 (4)
C5—C6 1.374 (3) C23—H23A 0.9300
O6—C27 1.322 (3) C24—C25 1.392 (4)
O6—C28 1.443 (3) C24—H24A 0.9300
C6—C7 1.395 (3) C26—C27 1.465 (3)
C6—H6A 0.9300 C28—C29 1.478 (4)
C7—H7A 0.9300 C28—H28A 0.9700
C8—C15 1.389 (3) C28—H28B 0.9700
C8—C9 1.439 (3) C29—H29A 0.9600
C9—C14 1.414 (3) C29—H29B 0.9600
C9—C10 1.414 (3) C29—H29C 0.9600
C10—C11 1.360 (4)
O1—N1—O2 122.1 (3) N2—C15—C16 116.7 (2)
O1—N1—C5 119.7 (3) C8—C15—C16 133.3 (2)
O2—N1—C5 118.1 (3) O3—C16—O4 123.4 (3)
C8—C1—C2 111.17 (18) O3—C16—C15 122.5 (3)
C8—C1—C19 113.74 (19) O4—C16—C15 114.1 (2)
C2—C1—C19 112.73 (18) C18—C17—O4 110.9 (3)
C8—C1—H1A 106.2 C18—C17—H17A 109.5
C2—C1—H1A 106.2 O4—C17—H17A 109.5
C19—C1—H1A 106.2 C18—C17—H17B 109.5
C14—N2—C15 109.9 (2) O4—C17—H17B 109.5
C14—N2—H2A 125.1 H17A—C17—H17B 108.0
C15—N2—H2A 125.1 C17—C18—H18A 109.5
C3—C2—C7 118.3 (2) C17—C18—H18B 109.5
C3—C2—C1 119.3 (2) H18A—C18—H18B 109.5
C7—C2—C1 122.4 (2) C17—C18—H18C 109.5
C25—N3—C26 109.01 (19) H18A—C18—H18C 109.5
C25—N3—H3A 125.5 H18B—C18—H18C 109.5
C26—N3—H3A 125.5 C26—C19—C20 106.4 (2)
C4—C3—C2 122.0 (2) C26—C19—C1 125.5 (2)
C4—C3—H3B 119.0 C20—C19—C1 128.0 (2)
C2—C3—H3B 119.0 C21—C20—C25 117.8 (2)
C16—O4—C17 116.9 (2) C21—C20—C19 135.9 (2)
C5—C4—C3 118.1 (3) C25—C20—C19 106.3 (2)
C5—C4—H4A 121.0 C22—C21—C20 119.4 (3)
C3—C4—H4A 121.0 C22—C21—H21A 120.3
C4—C5—C6 122.5 (2) C20—C21—H21A 120.3
C4—C5—N1 119.2 (2) C21—C22—C23 121.6 (3)
C6—C5—N1 118.2 (2) C21—C22—H22A 119.2
C27—O6—C28 118.4 (2) C23—C22—H22A 119.2
C5—C6—C7 118.2 (2) C24—C23—C22 121.3 (3)
C5—C6—H6A 120.9 C24—C23—H23A 119.4
C7—C6—H6A 120.9 C22—C23—H23A 119.4
C2—C7—C6 120.6 (2) C23—C24—C25 117.4 (3)
C2—C7—H7A 119.7 C23—C24—H24A 121.3
C6—C7—H7A 119.7 C25—C24—H24A 121.3
C15—C8—C9 105.0 (2) N3—C25—C24 129.3 (2)
C15—C8—C1 126.4 (2) N3—C25—C20 108.1 (2)
C9—C8—C1 128.5 (2) C24—C25—C20 122.6 (2)
C14—C9—C10 116.9 (2) C19—C26—N3 110.2 (2)
C14—C9—C8 107.7 (2) C19—C26—C27 132.7 (2)
C10—C9—C8 135.4 (2) N3—C26—C27 117.0 (2)
C11—C10—C9 119.0 (3) O5—C27—O6 123.8 (2)
C11—C10—H10A 120.5 O5—C27—C26 123.7 (2)
C9—C10—H10A 120.5 O6—C27—C26 112.5 (2)
C10—C11—C12 122.3 (3) O6—C28—C29 106.4 (2)
C10—C11—H11A 118.8 O6—C28—H28A 110.4
C12—C11—H11A 118.8 C29—C28—H28A 110.4
C13—C12—C11 120.9 (3) O6—C28—H28B 110.4
C13—C12—H12A 119.5 C29—C28—H28B 110.4
C11—C12—H12A 119.5 H28A—C28—H28B 108.6
C12—C13—C14 117.9 (3) C28—C29—H29A 109.5
C12—C13—H13A 121.0 C28—C29—H29B 109.5
C14—C13—H13A 121.0 H29A—C29—H29B 109.5
N2—C14—C13 129.8 (2) C28—C29—H29C 109.5
N2—C14—C9 107.4 (2) H29A—C29—H29C 109.5
C13—C14—C9 122.8 (2) H29B—C29—H29C 109.5
N2—C15—C8 110.0 (2)
C8—C1—C2—C3 69.9 (3) C9—C8—C15—C16 −175.6 (3)
C19—C1—C2—C3 −161.1 (2) C1—C8—C15—C16 6.7 (4)
C8—C1—C2—C7 −107.7 (2) C17—O4—C16—O3 0.0 (4)
C19—C1—C2—C7 21.4 (3) C17—O4—C16—C15 177.5 (3)
C7—C2—C3—C4 4.9 (4) N2—C15—C16—O3 9.9 (4)
C1—C2—C3—C4 −172.8 (2) C8—C15—C16—O3 −172.8 (3)
C2—C3—C4—C5 −1.4 (4) N2—C15—C16—O4 −167.6 (2)
C3—C4—C5—C6 −2.9 (4) C8—C15—C16—O4 9.8 (4)
C3—C4—C5—N1 177.1 (2) C16—O4—C17—C18 −173.4 (3)
O1—N1—C5—C4 172.3 (3) C8—C1—C19—C26 −150.9 (2)
O2—N1—C5—C4 −10.4 (4) C2—C1—C19—C26 81.3 (3)
O1—N1—C5—C6 −7.7 (4) C8—C1—C19—C20 30.6 (3)
O2—N1—C5—C6 169.7 (3) C2—C1—C19—C20 −97.1 (3)
C4—C5—C6—C7 3.4 (4) C26—C19—C20—C21 −177.8 (3)
N1—C5—C6—C7 −176.6 (2) C1—C19—C20—C21 0.9 (4)
C3—C2—C7—C6 −4.3 (4) C26—C19—C20—C25 0.6 (2)
C1—C2—C7—C6 173.3 (2) C1—C19—C20—C25 179.3 (2)
C5—C6—C7—C2 0.3 (4) C25—C20—C21—C22 0.7 (4)
C2—C1—C8—C15 −154.3 (2) C19—C20—C21—C22 179.0 (3)
C19—C1—C8—C15 77.2 (3) C20—C21—C22—C23 −0.4 (4)
C2—C1—C8—C9 28.5 (3) C21—C22—C23—C24 −0.1 (5)
C19—C1—C8—C9 −100.0 (3) C22—C23—C24—C25 0.2 (4)
C15—C8—C9—C14 −1.3 (3) C26—N3—C25—C24 178.9 (2)
C1—C8—C9—C14 176.3 (2) C26—N3—C25—C20 0.1 (3)
C15—C8—C9—C10 178.7 (3) C23—C24—C25—N3 −178.5 (3)
C1—C8—C9—C10 −3.7 (5) C23—C24—C25—C20 0.2 (4)
C14—C9—C10—C11 1.1 (4) C21—C20—C25—N3 178.3 (2)
C8—C9—C10—C11 −178.8 (3) C19—C20—C25—N3 −0.4 (3)
C9—C10—C11—C12 −0.6 (4) C21—C20—C25—C24 −0.6 (4)
C10—C11—C12—C13 −0.8 (5) C19—C20—C25—C24 −179.4 (2)
C11—C12—C13—C14 1.6 (4) C20—C19—C26—N3 −0.6 (3)
C15—N2—C14—C13 −178.3 (2) C1—C19—C26—N3 −179.29 (19)
C15—N2—C14—C9 1.0 (3) C20—C19—C26—C27 176.1 (2)
C12—C13—C14—N2 178.2 (3) C1—C19—C26—C27 −2.6 (4)
C12—C13—C14—C9 −1.0 (4) C25—N3—C26—C19 0.3 (3)
C10—C9—C14—N2 −179.8 (2) C25—N3—C26—C27 −176.9 (2)
C8—C9—C14—N2 0.2 (3) C28—O6—C27—O5 −1.9 (4)
C10—C9—C14—C13 −0.4 (4) C28—O6—C27—C26 178.7 (2)
C8—C9—C14—C13 179.6 (2) C19—C26—C27—O5 −174.8 (3)
C14—N2—C15—C8 −1.9 (3) N3—C26—C27—O5 1.7 (3)
C14—N2—C15—C16 176.1 (2) C19—C26—C27—O6 4.6 (4)
C9—C8—C15—N2 1.9 (3) N3—C26—C27—O6 −178.84 (19)
C1—C8—C15—N2 −175.8 (2) C27—O6—C28—C29 −179.0 (2)

Hydrogen-bond geometry (Å, º)

Cg1, Cg3 and Cg5 are the centroids of the N2/C8/C9/C14/C15 pyrrole, C2–C7 benzene and C21–C26 benzene rings, respectively.

D—H···A D—H H···A D···A D—H···A
N2—H2A···O3i 0.86 2.30 3.003 (3) 139
N3—H3A···O5ii 0.86 2.14 2.956 (3) 158
C11—H11A···O5iii 0.93 2.58 3.501 (4) 171
C17—H17B···O1iv 0.97 2.58 3.261 (5) 128
C29—H29A···O1v 0.96 2.51 3.281 (4) 137
C10—H10A···Cg3 0.93 2.69 3.431 (3) 138
C21—H21A···Cg1 0.93 2.88 3.570 (3) 132
C28—H28A···Cg5vi 0.97 2.85 3.718 (3) 150

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y, −z+1; (iii) x+1/2, −y+1/2, z+1/2; (iv) x+1/2, −y+1/2, z−1/2; (v) x−1/2, −y+1/2, z−1/2; (vi) x−1, y, z.

Funding Statement

This work was funded by University of Natural Science Foundation in Jiangsu Province grant 17KJB320001. Top-notch Academic Programs Project of Jiangsu Higher Education Institutions grant PPZY2015B179. Training program of Students innovation and entrepreneurship in Jiangsu Province grant 201712920001Y. Qing Lan Project of Jiangsu Province grant .

References

  1. Chang, Y.-C., Riby, J., Chang, G. H., Peng, G.-F., Firestone, G. & Bjeldanes, L. F. (1999). Biochem. Pharmacol. 58, 825–834. [DOI] [PubMed]
  2. Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.
  3. Ge, X., Fares, F. A. & Yannai, S. (1999). Anticancer Res. 19, 3199–3203. [PubMed]
  4. Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
  5. Li, Y., Sun, H., Jiang, H., Xu, N. & Xu, H. (2014). Acta Cryst. E70, 259–261. [DOI] [PMC free article] [PubMed]
  6. Lu, X.-H., Sun, H.-S. & Hu, J. (2014). Acta Cryst. E70, 593–595. [DOI] [PMC free article] [PubMed]
  7. Ni, Y.-C. (2008). Curr. Med. Imaging Rev. 4, 96–112.
  8. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  9. Porter, J. K., Bacon, C. W., Robbins, J. D., Himmelsbach, D. S. & Higman, H. C. (1977). J. Agric. Food Chem. 25, 88–93. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Sun, H.-S., Li, Y., Jiang, H., Xu, N. & Xu, H. (2015). Acta Cryst. E71, 1140–1142. [DOI] [PMC free article] [PubMed]
  12. Sun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2012). Acta Cryst. E68, o2764. [DOI] [PMC free article] [PubMed]
  13. Sundberg, R. J. (1996). The Chemistry of Indoles, p. 113 New York: Academic Press.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989017016929/xu5911sup1.cif

e-73-01956-sup1.cif (25.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017016929/xu5911Isup2.hkl

e-73-01956-Isup2.hkl (225.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017016929/xu5911Isup3.cml

CCDC reference: 1587329

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES