Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Nov 30;73(Pt 12):1971–1973. doi: 10.1107/S205698901701698X

Crystal structure of methyl 2-[5-(2-hy­droxy­phen­yl)-2H-tetra­zol-2-yl]acetate

Seul Gi Lee a, Ji Yeon Ryu a, Junseong Lee a,*
PMCID: PMC5730263  PMID: 29250426

The title compound, methyl 2-[5-(2-hy­droxy­phen­yl)-2H-tetra­zol-2-yl]acetate, is the major product from the reaction between 2-(2H-tetra­zol-5-yl)phenol and methyl 2-bromo­acetate in the presence of potassium carbonate, which gave three isomeric products.

Keywords: crystal structure, tetra­zole, hy­droxy­phenyl tetra­zole, hydrogen bonding, offset π–π inter­actions

Abstract

The title compound, C10H10N4O3, was synthesized by the esterification of hy­droxy­phenyl tetra­zole. There is an intra­molecular O—H⋯N hydrogen bond present involving the hy­droxy group and the tetra­zole ring. The tetra­zole ring is inclined to the phenol ring by 2.85 (13)°, while the methyl acetate group is almost normal to the tetra­zole ring, making a dihedral angle of 82.61 (14)°. In the crystal, mol­ecules are linked by pairs of C—H⋯O hydrogen bonds, forming inversion dimers. Within the dimers, the phenol rings are linked by offset π–π inter­actions [inter­centroid distance = 3.759 (2) Å]. There are no further significant inter­molecular inter­actions present in the crystal. The hy­droxy group is disordered about positions 2 and 6 on the benzene ring, with a refined occupancy ratio of 0.531 (5):0.469 (5).

Chemical context  

Tetra­zole ligands are useful building blocks for the construction of high-dimensional metal–organic frameworks by providing various binding modes toward metal centers (Karaghiosoff et al., 2009; Liu et al., 2013). Recently, we have used 5-(2-hy­droxy­phen­yl)tetra­zole as a chelating multidentate ligand and reported several inter­esting compounds (Park et al., 2015; 2014). It provides strong [N,O] chelation to metal centers with various additional binding modes. As part of a project on the study of the substitution effects on the tetra­zole ring on the self-assembly behaviour in solution, as well as in the solid state, we have synthesized a number of substituted hy­droxy­phenyl tetra­zole complexes. The substitution of the tetra­zole group may promote supra­molecular inter­action by weak inter­actions, such as hydrogen bonding. The reaction between hy­droxy­phenyl tetra­zole and bromo acetate methyl ester in the presence of potassium carbonate gave three isomeric products. Using column chromatography, the major product was isolated and its mol­ecular structure was determined unambiguously by X-ray crystallography. We report herein, the synthesis and crystal structure of this compound.graphic file with name e-73-01971-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound is shown in Fig. 1. The structure analysis confirms the nature of the major product of the reaction, which yielded three isomeric compounds as described in Section 5, Synthesis and crystallization. The title mol­ecule consists of a tetra­zole ring (N1–N4/C1) and a phenol ring (C2–C7), which are connected by an intra­molecular O—H⋯N hydrogen bond (Fig. 1, Table 1) and inclined to one another by 2.85 (13)°. The planar methyl acetate group [O2/O3/C8–C10; maximum deviation of 0.037 (2) Å for atom O2] is inclined to the tetra­zole ring by 82.61 (14)°.

Figure 1.

Figure 1

A view of the mol­ecular structure of the title compound, with the atom labelling and 30% probability displacement ellipsoids. The intra­molecular O—H⋯N hydrogen bond (see Table 1) is indicated by a dashed line. Only the major component of the disordered OH group, in position 2, is shown.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.84 1.91 2.659 (4) 148
C5—H5⋯O3i 0.95 2.57 3.472 (3) 158

Symmetry code: (i) Inline graphic.

Supra­molecular features  

In the crystal, the mol­ecules are linked by pairs of C—H⋯O hydrogen bonds, forming inversion dimers with an Inline graphic(22) loop (Table 1, Fig. 2). Within the dimers, the phenol rings are linked by offset π–π inter­actions [CgCg i = 3.759 (2) Å, inter­planar distance = 3.526 (1) Å, slippage 1.305 Å; Cg is the centroid of the C2–C7 phenol ring, symmetry code: (i) −x + 1, −y, −z + 1]. There are no further significant inter­molecular inter­actions present in the crystal.

Figure 2.

Figure 2

A view along the a axis of the crystal packing of the title compound. The intra- and inter­molecular hydrogen bonds (see Table 1) are indicated by dashed lines. The offset π–π inter­actions are shown as dashed double arrows. Only H atoms H1 and H5, and the major component of the disordered OH group in position 2, have been included.

Database survey  

A search of the Cambridge Structural Database (Version 5.38, update May 2017; Groom et al., 2016) for the methyl 2-(5-phenyl-2H-tetra­zol-2-yl)acetate skeleton revealed only two hits, viz. ethyl (Z)-3-phenyl-2-(5-phenyl-2H-tetra­zol-2-yl)-2-propenoate (SAKVIM; Ramazani et al., 2017) and methyl (5-phenyl-2H-tetra­zol-2-yl)acetate (WUKNUN; Saeed et al., 2015). In WUKNUN, the 5-phenyl substituent is inclined to the tetra­zole ring by 3.89 (7)°, compared to 2.85 (13)° in the title compound. In contrast, the corresponding dihedral angle in SAKVIM is 19.97 (16)°. The meth­yl/ethyl acetate groups are inclined to the plane of the tetra­zole ring by 84.99 (7)° in WUKNUN and 84.57 (7)° in SAKVIM, similar to the value observed in the title compound, viz. 82.61 (14)°.

Synthesis and crystallization  

The synthesis of the title compound is illustrated in Fig. 3. 2-(2H-Tetra­zol-5-yl)phenol (100 mg, 0.62 mmol) and potassium carbonate (85.0 mg, 0.62 mmol) were dissolved in aceto­nitrile at 273 K while stirring for 30 min. To the resulting solution methyl 2-bromo­acetate (207 µl, 2.18 mmol) was added and stirring was continued for 24 h. The white solid that was obtained was filtered and the solvent removed under reduced pressure. The residue was purified by column chromatography on silica gel using ether:hexane (2:3) as eluent. Three isomeric compounds were obtained, as shown in Fig. 3. The major product (I) (yield = 59%), was recrystallized in di­chloro­methane and yielded needle-like colourless crystals of the title compound. Spectroscopic data: 1H NMR (CDCl3, 400MHz): δ = 9.59 (s, 1H, OH), 8.06 (d, 1H, Ph), 7.41 (t, 1H, Ph), 7.11 (d, 1H, Ph), 6.99 (t, 1H, Ph), 5.51 (s, 2H), 3.85 (s, 3H). 13C NMR (125 MHz, CDCl3): 165.06, 164.68, 156.42, 132.44, 127.50, 120.06, 117.62, 53.41, 53.38 ppm.

Figure 3.

Figure 3

Reaction scheme for the synthesis of the title compound, (I).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The hy­droxy group is disordered about positions 2 and 6 on the phenol ring, with a refined occupancy ratio of 0.531 (5):0.469 (5). All the H atoms were included in calculated positions using a riding model: O—H = 0.84 Å, C-H = 0.95–1.00 Å with U iso(H) = 1.5 U eq(O-hydroxyl, C-meth­yl) and 1.2U eq(C) for other H atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C10H10N4O3
M r 234.22
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 10.060 (2), 8.2538 (17), 13.536 (3)
β (°) 104.479 (10)
V3) 1088.2 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.15 × 0.10 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.987, 0.989
No. of measured, independent and observed [I > 2σ(I)] reflections 14003, 2372, 1252
R int 0.044
(sin θ/λ)max−1) 0.642
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.057, 0.137, 1.02
No. of reflections 2372
No. of parameters 167
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.14, −0.17

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S205698901701698X/su5409sup1.cif

e-73-01971-sup1.cif (434.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901701698X/su5409Isup2.hkl

e-73-01971-Isup2.hkl (190.2KB, hkl)

Supporting information file. DOI: 10.1107/S205698901701698X/su5409Isup3.cml

CCDC reference: 1587621

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C10H10N4O3 F(000) = 488
Mr = 234.22 Dx = 1.430 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 10.060 (2) Å Cell parameters from 3134 reflections
b = 8.2538 (17) Å θ = 2.9–24.3°
c = 13.536 (3) Å µ = 0.11 mm1
β = 104.479 (10)° T = 100 K
V = 1088.2 (4) Å3 Needle, colourless
Z = 4 0.15 × 0.10 × 0.10 mm

Data collection

Bruker APEXII CCD diffractometer 1252 reflections with I > 2σ(I)
φ and ω scans Rint = 0.044
Absorption correction: multi-scan (SADABS; Krause et al., 2015) θmax = 27.2°, θmin = 2.1°
Tmin = 0.987, Tmax = 0.989 h = −12→12
14003 measured reflections k = −10→10
2372 independent reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0479P)2 + 0.3171P] where P = (Fo2 + 2Fc2)/3
2372 reflections (Δ/σ)max < 0.001
167 parameters Δρmax = 0.14 e Å3
0 restraints Δρmin = −0.17 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.3781 (3) 0.2337 (4) 0.3644 (3) 0.0745 (14) 0.531 (5)
H1 0.4534 0.2755 0.3623 0.112* 0.531 (5)
O2 0.92819 (16) 0.46762 (19) 0.26859 (14) 0.0718 (5)
O3 0.92563 (18) 0.2756 (2) 0.38419 (16) 0.0879 (6)
O1A 0.5939 (5) 0.1877 (6) 0.7094 (3) 0.1031 (19) 0.469 (5)
H1A 0.6557 0.2377 0.6900 0.155* 0.469 (5)
N1 0.61929 (19) 0.3786 (2) 0.43476 (16) 0.0618 (5)
N2 0.7415 (2) 0.4500 (2) 0.46016 (19) 0.0679 (6)
N3 0.8043 (2) 0.4384 (3) 0.5571 (2) 0.0890 (7)
N4 0.7203 (2) 0.3567 (3) 0.59958 (17) 0.0826 (7)
C1 0.6085 (2) 0.3209 (3) 0.5240 (2) 0.0574 (6)
C2 0.4922 (2) 0.2276 (2) 0.53816 (19) 0.0555 (6)
C3 0.4899 (3) 0.1677 (3) 0.6336 (3) 0.0749 (7)
H3 0.5638 0.1911 0.6908 0.090* 0.531 (5)
C4 0.3811 (4) 0.0744 (3) 0.6462 (3) 0.0916 (10)
H4 0.3810 0.0334 0.7117 0.110*
C5 0.2743 (3) 0.0412 (3) 0.5647 (3) 0.0913 (10)
H5 0.2001 −0.0237 0.5734 0.110*
C6 0.2733 (3) 0.1010 (3) 0.4701 (3) 0.0831 (8)
H6 0.1978 0.0790 0.4137 0.100*
C7 0.3818 (3) 0.1929 (3) 0.4565 (2) 0.0652 (7)
H7 0.3808 0.2330 0.3905 0.078* 0.469 (5)
C8 0.8045 (3) 0.5246 (3) 0.3866 (2) 0.0778 (8)
H8A 0.8619 0.6170 0.4189 0.093*
H8B 0.7322 0.5670 0.3288 0.093*
C9 0.8923 (2) 0.4048 (3) 0.3474 (2) 0.0635 (7)
C10 1.0223 (3) 0.3749 (3) 0.2257 (2) 0.0834 (8)
H10A 1.0402 0.4334 0.1674 0.125*
H10B 0.9817 0.2691 0.2031 0.125*
H10C 1.1087 0.3594 0.2776 0.125*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.063 (2) 0.086 (3) 0.071 (3) −0.0122 (18) 0.0098 (17) 0.0043 (19)
O2 0.0666 (11) 0.0501 (10) 0.1035 (13) 0.0043 (8) 0.0303 (10) 0.0086 (10)
O3 0.0893 (13) 0.0446 (10) 0.1425 (17) 0.0147 (9) 0.0529 (12) 0.0194 (11)
O1A 0.127 (4) 0.118 (4) 0.062 (3) 0.006 (3) 0.018 (3) 0.011 (3)
N1 0.0533 (12) 0.0445 (11) 0.0897 (15) 0.0028 (10) 0.0215 (11) −0.0002 (11)
N2 0.0570 (13) 0.0463 (12) 0.1035 (18) 0.0007 (10) 0.0260 (13) −0.0040 (12)
N3 0.0684 (15) 0.0838 (18) 0.111 (2) −0.0131 (14) 0.0151 (15) −0.0115 (16)
N4 0.0699 (15) 0.0835 (16) 0.0897 (17) −0.0084 (13) 0.0113 (13) −0.0090 (13)
C1 0.0534 (15) 0.0414 (12) 0.0779 (17) 0.0082 (11) 0.0172 (13) −0.0068 (13)
C2 0.0568 (14) 0.0374 (12) 0.0754 (17) 0.0095 (11) 0.0225 (13) −0.0017 (12)
C3 0.085 (2) 0.0605 (17) 0.082 (2) 0.0139 (15) 0.0271 (18) 0.0054 (16)
C4 0.118 (3) 0.0586 (18) 0.119 (3) 0.0109 (19) 0.069 (2) 0.0116 (18)
C5 0.096 (2) 0.0504 (17) 0.151 (3) −0.0090 (16) 0.074 (2) −0.015 (2)
C6 0.0686 (18) 0.0668 (18) 0.121 (3) −0.0077 (15) 0.0376 (17) −0.0194 (18)
C7 0.0604 (16) 0.0517 (15) 0.088 (2) 0.0008 (12) 0.0273 (15) −0.0047 (14)
C8 0.0703 (16) 0.0433 (14) 0.130 (2) 0.0011 (12) 0.0439 (17) 0.0049 (15)
C9 0.0474 (13) 0.0384 (13) 0.106 (2) −0.0044 (11) 0.0219 (13) −0.0004 (14)
C10 0.0779 (18) 0.0708 (18) 0.110 (2) 0.0042 (15) 0.0398 (16) −0.0052 (16)

Geometric parameters (Å, º)

O1—C7 1.282 (4) N4—C1 1.351 (3)
O2—C9 1.315 (3) C1—C2 1.452 (3)
O2—C10 1.447 (3) C2—C7 1.387 (3)
O3—C9 1.190 (3) C2—C3 1.388 (3)
O1A—C3 1.280 (5) C3—C4 1.383 (4)
N1—C1 1.328 (3) C4—C5 1.362 (4)
N1—N2 1.329 (3) C5—C6 1.370 (4)
N2—N3 1.310 (3) C6—C7 1.378 (3)
N2—C8 1.445 (3) C8—C9 1.508 (3)
N3—N4 1.319 (3)
C9—O2—C10 117.19 (18) O1A—C3—C4 119.1 (4)
C1—N1—N2 101.8 (2) O1A—C3—C2 119.9 (3)
N3—N2—N1 114.2 (2) C4—C3—C2 120.7 (3)
N3—N2—C8 122.4 (2) C5—C4—C3 120.0 (3)
N1—N2—C8 123.2 (2) C4—C5—C6 120.3 (3)
N2—N3—N4 105.9 (2) C5—C6—C7 120.1 (3)
N3—N4—C1 106.5 (2) O1—C7—C6 116.2 (3)
N1—C1—N4 111.6 (2) O1—C7—C2 122.9 (3)
N1—C1—C2 124.2 (2) C6—C7—C2 120.7 (3)
N4—C1—C2 124.2 (2) N2—C8—C9 111.09 (19)
C7—C2—C3 118.1 (2) O3—C9—O2 126.0 (2)
C7—C2—C1 121.0 (2) O3—C9—C8 124.7 (2)
C3—C2—C1 120.8 (2) O2—C9—C8 109.3 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.84 1.91 2.659 (4) 148
C5—H5···O3i 0.95 2.57 3.472 (3) 158

Symmetry code: (i) −x+1, −y, −z+1.

Funding Statement

This work was funded by National Research Foundation of Korea grants 2015R1A4A1041036 and 2016R1D1A1B03930507.

References

  1. Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  3. Karaghiosoff, K., Klapötke, T. M. & Miró Sabaté, C. (2009). Chem. Eur. J. 15, 1164–1176. [DOI] [PubMed]
  4. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  5. Liu, Z.-Y., Zou, H.-A., Hou, Z.-J., Yang, E.-C. & Zhao, X.-J. (2013). Dalton Trans. 42, 15716–15725. [DOI] [PubMed]
  6. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  7. Park, K. H., Lee, K. M., Go, M. J., Choi, S. H., Park, H. R., Kim, Y. & Lee, J. (2014). Inorg. Chem. 53, 8213–8220. [DOI] [PubMed]
  8. Park, Y. J., Ryu, J. Y., Begum, H., Lee, M. H., Stang, P. J. & Lee, J. (2015). J. Am. Chem. Soc. 137, 5863–5866. [DOI] [PubMed]
  9. Ramazani, A., Nasrabadi, F. Z., Ślepokura, K., Lis, T. & Joo, S. W. (2017). J. Heterocycl. Chem. 54, 55–64.
  10. Saeed, A., Qasim, M., Hussain, M., Flörke, U. & Erben, M. F. (2015). Spectrochim. Acta Part A, 150, 1–8. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  13. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S205698901701698X/su5409sup1.cif

e-73-01971-sup1.cif (434.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901701698X/su5409Isup2.hkl

e-73-01971-Isup2.hkl (190.2KB, hkl)

Supporting information file. DOI: 10.1107/S205698901701698X/su5409Isup3.cml

CCDC reference: 1587621

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES