Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Sep 5;73(Pt 10):1402–1404. doi: 10.1107/S2056989017012452

A two-dimensional Zn coordination polymer with a three-dimensional supra­molecular architecture

Fuhong Liu a,*, Yan Ding a, Qiuyu Li a, Liping Zhang a
PMCID: PMC5730282  PMID: 29250345

The characteristic structural feature of a new two-dimensional Zn coordination polymer is an infinite polymeric layer parallel to the crystallographic (132) plane.

Keywords: crystal structure, coordination polymer, zinc complex, two-dimensional layer

Abstract

The title compound, poly[bis­{μ2-4,4′-bis­[(1,2,4-triazol-1-yl)meth­yl]biphenyl-κ2 N 4:N 4′}bis­(nitrato-κO)zinc(II)], [Zn(NO3)2(C18H16N6)2]n, is a two-dimensional zinc coordination polymer constructed from 4,4′-bis­[(1H-1,2,4-triazol-1-yl)meth­yl]-1,1′-biphenyl units. It was synthesized and characterized by elemental analysis and single-crystal X-ray diffraction. The ZnII cation is located on an inversion centre and is coordinated by two O atoms from two symmetry-related nitrate groups and four N atoms from four symmetry-related 4,4′-bis­[(1H-1,2,4-triazol-1-yl)meth­yl]-1,1′-biphenyl ligands, forming a distorted octa­hedral {ZnN4O2} coordination geometry. The linear 4,4′-bis­[(1H-1,2,4-triazol-1-yl)meth­yl]-1,1′-biphenyl ligand links two ZnII cations, generating two-dimensional layers parallel to the crystallographic (132) plane. The parallel layers are connected by C—H⋯O, C—H⋯N, C—H⋯π and π–π stacking inter­actions, resulting in a three-dimensional supra­molecular architecture.

Chemical context  

Over the past few decades, the self-assembly of coordination polymers (CPs) or metal–organic frameworks (MOFs) based on metal ions or clusters and organic ligands has attracted much attention, owing to their intriguing mol­ecular topologies and potential applications. Multidentate ligands derived from 1,2,4-triazole that contain an aromatic core have been used for this purpose, examples being 1,4-bis­(1H-1,2,4-triazol-1-ylmeth­yl)benzene (Wang et al., 2007; Ding & Zou, 2010; Zhu et al., 2010), 1,3-bis­(1H-1,2,4-triazol-1-ylmeth­yl)benzene (Zhang et al., 2012; Ge et al., 2008; Zhu et al., 2015), 1,2-bis­(1H-1,2,4-triazol-1-ylmeth­yl)benzene (Yang et al., 2009; Zhao et al., 2017; Zhang et al., 2013), 1,3,5-tris­(1H-1,2,4-triazol-1-ylmeth­yl)benzene (Li et al., 2012; Yin et al., 2009; Shi et al., 2011), 4,4′-bis­[(1H-1,2,4-triazol-1-yl)meth­yl]-1,1′-biphenyl (Mu et al., 2011; Ren et al., 2010; Ni et al., 2010). Hydro­thermal synthesis has been proved to be an effective method for the construction of these new coordination polymers. In this study, a new two-dimensional CP, viz. poly[bis­{μ2-4,4′-bis­[(1,2,4-triazol-1-yl)meth­yl]biphenyl-κ2 N 4:N 4′}bis­(nitrato-κO)zinc], [Zn(NO3)2(C18H16N6)2]n, was synthesized under hydro­thermal conditions by the reaction of Zn(NO3)2·6H2O and 4,4′-bis­[(1H-1,2,4-triazol-1-yl)meth­yl]-1,1′-biphenyl at 313 K for 48 h. We report here its crystal structure and its elemental analysis.

Structural commentary  

The title complex crystallizes in the triclinic space group P Inline graphic; the asymmetric unit of the structure consists of one ZnII cation (site symmetry Inline graphic), one nitrate anion and one 4,4′-bis­[(1H-1,2,4-triazol-1-yl)meth­yl]-1,1′-biphenyl ligand.graphic file with name e-73-01402-scheme1.jpg

As shown in Fig. 1, each ZnII cation exhibits a slightly distorted octa­hedral {ZnN4O2} coordination geometry and is coordinated by four N atoms (N1, N4, N1i and N4i) from four symmetry-related organic ligands and two O atoms (O3 and O3i) from two symmetry-related nitrate groups (see Fig. 1 for symmetry code). The Zn—O [2.191 (2) Å] and Zn—N bond lengths [2.124 (3)–2.168 (2) Å] are in agreement with corresponding bond lengths found in previously reported ZnII coordination polymers. For the title coordination polymer, the ZnII cation is coordinated by four 4,4′-bis­[(1H-1,2,4-triazol-1-yl)meth­yl]-1,1′-biphenyl ligands and two nitrate anions, and each organic ligand in turn connects two ZnII cations to generate a two-dimensional layer parallel to the crystallographic (132) plane. The organic ligand adopts a cis,cis substituent conformation. The two distinct Zn⋯Zn distances are 18.397 (3) and 18.964 (3) Å (see Fig. 2). The two benzene rings of the 4,4′-bis­[(1H-1,2,4-triazol-1-yl)meth­yl]-1,1′-biphenyl ligand lie nearly in one plane [dihedral angle = 0.00 (2)°]. The two triazole groups of the 4,4′-bis­[(1H-1,2,4-triazol-1-yl)meth­yl]-1,1′-biphenyl ligand are inclined to the plane of the central biphenyl groups, with dihedral angles of 80.050 (2) (C1/C2/N1/N2/N3) and 85.511 (2)° (C10/C11/N4/N5/N6). Four adjacent ZnII cations are connected by four linear organic ligands and form a 72-membered macrocyclic ring in the above-mentioned two-dimensional layer (see Fig. 2).

Figure 1.

Figure 1

The asymmetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids drawn at the 25% probability level. [Symmetry code: (i) −x, 2 − y, −z.]

Figure 2.

Figure 2

The two-dimensional layer parallel to the crystallographic (132) plane.

Supra­molecular features  

Neighbouring layers are linked to each other by by weak interactions (Table 1), including C—H⋯O, C—H⋯N, C—H⋯π [C11—H11⋯Cg1ii = 3.6756 (8) Å and C12—H12⋯Cg2iii = 3.5252 (7) Å; Cg1 and Cg2 are the centroids of the triazole (C1/C2/N1/N2/N3) and phenyl (C4–C9) rings, respectively; symmetry codes: (ii) 2 − x, −y, −z; (iii) 1 − x, 1 − y, −z] contacts and π–π stacking inter­actions [Cg1⋯Cg1ii = 3.6296 (10) Å]. These interactions, together with the covalent inter­actions in the infinite two-dimensional polymeric-like layer, make up a three-dimensional supra­molecular structure.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3B⋯O1i 0.97 2.31 3.2728 (7) 170
C3—H3B⋯O1A i 0.97 2.33 3.2765 (7) 165
C10—H10⋯O2A ii 0.93 2.53 3.0888 (6) 115
C14—H14⋯O2ii 0.93 2.46 3.5454 (7) 158
C15—H15⋯N6iii 0.93 2.58 3.482 (16) 162

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Database survey  

A search in the Cambridge Structural Database (Groom et al., 2016) for zinc and the 4,4′-bis­[(1H-1,2,4-triazol-1-yl)meth­yl]-1,1′-biphenyl moiety gave eight hits. Seven of them are con­structed by 4,4′-bis­[(1H-1,2,4-triazol-1-yl)meth­yl]-1,1′-biphenyl units and different carboxyl­ate ligands. One example is a chain structure based on Zn and 4,4′-bis­[(1H-1,2,4-triazol-1-yl)meth­yl]-1,1′-biphenyl (PUQWAA; Ni et al., 2010).

Synthesis and crystallization  

Zn(NO3)2·6H2O (0.1 mmol), 4,4′-bis­[(1H-1,2,4-triazol-1-yl)meth­yl]-1,1′-biphenyl (0.1 mmol) and water (6 ml) were mixed and placed in a thick Pyrex tube, which was sealed and heated to 413 K for 72 h. After cooling to room temperature, colourless block-shaped crystals (53% yield, based on Zn) suitable for X-ray analysis were obtained. Elemental analysis calculated for C36H32N14O6Zn: C 52.59, H 3.92, N 23.85%; found: C 52.23, H 3.74, N 23.49%.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms bonded to C atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å with U iso(H) = 1.2U eq(C) for other H atoms. Atoms O1 and O2 of the nitrate group are disordered over two orientations, with occupancies of 0.511 (11) and 0.489 (11), and were refined through the use of SADI, RIGU and SIMU commands.

Table 2. Experimental details.

Crystal data
Chemical formula [Zn(NO3)2(C18H16N6)2]
M r 822.12
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 293
a, b, c (Å) 7.3257 (15), 9.0188 (18), 15.578 (3)
α, β, γ (°) 81.70 (3), 77.64 (3), 68.90 (3)
V3) 935.4 (4)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.72
Crystal size (mm) 0.24 × 0.22 × 0.20
 
Data collection
Diffractometer Bruker APEXII Quazar
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.84, 0.86
No. of measured, independent and observed [I > 2σ(I)] reflections 7292, 3271, 2589
R int 0.042
(sin θ/λ)max−1) 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.051, 0.143, 1.05
No. of reflections 3271
No. of parameters 278
No. of restraints 85
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.54

Computer programs: APEX3 (Bruker, 2016), SAINT-Plus (Bruker, 2016), SHELXT (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017012452/vn2130sup1.cif

e-73-01402-sup1.cif (281.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017012452/vn2130Isup2.hkl

e-73-01402-Isup2.hkl (261.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017012452/vn2130Isup3.mol

CCDC reference: 1564369

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[Zn(NO3)2(C18H16N6)2] Z = 1
Mr = 822.12 F(000) = 424
Triclinic, P1 Dx = 1.459 Mg m3
a = 7.3257 (15) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.0188 (18) Å Cell parameters from 7292 reflections
c = 15.578 (3) Å θ = 1.6–25.1°
α = 81.70 (3)° µ = 0.72 mm1
β = 77.64 (3)° T = 293 K
γ = 68.90 (3)° Block, colorless
V = 935.4 (4) Å3 0.24 × 0.22 × 0.2 mm

Data collection

Bruker APEXII Quazar diffractometer 3271 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs 2589 reflections with I > 2σ(I)
Mirror optics monochromator Rint = 0.042
Detector resolution: 7.9 pixels mm-1 θmax = 25.0°, θmin = 3.0°
0.5° ω and 0.5° φ scans h = −8→8
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −10→9
Tmin = 0.84, Tmax = 0.86 l = −18→18
7292 measured reflections

Refinement

Refinement on F2 85 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051 H-atom parameters constrained
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.079P)2 + 0.2956P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
3271 reflections Δρmax = 0.34 e Å3
278 parameters Δρmin = −0.54 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Zn1 0.000000 1.000000 0.000000 0.0406 (2)
O3 0.1631 (4) 1.1607 (3) 0.00189 (17) 0.0574 (7)
N1 0.2322 (4) 0.8123 (3) 0.05733 (18) 0.0441 (7)
N2 0.4790 (5) 0.6937 (4) 0.1274 (2) 0.0482 (7)
N3 0.4061 (6) 0.5766 (4) 0.1198 (2) 0.0602 (9)
N4 0.1701 (4) 0.9540 (4) −0.12813 (18) 0.0457 (7)
N5 0.3961 (5) 0.8456 (4) −0.23645 (19) 0.0466 (7)
N6 0.2787 (6) 0.9865 (5) −0.2713 (2) 0.0729 (11)
N7 0.1398 (5) 1.2530 (4) 0.0601 (2) 0.0570 (8)
C1 0.2590 (6) 0.6550 (5) 0.0771 (3) 0.0554 (10)
H1 0.179295 0.606514 0.061538 0.066*
C2 0.3743 (6) 0.8301 (4) 0.0904 (2) 0.0474 (8)
H2 0.397217 0.925660 0.087958 0.057*
C3 0.6466 (6) 0.6585 (5) 0.1731 (3) 0.0601 (10)
H3A 0.687840 0.751186 0.165279 0.072*
H3B 0.757323 0.571442 0.146296 0.072*
C4 0.5997 (6) 0.6146 (4) 0.2700 (3) 0.0513 (9)
C5 0.7455 (7) 0.5120 (7) 0.3132 (4) 0.0902 (17)
H5 0.873179 0.468413 0.281685 0.108*
C6 0.7082 (8) 0.4711 (8) 0.4028 (4) 0.0927 (17)
H6 0.812884 0.404978 0.430318 0.111*
C7 0.5224 (6) 0.5251 (4) 0.4518 (3) 0.0532 (9)
C8 0.3756 (8) 0.6273 (6) 0.4079 (3) 0.0813 (16)
H8 0.246945 0.667746 0.439147 0.098*
C9 0.4126 (8) 0.6717 (6) 0.3195 (3) 0.0823 (16)
H9 0.309014 0.741721 0.292602 0.099*
C10 0.3284 (6) 0.8298 (5) −0.1520 (2) 0.0515 (9)
H10 0.384162 0.743198 −0.114162 0.062*
C11 0.1465 (6) 1.0486 (5) −0.2035 (2) 0.0588 (10)
H11 0.046686 1.147437 −0.206804 0.071*
C12 0.5625 (7) 0.7311 (5) −0.2909 (3) 0.0658 (13)
H12A 0.509806 0.678916 −0.324861 0.079*
H12B 0.641231 0.649898 −0.252615 0.079*
C13 0.6941 (6) 0.8103 (4) −0.3527 (3) 0.0530 (10)
C14 0.8175 (7) 0.8650 (6) −0.3228 (3) 0.0722 (13)
H14 0.821652 0.853057 −0.262825 0.087*
C15 0.9375 (7) 0.9384 (6) −0.3803 (3) 0.0684 (13)
H15 1.021917 0.973475 −0.358088 0.082*
C16 0.9348 (5) 0.9608 (4) −0.4696 (2) 0.0431 (8)
C17 0.8101 (7) 0.9040 (6) −0.4990 (3) 0.0738 (14)
H17 0.804965 0.915631 −0.558860 0.089*
C18 0.6915 (8) 0.8296 (6) −0.4409 (3) 0.0750 (14)
H18 0.608813 0.792084 −0.462688 0.090*
O1 −0.0075 (14) 1.3759 (11) 0.0613 (8) 0.0890 (19) 0.500 (12)
O2 0.2754 (14) 1.2075 (12) 0.1048 (6) 0.0792 (17) 0.500 (12)
O1A −0.0249 (12) 1.3242 (11) 0.1028 (7) 0.0807 (18) 0.500 (12)
O2A 0.2775 (13) 1.2743 (14) 0.0828 (7) 0.0812 (17) 0.500 (12)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.0365 (3) 0.0492 (4) 0.0287 (3) −0.0098 (2) −0.0025 (2) 0.0033 (2)
O3 0.0658 (17) 0.0635 (16) 0.0492 (15) −0.0325 (14) −0.0020 (13) −0.0084 (13)
N1 0.0444 (16) 0.0499 (17) 0.0331 (15) −0.0123 (13) −0.0074 (13) 0.0027 (13)
N2 0.0514 (18) 0.0509 (17) 0.0384 (16) −0.0136 (14) −0.0123 (14) 0.0052 (13)
N3 0.077 (2) 0.0481 (18) 0.060 (2) −0.0216 (17) −0.0251 (19) 0.0036 (16)
N4 0.0463 (17) 0.0559 (18) 0.0310 (15) −0.0158 (14) −0.0048 (13) 0.0013 (13)
N5 0.0506 (17) 0.0545 (17) 0.0347 (16) −0.0245 (15) 0.0054 (14) −0.0049 (14)
N6 0.072 (3) 0.088 (3) 0.042 (2) −0.019 (2) 0.0022 (19) 0.0074 (19)
N7 0.0616 (17) 0.0610 (18) 0.0580 (19) −0.0299 (14) −0.0085 (15) −0.0136 (15)
C1 0.065 (3) 0.052 (2) 0.052 (2) −0.0185 (19) −0.022 (2) −0.0003 (18)
C2 0.052 (2) 0.0469 (19) 0.0385 (19) −0.0165 (17) −0.0040 (17) 0.0047 (15)
C3 0.052 (2) 0.071 (3) 0.057 (3) −0.020 (2) −0.020 (2) 0.009 (2)
C4 0.059 (2) 0.048 (2) 0.046 (2) −0.0146 (17) −0.0201 (18) 0.0056 (17)
C5 0.044 (3) 0.133 (5) 0.070 (3) −0.017 (3) −0.018 (2) 0.044 (3)
C6 0.057 (3) 0.133 (5) 0.070 (3) −0.021 (3) −0.028 (3) 0.047 (3)
C7 0.071 (3) 0.043 (2) 0.047 (2) −0.0121 (18) −0.027 (2) 0.0009 (16)
C8 0.083 (3) 0.077 (3) 0.041 (2) 0.025 (2) −0.010 (2) −0.006 (2)
C9 0.091 (4) 0.075 (3) 0.045 (2) 0.021 (3) −0.027 (2) 0.002 (2)
C10 0.052 (2) 0.055 (2) 0.0356 (19) −0.0112 (17) 0.0015 (17) 0.0035 (16)
C11 0.049 (2) 0.068 (2) 0.036 (2) −0.0013 (19) 0.0002 (17) 0.0047 (18)
C12 0.079 (3) 0.055 (2) 0.057 (3) −0.033 (2) 0.028 (2) −0.017 (2)
C13 0.058 (2) 0.047 (2) 0.045 (2) −0.0194 (18) 0.0153 (18) −0.0088 (17)
C14 0.087 (3) 0.100 (3) 0.034 (2) −0.048 (3) 0.002 (2) 0.000 (2)
C15 0.075 (3) 0.108 (4) 0.039 (2) −0.054 (3) −0.004 (2) −0.002 (2)
C16 0.0386 (18) 0.0427 (18) 0.0388 (18) −0.0073 (14) 0.0024 (15) −0.0055 (15)
C17 0.087 (3) 0.114 (4) 0.038 (2) −0.060 (3) −0.007 (2) 0.003 (2)
C18 0.085 (3) 0.111 (4) 0.051 (3) −0.066 (3) −0.002 (2) −0.005 (2)
O1 0.091 (3) 0.077 (3) 0.080 (4) −0.006 (3) −0.008 (3) −0.016 (3)
O2 0.094 (3) 0.080 (4) 0.075 (3) −0.035 (3) −0.032 (3) −0.003 (3)
O1A 0.080 (3) 0.075 (3) 0.074 (4) −0.020 (3) 0.009 (3) −0.016 (3)
O2A 0.085 (3) 0.088 (4) 0.087 (4) −0.041 (3) −0.030 (3) −0.008 (3)

Geometric parameters (Å, º)

Zn1—O3 2.191 (2) C4—C5 1.367 (6)
Zn1—O3i 2.191 (2) C4—C9 1.376 (6)
Zn1—N1i 2.167 (3) C5—H5 0.9300
Zn1—N1 2.167 (3) C5—C6 1.385 (7)
Zn1—N4i 2.124 (3) C6—H6 0.9300
Zn1—N4 2.124 (3) C6—C7 1.363 (7)
O3—N7 1.263 (4) C7—C7ii 1.505 (8)
N1—C1 1.359 (5) C7—C8 1.376 (6)
N1—C2 1.322 (5) C8—H8 0.9300
N2—N3 1.372 (4) C8—C9 1.375 (7)
N2—C2 1.318 (5) C9—H9 0.9300
N2—C3 1.465 (5) C10—H10 0.9300
N3—C1 1.314 (5) C11—H11 0.9300
N4—C10 1.318 (5) C12—H12A 0.9700
N4—C11 1.353 (5) C12—H12B 0.9700
N5—N6 1.365 (5) C12—C13 1.506 (5)
N5—C10 1.310 (5) C13—C14 1.359 (6)
N5—C12 1.475 (5) C13—C18 1.364 (6)
N6—C11 1.307 (5) C14—H14 0.9300
N7—O1 1.237 (8) C14—C15 1.387 (6)
N7—O2 1.249 (8) C15—H15 0.9300
N7—O1A 1.237 (7) C15—C16 1.381 (5)
N7—O2A 1.221 (8) C16—C16iii 1.487 (7)
C1—H1 0.9300 C16—C17 1.375 (5)
C2—H2 0.9300 C17—H17 0.9300
C3—H3A 0.9700 C17—C18 1.390 (6)
C3—H3B 0.9700 C18—H18 0.9300
C3—C4 1.501 (6)
O3—Zn1—O3i 180.0 C5—C4—C3 120.3 (4)
N1—Zn1—O3i 92.22 (11) C5—C4—C9 116.5 (4)
N1i—Zn1—O3 92.22 (11) C9—C4—C3 123.2 (4)
N1i—Zn1—O3i 87.78 (11) C4—C5—H5 119.1
N1—Zn1—O3 87.78 (11) C4—C5—C6 121.8 (5)
N1i—Zn1—N1 180.0 C6—C5—H5 119.1
N4—Zn1—O3i 94.65 (10) C5—C6—H6 119.1
N4i—Zn1—O3 94.65 (10) C7—C6—C5 121.9 (5)
N4—Zn1—O3 85.35 (10) C7—C6—H6 119.1
N4i—Zn1—O3i 85.35 (10) C6—C7—C7ii 122.4 (5)
N4i—Zn1—N1i 90.36 (12) C6—C7—C8 116.2 (4)
N4i—Zn1—N1 89.64 (12) C8—C7—C7ii 121.4 (5)
N4—Zn1—N1 90.36 (12) C7—C8—H8 118.9
N4—Zn1—N1i 89.64 (12) C9—C8—C7 122.2 (4)
N4i—Zn1—N4 180.0 C9—C8—H8 118.9
N7—O3—Zn1 128.5 (2) C4—C9—H9 119.3
C1—N1—Zn1 130.5 (3) C8—C9—C4 121.4 (4)
C2—N1—Zn1 126.5 (2) C8—C9—H9 119.3
C2—N1—C1 102.7 (3) N4—C10—H10 124.8
N3—N2—C3 120.7 (3) N5—C10—N4 110.5 (4)
C2—N2—N3 109.9 (3) N5—C10—H10 124.8
C2—N2—C3 129.4 (3) N4—C11—H11 123.6
C1—N3—N2 102.0 (3) N6—C11—N4 112.9 (4)
C10—N4—Zn1 128.1 (3) N6—C11—H11 123.6
C10—N4—C11 103.9 (3) N5—C12—H12A 109.2
C11—N4—Zn1 128.0 (3) N5—C12—H12B 109.2
N6—N5—C12 122.6 (3) N5—C12—C13 112.2 (3)
C10—N5—N6 109.0 (3) H12A—C12—H12B 107.9
C10—N5—C12 128.3 (4) C13—C12—H12A 109.2
C11—N6—N5 103.8 (3) C13—C12—H12B 109.2
O1—N7—O3 115.4 (6) C14—C13—C12 121.5 (4)
O1—N7—O2 130.6 (7) C14—C13—C18 118.1 (4)
O2—N7—O3 114.0 (5) C18—C13—C12 120.4 (4)
O1A—N7—O3 122.8 (5) C13—C14—H14 119.5
O2A—N7—O3 123.5 (6) C13—C14—C15 121.0 (4)
O2A—N7—O1A 113.6 (7) C15—C14—H14 119.5
N1—C1—H1 122.6 C14—C15—H15 119.2
N3—C1—N1 114.8 (3) C16—C15—C14 121.7 (4)
N3—C1—H1 122.6 C16—C15—H15 119.2
N1—C2—H2 124.7 C15—C16—C16iii 120.9 (4)
N2—C2—N1 110.7 (3) C17—C16—C15 116.7 (3)
N2—C2—H2 124.7 C17—C16—C16iii 122.4 (4)
N2—C3—H3A 108.9 C16—C17—H17 119.4
N2—C3—H3B 108.9 C16—C17—C18 121.2 (4)
N2—C3—C4 113.5 (3) C18—C17—H17 119.4
H3A—C3—H3B 107.7 C13—C18—C17 121.4 (4)
C4—C3—H3A 108.9 C13—C18—H18 119.3
C4—C3—H3B 108.9 C17—C18—H18 119.3

Symmetry codes: (i) −x, −y+2, −z; (ii) −x+1, −y+1, −z+1; (iii) −x+2, −y+2, −z−1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C3—H3B···O1iv 0.97 2.31 3.2728 (7) 170
C3—H3B···O1Aiv 0.97 2.33 3.2765 (7) 165
C10—H10···O2Av 0.93 2.53 3.0888 (6) 115
C14—H14···O2v 0.93 2.46 3.5454 (7) 158
C15—H15···N6vi 0.93 2.58 3.482 (16) 162

Symmetry codes: (iv) x−1, y+1, z; (v) −x+1, −y, −z; (vi) x−1, y, z.

Funding Statement

This work was funded by Science and technology research projects of jilin province department of education (JJKH20170186KJ) grant .

References

  1. Bruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Ding, B. & Zou, H.-A. (2010). Acta Cryst. E66, m932. [DOI] [PMC free article] [PubMed]
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Ge, H., Liu, K., Yang, Y., Li, B. & Zhang, Y. (2008). Inorg. Chem. Commun. 11, 260–264.
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  7. Li, Q.-X., Shi, X.-J. & Chen, L.-C. (2012). Acta Cryst. E68, m1299. [DOI] [PMC free article] [PubMed]
  8. Mu, Y., Song, Y., Wang, C., Hou, H. & Fan, Y. (2011). Inorg. Chim. Acta, 365, 167–176.
  9. Ni, T., Shao, M., Zhu, S., Zhao, Y., Xing, F. & Li, M. (2010). Cryst. Growth Des. 10, 943–951.
  10. Ren, C., Liu, P., Wang, Y.-Y., Huang, W.-H. & Shi, Q.-Z. (2010). Eur. J. Inorg. Chem. pp. 5545–5555.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Shi, X., Li, Q., Zhang, Y., Chang, X. & Hou, H. (2011). J. Coord. Chem. 64, 3918–3927.
  13. Wang, W.-B., Wang, L.-Y., Li, B.-L. & Zhang, Y. (2007). Acta Cryst. E63, m2416–m2417.
  14. Yang, Y., Feng, Y.-F., Liang, N., Li, B.-L. & Zhang, Y. (2009). J. Coord. Chem. 62, 3819–3827.
  15. Yin, X.-J., Zhou, X.-H., Gu, Z.-G., Zuo, J.-L. & You, X.-Z. (2009). Inorg. Chem. Commun. 12, 548–551.
  16. Zhang, Z., Ma, J.-F., Liu, Y.-Y., Kan, W.-Q. & Yang, J. (2013). CrystEngComm, 15, 2009–2018.
  17. Zhang, H.-K., Wang, X., Wang, S. & Wang, X.-D. (2012). Acta Cryst. E68, m856. [DOI] [PMC free article] [PubMed]
  18. Zhao, S., Zheng, T.-R., Zhang, Y.-Q., Lv, X.-X., Li, B.-L. & Zhang, Y. (2017). Polyhedron, 121, 61–69.
  19. Zhu, X., Guo, Y. & Zou, Y.-L. (2010). Acta Cryst. E66, m85. [DOI] [PMC free article] [PubMed]
  20. Zhu, X., Yang, Y., Jiang, N., Li, B., Zhou, D., Fu, H. & Wang, N. (2015). Z. Anorg. Allg. Chem. 641, 699–703.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017012452/vn2130sup1.cif

e-73-01402-sup1.cif (281.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017012452/vn2130Isup2.hkl

e-73-01402-Isup2.hkl (261.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017012452/vn2130Isup3.mol

CCDC reference: 1564369

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES