Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Sep 5;73(Pt 10):1417–1420. doi: 10.1107/S2056989017012488

Crystal structure of (1S,2S,5R)-5-acetyl­amino-4-oxo-2,3-diphenyl-1,3-thia­zinan-1-ium-1-olate

Hemant P Yennawar a, Duncan J Noble b, Lee J Silverberg b,*
PMCID: PMC5730286  PMID: 29250349

The crystal structure of the enanti­opure sulfoxide of a 2,3,5,6-tetra­hydro-1,3-thia­zin-4-one exhibits a twisted half-chair pucker for the thia­zine ring. Inter­molecular N—H ⋯O hydrogen-bonding inter­actions form a two-dimensional layered structure lying parallel to (001).

Keywords: 1,3-thia­zin-4-one; twisted half-chair pucker; N—H⋯O and C—H⋯O inter­actions; crystal structure

Abstract

The asymmetric unit of the enanti­omerically pure title compound, C18H18N2O3S, comprises two independent mol­ecules (A and B) having almost identical conformations. When overlayed, the alignment–r.m.s. deviation value is 0.30 Å. The six-membered heterocycle has a twisted half-chair conformation in both mol­ecules. The O atom on the S atom of the ring is pseudo-axial on the thia­zine ring and trans to both a phenyl group substituent and the acetamide group in each case. The two benzene rings in each mol­ecule are almost orthogonal to each other, with inter­planar dihedral angles of 83.79 (17) and 86.95 (16)°. The acetamide group is pseudo-equatorial and a phenyl ring is pseudo-axial on the thia­zine ring. Both mol­ecules show a weak intra­molecular C—H⋯O inter­action between H-atom donors of one of the phenyl rings and the acetamide group. In the crystal, an inter­molecular N—H⋯O(thia­zine) hydrogen bond links B mol­ecules along the 21 (b) screw axis and, in addition, an N—H⋯O(acetamide) hydrogen bond links A and B mol­ecules across a. A two-dimensional layered structure lying parallel to (001) is generated, also involving weak inter­molecular C—H⋯O inter­actions.

Chemical context  

The 1,3-thia­zin-4-ones are a group of six-membered heterocycles with a wide range of biological activity (Ryabukhin et al., 1996). Surrey’s research (Surrey et al., 1958; Surrey, 1963a ,b ) resulted in the discovery of two drugs, the anti-anxiety and muscle relaxant chlormezanone [2-(4-chloro­phen­yl)-3-methyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zin-4-one 1,1-dioxide] (O’Neil, 2006; Tanaka & Horayama, 2005) and muscle relaxant di­chloro­mezanone [2-(3,4-di­chloro­phen­yl)-3-methyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zin-4-one 1,1-dioxide] (Elks & Ganellin, 1990). These sulfones showed greater activity than the sulfides from which they were synthesized (Surrey et al., 1958). Surrey also prepared a variety of other sulfoxides and sulfones of 3-alkyl-2-aryl-2,3,5,6-tetra­hydro-4H-1,3-thia­zin-4-ones (Surrey, 1963a ,b ). We have reported previously the crystal structure of the first N-aryl sulfoxide in this family, racemic 2,3-diphenyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zin-4-one 1-oxide (Yennawar et al., 2016).

A sulfoxide typically has an S—O bond that is between a double bond and a single bond, with one of the lone pairs that was on the sulfide coordinating to the O atom, while O atom contributes electrons from a lone pair to a d orbital of the S atom. The geometry of a sulfoxide is pyramidal, with a high energy barrier for inversion, making it possible to isolate stable enanti­omers (Bentley, 2005). Herein, we report the crystal structure of the sulfoxide of N-[(2S,5R)-4-oxo-2,3-diphenyl-1,3-thia­zinan-5-yl]acetamide (Yennawar, Singh & Silverberg, 2015), C18H18N2O3S, prepared using the method we have reported previously for the oxidation of other 2,3-diphenyl-1,3-thia­zin-4-ones (Yennawar et al., 2016; Yennawar, Noble et al., 2017) and 1,3-thia­zolidinones (Yennawar, Hullihen et al., 2015; Cannon et al., 2015). The oxidation of the confirmed enanti­opure sulfide N-[(2S,5R)-4-oxo-2,3-diphenyl-1,3-thia­zinan-5-yl]acetamide 0.375-hydrate (Yennawar, Singh & Silverberg, 2015), derived from N-acetyl-l-cysteine, yielded a single stereoisomer as the only product.graphic file with name e-73-01417-scheme1.jpg

Structural commentary  

The crystal structure of the title compound has two independent homochiral mol­ecules (A and B) in the asymmetric unit (Fig. 1), which have almost identical conformational features, having an alignment–r.m.s. deviation value of 0.3 Å. Both have the thia­zine rings in a twisted half-chair configuration, with puckering amplitudes = 0.6753 (19)/0.653 (2) Å and θ = 131.05 (17)/135.66 (18)° in mol­ecules A/B, respectively (Cremer & Pople, 1975). The O atom on the S atom of the ring is pseudo-axial on the thia­zine ring and trans to both the 2-phenyl group and the acetamide group in each case. The two phenyl rings in each mol­ecule are almost orthogonal to one another, with dihedral angles of 83.79 (17) and 86.95 (16)° in mol­ecules A and B, respectively. The acetamide group is pseudo-equatorial and the 2-phenyl group is pseudo-axial on the thia­zine ring. A weak intra­molecular C—H⋯O hydrogen bond between the 2-phenyl ring and the O atom of the acetamide group is seen in both mol­ecules (C10A—H⋯O3A and C10B—H⋯O3B), as detailed in Table 1.

Figure 1.

Figure 1

The mol­ecular structures of the two independent mol­ecules (A and B) in the asymmetric unit of the title compound, with displacement ellipsoids drawn at the 50% probability level. Dashed lines indicate intra­molecular C—H⋯O inter­actions.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H2A⋯O2B i 0.91 (3) 2.25 (3) 3.137 (3) 164 (2)
N2B—H2B⋯O1B ii 0.79 (3) 2.14 (3) 2.916 (3) 168 (3)
C10A—H10A⋯O3A 0.93 2.42 3.259 (3) 149
C10B—H10B⋯O3B 0.93 2.44 3.232 (4) 143
C4B—H4BB⋯O2A iii 0.97 2.25 3.116 (3) 148

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

We reported previously the crystal structure of the starting sulfide, N-[(2S,5R)-4-oxo-2,3-diphenyl-1,3-thia­zinan-5-yl]ace­t­amide 0.375-hydrate (Yennawar, Singh & Silverberg, 2015), which also had two independent homochiral mol­ecules in the asymmetric unit. However, they were not identical: in one mol­ecule, the thia­zine ring was in a half-chair conformation in which the 2-phenyl ring was nearly pseudo-axial and the acetamide group was nearly pseudo-equatorial. The other mol­ecule had the thia­zine ring in a boat conformation in which both substituents were pseudo-equatorial.

Supra­molecular features  

In the crystal, the B mol­ecule and its 21-related symmetry neighbours form a continuous hydrogen-bonded chain along the b-cell direction through N—H⋯O inter­actions involving the acetamide N atom and the thia­zin-1-ium-1-olate O atoms [N2B—H⋯O1B ii; symmetry code: (ii) −x, y + Inline graphic, −z; Table 1] (Fig. 2). Mol­ecules A and B inter­act, wherein the O atom in the 4-position of mol­ecule B accepts a proton from the acetamide N atom of mol­ecule A [N2A—H⋯O1B i; symmetry code: (i) x + 1, y, z]. The sulfoxide O atom of mol­ecule A does not participate in any hydrogen bonding. A two-dimensional sheet structure lying parallel to (001) is generated. No benzene ring in either of the mol­ecules participates in face-to-face π–π stacking inter­actions.

Figure 2.

Figure 2

Crystal packing diagram with red dotted lines for inter­molecular N—H⋯O contacts between 21-related mol­ecules, forming helical chains along the b-axis direction, as well as the inter­action with an independent mol­ecule. Blue dotted lines represent the intra­molecular C—H⋯O contacts.

Database survey  

Crystal structures of a number of 1,3-thia­zolidin-4-one 1-oxides have been reported (Wang et al., 2010; Johnson et al., 1983; Chen et al., 2011; Colombo et al., 2008; Yennawar, Hullihen et al., 2015) and the structure of chlormezanone [2-(4-chloro­phen­yl)-3-methyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zin-4-one 1,1-dioxide] has also been reported (Tanaka & Horayama, 2005). We have reported previously the crystal structure of 2,3-diphenyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zin-4-one 1-oxide (Yennawar et al., 2016). We have also reported recently the crystal structures of 2,3-diphenyl-2,3-di­hydro-4H-1,3-benzo­thia­zin-4-one 1-oxide (Yennawar, Fox et al., 2017) and 2,3-diphenyl-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-one 1-oxide (Yennawar, Noble et al., 2017).

Synthesis and crystallization  

A 5 ml round-bottomed flask was charged with 53.9 mg of N-[(2S,5R)-4-oxo-2,3-diphenyl-1,3-thia­zinan-5-yl]acetamide 0.375-hydrate, whose configuration was established previously (Yennawar, Singh & Silverberg, 2015), and 1.4 ml of methanol and stirred. A solution of 79.5 mg of Oxone® and 1 ml of distilled water was added dropwise and the mixture was stirred until the reaction was complete, as determined by thin-layer chromatography (TLC). The solids were dissolved by the addition of 5 ml of distilled water. The solution was extracted with 10 ml of di­chloro­methane. The organic layer was washed with 5 ml of distilled water and then with 5 ml of saturated sodium chloride. The solution was dried over Na2SO4 and concentrated under vacuum giving a crude solid. This was chromatographed on flash silica gel, eluting with a gradient of 0–60% acetone in ethyl acetate, giving 55.8 mg of product [98.6% yield; m.p. 449–452 K; R F = 0.20 (30% acetone/70% ethyl acetate)]. Crystals suitable for X-ray crystallography were grown by slow evaporation from propan-2-ol.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms, excepting those on N atoms, were placed geometrically and allowed to ride on their parent C atoms during refinement, with C—H distances of 0.93 (aromatic), 0.96 (meth­yl), 0.97 or (methyl­ene) and 0.98 Å (meth­yl), and with U iso(H) = 1.2U eq(aromatic or methyl­ene C) or 1.5U eq(methyl C). H atoms on N atoms were located in a difference Fourier map and were refined isotropically. The absolute configuration for the chiral centres in the mol­ecule was determined as (1S,2S,5R) (for the arbitrarily numbered atoms C1A/B,C3A/B), with a Flack absolute structure parameter (Flack, 1983) of 0.07 (6) for 4160 Friedel pairs.

Table 2. Experimental details.

Crystal data
Chemical formula C18H18N2O3S
M r 342.40
Crystal system, space group Monoclinic, P21
Temperature (K) 298
a, b, c (Å) 12.872 (6), 10.139 (5), 13.460 (6)
β (°) 103.104 (9)
V3) 1710.8 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.21
Crystal size (mm) 0.23 × 0.20 × 0.19
 
Data collection
Diffractometer Bruker SCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2016)
T min, T max 0.309, 0.900
No. of measured, independent and observed [I > 2σ(I)] reflections 15296, 8079, 6949
R int 0.031
(sin θ/λ)max−1) 0.666
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.049, 0.128, 1.02
No. of reflections 8079
No. of parameters 443
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.37, −0.27
Absolute structure Flack (1983), 4160 Friedel pairs
Absolute structure parameter 0.07 (6)

Computer programs: SMART (Bruker, 2016), SAINT (Bruker, 2016), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017012488/zs2387sup1.cif

e-73-01417-sup1.cif (33.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017012488/zs2387Isup2.hkl

e-73-01417-Isup2.hkl (395.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017012488/zs2387Isup3.mol

Analysis of short ring interactions.. DOI: 10.1107/S2056989017012488/zs2387sup4.pdf

e-73-01417-sup4.pdf (17.6KB, pdf)

CCDC reference: 1571357

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C18H18N2O3S Dx = 1.329 Mg m3
Mr = 342.40 Melting point = 449–452 K
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 12.872 (6) Å Cell parameters from 7433 reflections
b = 10.139 (5) Å θ = 2.5–28.2°
c = 13.460 (6) Å µ = 0.21 mm1
β = 103.104 (9)° T = 298 K
V = 1710.8 (14) Å3 Block, colorless
Z = 4 0.23 × 0.20 × 0.19 mm
F(000) = 720

Data collection

Bruker SCD area detector diffractometer 8079 independent reflections
Radiation source: fine-focus sealed tube 6949 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.031
φ and ω scans θmax = 28.2°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2016) h = −16→17
Tmin = 0.309, Tmax = 0.900 k = −13→13
15296 measured reflections l = −17→17

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0745P)2] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.001
8079 reflections Δρmax = 0.37 e Å3
443 parameters Δρmin = −0.27 e Å3
1 restraint Absolute structure: Flack (1983), 4160 Friedel pairs
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.07 (6)

Special details

Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 4 sets of ω scans each set at different φ and/or 2θ angles and each scan (10 s exposure) covering -0.300° degrees in ω. The crystal to detector distance was 5.82 cm.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1A 0.79355 (19) 0.2939 (3) 0.48969 (16) 0.0397 (5)
H1A 0.7893 0.2095 0.5241 0.048*
C2A 0.86711 (19) 0.3246 (3) 0.33058 (17) 0.0393 (5)
C3A 0.93950 (18) 0.4386 (2) 0.37719 (15) 0.0344 (5)
H3A 1.0109 0.4009 0.4010 0.041*
C4A 0.91189 (19) 0.5047 (2) 0.46957 (15) 0.0356 (5)
H4AA 0.8426 0.5468 0.4499 0.043*
H4AB 0.9645 0.5718 0.4964 0.043*
C5A 0.69426 (19) 0.3706 (3) 0.49564 (17) 0.0431 (5)
C6A 0.6572 (2) 0.3596 (4) 0.5857 (2) 0.0598 (8)
H6A 0.6895 0.3011 0.6365 0.072*
C7A 0.5723 (3) 0.4365 (5) 0.5981 (2) 0.0759 (11)
H7A 0.5479 0.4297 0.6579 0.091*
C8A 0.5243 (3) 0.5217 (5) 0.5243 (3) 0.0763 (10)
H8A 0.4674 0.5728 0.5340 0.092*
C9A 0.5592 (2) 0.5335 (4) 0.4343 (2) 0.0636 (8)
H9A 0.5262 0.5926 0.3841 0.076*
C10A 0.6433 (2) 0.4567 (3) 0.4200 (2) 0.0497 (6)
H10A 0.6658 0.4627 0.3592 0.060*
C11A 0.7454 (2) 0.1476 (2) 0.34101 (17) 0.0398 (5)
C16A 0.7794 (2) 0.0238 (3) 0.3750 (2) 0.0563 (7)
H16A 0.8400 0.0136 0.4273 0.068*
C15A 0.7227 (3) −0.0862 (3) 0.3309 (3) 0.0719 (10)
H15A 0.7447 −0.1701 0.3546 0.086*
C14A 0.6350 (3) −0.0716 (4) 0.2531 (3) 0.0709 (10)
H14A 0.5983 −0.1455 0.2228 0.085*
C13A 0.6014 (3) 0.0507 (4) 0.2197 (3) 0.0734 (10)
H13A 0.5411 0.0602 0.1671 0.088*
C12A 0.6561 (2) 0.1616 (4) 0.2634 (2) 0.0588 (7)
H12A 0.6325 0.2453 0.2403 0.071*
C17A 0.8618 (2) 0.5983 (3) 0.2465 (2) 0.0487 (6)
C18A 0.8817 (3) 0.7020 (4) 0.1734 (3) 0.0784 (11)
H18A 0.9497 0.7427 0.1999 0.118*
H18B 0.8266 0.7676 0.1648 0.118*
H18C 0.8814 0.6621 0.1087 0.118*
N1A 0.80481 (17) 0.26229 (19) 0.38641 (14) 0.0384 (4)
N2A 0.94797 (16) 0.5352 (2) 0.29910 (14) 0.0392 (4)
H2A 1.014 (2) 0.561 (3) 0.2912 (19) 0.036 (7)*
O1A 1.00529 (16) 0.2968 (2) 0.56800 (15) 0.0581 (5)
O2A 0.87065 (18) 0.2840 (2) 0.24629 (13) 0.0615 (6)
O3A 0.77158 (16) 0.5727 (3) 0.25622 (17) 0.0702 (7)
S1A 0.91010 (5) 0.38151 (6) 0.56562 (4) 0.04051 (15)
C1B 0.22990 (19) 0.4488 (2) 0.06076 (17) 0.0389 (5)
H1B 0.2075 0.3562 0.0584 0.047*
C2B 0.16558 (17) 0.6316 (2) 0.16162 (17) 0.0357 (5)
C3B 0.13964 (19) 0.7241 (3) 0.06778 (18) 0.0410 (5)
H3B 0.0625 0.7164 0.0407 0.049*
C4B 0.1904 (2) 0.6890 (3) −0.02038 (17) 0.0418 (5)
H4BA 0.2672 0.6983 0.0009 0.050*
H4BB 0.1649 0.7488 −0.0769 0.050*
C5B 0.34898 (18) 0.4469 (3) 0.06755 (16) 0.0377 (5)
C6B 0.3913 (2) 0.3500 (3) 0.0150 (2) 0.0528 (7)
H6B 0.3468 0.2870 −0.0229 0.063*
C7B 0.4994 (3) 0.3473 (3) 0.0189 (2) 0.0615 (8)
H7B 0.5269 0.2836 −0.0177 0.074*
C8B 0.5669 (2) 0.4381 (4) 0.0764 (2) 0.0578 (7)
H8B 0.6397 0.4350 0.0791 0.069*
C9B 0.5264 (2) 0.5332 (3) 0.1298 (2) 0.0499 (6)
H9B 0.5721 0.5941 0.1692 0.060*
C10B 0.4174 (2) 0.5390 (3) 0.12537 (18) 0.0424 (5)
H10B 0.3903 0.6043 0.1609 0.051*
C11B 0.2058 (2) 0.4150 (2) 0.23392 (18) 0.0419 (5)
C12B 0.2934 (3) 0.4162 (4) 0.3126 (2) 0.0722 (10)
H12B 0.3466 0.4787 0.3143 0.087*
C13B 0.3032 (4) 0.3236 (5) 0.3903 (3) 0.0893 (13)
H13B 0.3635 0.3232 0.4436 0.107*
C14B 0.2239 (3) 0.2330 (4) 0.3880 (3) 0.0775 (11)
H14B 0.2307 0.1705 0.4397 0.093*
C15B 0.1358 (3) 0.2339 (3) 0.3110 (3) 0.0669 (9)
H15B 0.0818 0.1729 0.3107 0.080*
C16B 0.1249 (2) 0.3260 (3) 0.2317 (2) 0.0505 (6)
H16B 0.0644 0.3268 0.1787 0.061*
C17B 0.2575 (2) 0.9072 (3) 0.13509 (19) 0.0458 (6)
C18B 0.2671 (4) 1.0542 (3) 0.1506 (3) 0.0763 (10)
H18D 0.3007 1.0727 0.2204 0.114*
H18E 0.1974 1.0932 0.1342 0.114*
H18F 0.3095 1.0903 0.1069 0.114*
N1B 0.19754 (16) 0.5070 (2) 0.14898 (14) 0.0381 (4)
N2B 0.15836 (19) 0.8610 (2) 0.09612 (17) 0.0469 (5)
H2B 0.110 (2) 0.910 (3) 0.089 (2) 0.042 (8)*
O1B 0.04145 (15) 0.5076 (3) −0.06247 (17) 0.0666 (6)
O2B 0.14719 (15) 0.66808 (19) 0.24289 (14) 0.0484 (4)
O3B 0.33503 (15) 0.83467 (19) 0.15418 (15) 0.0530 (5)
S1B 0.15756 (5) 0.52300 (7) −0.06050 (4) 0.04663 (17)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1A 0.0472 (13) 0.0435 (13) 0.0292 (10) −0.0069 (11) 0.0101 (9) −0.0013 (9)
C2A 0.0442 (12) 0.0432 (13) 0.0316 (10) −0.0011 (10) 0.0108 (9) −0.0049 (9)
C3A 0.0338 (11) 0.0389 (12) 0.0300 (10) −0.0003 (9) 0.0065 (8) −0.0027 (9)
C4A 0.0397 (11) 0.0343 (12) 0.0319 (9) 0.0014 (9) 0.0062 (9) −0.0056 (8)
C5A 0.0441 (12) 0.0518 (14) 0.0355 (11) −0.0110 (12) 0.0135 (10) −0.0064 (11)
C6A 0.0595 (16) 0.083 (2) 0.0409 (13) −0.0101 (16) 0.0195 (12) −0.0040 (14)
C7A 0.0571 (18) 0.125 (3) 0.0529 (16) −0.0064 (19) 0.0280 (15) −0.0207 (19)
C8A 0.0464 (17) 0.110 (3) 0.073 (2) 0.0079 (19) 0.0156 (15) −0.025 (2)
C9A 0.0417 (14) 0.084 (2) 0.0621 (16) 0.0076 (16) 0.0050 (12) −0.0074 (17)
C10A 0.0429 (13) 0.0638 (18) 0.0428 (12) −0.0026 (13) 0.0106 (10) −0.0038 (12)
C11A 0.0426 (13) 0.0425 (13) 0.0367 (11) −0.0081 (11) 0.0137 (9) −0.0063 (10)
C16A 0.0598 (17) 0.0445 (15) 0.0607 (16) −0.0018 (14) 0.0055 (13) −0.0077 (13)
C15A 0.100 (3) 0.0442 (18) 0.076 (2) −0.0166 (17) 0.029 (2) −0.0106 (14)
C14A 0.084 (2) 0.070 (2) 0.0665 (19) −0.0399 (19) 0.0320 (19) −0.0292 (17)
C13A 0.062 (2) 0.094 (3) 0.0601 (18) −0.0213 (19) 0.0051 (15) −0.0221 (18)
C12A 0.0604 (18) 0.0622 (19) 0.0468 (14) −0.0062 (14) −0.0028 (13) −0.0074 (13)
C17A 0.0390 (13) 0.0625 (18) 0.0442 (13) −0.0003 (12) 0.0085 (11) 0.0123 (12)
C18A 0.0573 (18) 0.097 (3) 0.081 (2) 0.0043 (19) 0.0149 (17) 0.050 (2)
N1A 0.0482 (11) 0.0372 (11) 0.0311 (9) −0.0086 (9) 0.0115 (8) −0.0076 (7)
N2A 0.0349 (10) 0.0446 (12) 0.0388 (9) −0.0033 (9) 0.0102 (8) 0.0027 (9)
O1A 0.0572 (11) 0.0548 (12) 0.0561 (11) 0.0131 (10) −0.0005 (9) 0.0087 (9)
O2A 0.0785 (14) 0.0743 (14) 0.0388 (9) −0.0276 (12) 0.0280 (10) −0.0233 (9)
O3A 0.0353 (10) 0.103 (2) 0.0692 (13) −0.0017 (10) 0.0059 (9) 0.0341 (13)
S1A 0.0493 (3) 0.0405 (3) 0.0289 (2) 0.0010 (3) 0.0029 (2) −0.0018 (2)
C1B 0.0428 (12) 0.0363 (12) 0.0386 (11) −0.0073 (10) 0.0114 (10) −0.0046 (9)
C2B 0.0284 (10) 0.0408 (12) 0.0396 (11) −0.0031 (9) 0.0111 (9) 0.0040 (9)
C3B 0.0320 (11) 0.0487 (14) 0.0423 (12) 0.0031 (10) 0.0083 (9) 0.0088 (10)
C4B 0.0400 (12) 0.0535 (15) 0.0296 (10) −0.0044 (11) 0.0030 (9) 0.0073 (10)
C5B 0.0390 (12) 0.0417 (13) 0.0334 (10) 0.0012 (10) 0.0099 (9) 0.0018 (9)
C6B 0.0530 (15) 0.0572 (18) 0.0474 (14) 0.0036 (13) 0.0099 (11) −0.0136 (12)
C7B 0.0560 (16) 0.070 (2) 0.0626 (17) 0.0151 (15) 0.0223 (14) −0.0136 (15)
C8B 0.0397 (14) 0.074 (2) 0.0604 (16) 0.0124 (14) 0.0134 (12) 0.0068 (15)
C9B 0.0410 (13) 0.0488 (15) 0.0568 (14) −0.0004 (12) 0.0047 (11) 0.0037 (13)
C10B 0.0423 (12) 0.0381 (13) 0.0465 (12) 0.0000 (10) 0.0093 (10) −0.0022 (10)
C11B 0.0459 (13) 0.0422 (14) 0.0414 (12) 0.0020 (10) 0.0178 (10) 0.0077 (9)
C12B 0.070 (2) 0.082 (3) 0.0588 (17) −0.0207 (17) 0.0013 (15) 0.0301 (17)
C13B 0.096 (3) 0.104 (3) 0.061 (2) −0.010 (2) 0.0021 (19) 0.040 (2)
C14B 0.090 (3) 0.075 (2) 0.075 (2) 0.011 (2) 0.034 (2) 0.0384 (19)
C15B 0.067 (2) 0.0498 (18) 0.097 (2) 0.0029 (15) 0.046 (2) 0.0232 (17)
C16B 0.0485 (14) 0.0436 (15) 0.0639 (17) 0.0020 (12) 0.0224 (13) 0.0070 (12)
C17B 0.0572 (16) 0.0417 (15) 0.0410 (12) 0.0062 (12) 0.0160 (11) 0.0010 (10)
C18B 0.098 (3) 0.0469 (19) 0.084 (2) 0.0031 (17) 0.021 (2) −0.0066 (16)
N1B 0.0428 (10) 0.0384 (11) 0.0360 (9) −0.0021 (8) 0.0148 (8) 0.0055 (8)
N2B 0.0459 (12) 0.0432 (13) 0.0541 (12) 0.0160 (11) 0.0163 (10) 0.0089 (10)
O1B 0.0388 (10) 0.0814 (16) 0.0722 (13) −0.0158 (11) −0.0029 (9) −0.0075 (12)
O2B 0.0558 (11) 0.0522 (11) 0.0435 (9) 0.0023 (8) 0.0246 (8) 0.0015 (8)
O3B 0.0478 (10) 0.0490 (11) 0.0607 (11) 0.0041 (8) 0.0093 (9) −0.0076 (8)
S1B 0.0416 (3) 0.0590 (4) 0.0362 (3) −0.0103 (3) 0.0023 (2) −0.0070 (3)

Geometric parameters (Å, º)

C1A—H1A 0.9800 C1B—H1B 0.9800
C1A—C5A 1.514 (4) C1B—C5B 1.515 (3)
C1A—N1A 1.465 (3) C1B—N1B 1.468 (3)
C1A—S1A 1.841 (3) C1B—S1B 1.846 (3)
C2A—C3A 1.527 (3) C2B—C3B 1.547 (3)
C2A—N1A 1.371 (3) C2B—N1B 1.351 (3)
C2A—O2A 1.217 (3) C2B—O2B 1.227 (3)
C3A—H3A 0.9800 C3B—H3B 0.9800
C3A—C4A 1.524 (3) C3B—C4B 1.521 (3)
C3A—N2A 1.459 (3) C3B—N2B 1.445 (4)
C4A—H4AA 0.9700 C4B—H4BA 0.9700
C4A—H4AB 0.9700 C4B—H4BB 0.9700
C4A—S1A 1.801 (2) C4B—S1B 1.788 (3)
C5A—C6A 1.404 (3) C5B—C6B 1.392 (4)
C5A—C10A 1.388 (4) C5B—C10B 1.394 (4)
C6A—H6A 0.9300 C6B—H6B 0.9300
C6A—C7A 1.383 (5) C6B—C7B 1.380 (4)
C7A—H7A 0.9300 C7B—H7B 0.9300
C7A—C8A 1.355 (6) C7B—C8B 1.377 (5)
C8A—H8A 0.9300 C8B—H8B 0.9300
C8A—C9A 1.389 (5) C8B—C9B 1.374 (4)
C9A—H9A 0.9300 C9B—H9B 0.9300
C9A—C10A 1.382 (4) C9B—C10B 1.392 (4)
C10A—H10A 0.9300 C10B—H10B 0.9300
C11A—C16A 1.372 (4) C11B—C12B 1.361 (4)
C11A—C12A 1.375 (4) C11B—C16B 1.372 (4)
C11A—N1A 1.449 (3) C11B—N1B 1.460 (3)
C16A—H16A 0.9300 C12B—H12B 0.9300
C16A—C15A 1.390 (5) C12B—C13B 1.389 (5)
C15A—H15A 0.9300 C13B—H13B 0.9300
C15A—C14A 1.362 (6) C13B—C14B 1.369 (6)
C14A—H14A 0.9300 C14B—H14B 0.9300
C14A—C13A 1.356 (6) C14B—C15B 1.353 (5)
C13A—H13A 0.9300 C15B—H15B 0.9300
C13A—C12A 1.385 (5) C15B—C16B 1.401 (4)
C12A—H12A 0.9300 C16B—H16B 0.9300
C17A—C18A 1.502 (4) C17B—C18B 1.505 (4)
C17A—N2A 1.336 (3) C17B—N2B 1.350 (4)
C17A—O3A 1.226 (3) C17B—O3B 1.219 (3)
C18A—H18A 0.9600 C18B—H18D 0.9600
C18A—H18B 0.9600 C18B—H18E 0.9600
C18A—H18C 0.9600 C18B—H18F 0.9600
N2A—H2A 0.91 (3) N2B—H2B 0.79 (3)
O1A—S1A 1.491 (2) O1B—S1B 1.497 (2)
C5A—C1A—H1A 106.6 C5B—C1B—H1B 106.0
C5A—C1A—S1A 108.30 (17) C5B—C1B—S1B 111.05 (15)
N1A—C1A—H1A 106.6 N1B—C1B—H1B 106.0
N1A—C1A—C5A 115.4 (2) N1B—C1B—C5B 115.16 (19)
N1A—C1A—S1A 112.87 (15) N1B—C1B—S1B 111.87 (17)
S1A—C1A—H1A 106.6 S1B—C1B—H1B 106.0
N1A—C2A—C3A 120.12 (19) N1B—C2B—C3B 118.6 (2)
O2A—C2A—C3A 119.4 (2) O2B—C2B—C3B 119.7 (2)
O2A—C2A—N1A 120.3 (2) O2B—C2B—N1B 121.3 (2)
C2A—C3A—H3A 106.2 C2B—C3B—H3B 105.6
C4A—C3A—C2A 115.76 (18) C4B—C3B—C2B 116.3 (2)
C4A—C3A—H3A 106.2 C4B—C3B—H3B 105.6
N2A—C3A—C2A 110.52 (18) N2B—C3B—C2B 112.0 (2)
N2A—C3A—H3A 106.2 N2B—C3B—H3B 105.6
N2A—C3A—C4A 111.2 (2) N2B—C3B—C4B 110.8 (2)
C3A—C4A—H4AA 109.9 C3B—C4B—H4BA 109.7
C3A—C4A—H4AB 109.9 C3B—C4B—H4BB 109.7
C3A—C4A—S1A 108.90 (16) C3B—C4B—S1B 109.99 (17)
H4AA—C4A—H4AB 108.3 H4BA—C4B—H4BB 108.2
S1A—C4A—H4AA 109.9 S1B—C4B—H4BA 109.7
S1A—C4A—H4AB 109.9 S1B—C4B—H4BB 109.7
C6A—C5A—C1A 117.5 (3) C6B—C5B—C1B 119.1 (2)
C10A—C5A—C1A 123.3 (2) C6B—C5B—C10B 119.1 (2)
C10A—C5A—C6A 119.1 (3) C10B—C5B—C1B 121.8 (2)
C5A—C6A—H6A 120.2 C5B—C6B—H6B 119.9
C7A—C6A—C5A 119.5 (3) C7B—C6B—C5B 120.1 (3)
C7A—C6A—H6A 120.2 C7B—C6B—H6B 119.9
C6A—C7A—H7A 119.6 C6B—C7B—H7B 119.6
C8A—C7A—C6A 120.8 (3) C8B—C7B—C6B 120.7 (3)
C8A—C7A—H7A 119.6 C8B—C7B—H7B 119.6
C7A—C8A—H8A 119.6 C7B—C8B—H8B 120.1
C7A—C8A—C9A 120.7 (3) C9B—C8B—C7B 119.8 (3)
C9A—C8A—H8A 119.6 C9B—C8B—H8B 120.1
C8A—C9A—H9A 120.3 C8B—C9B—H9B 119.8
C10A—C9A—C8A 119.4 (3) C8B—C9B—C10B 120.4 (3)
C10A—C9A—H9A 120.3 C10B—C9B—H9B 119.8
C5A—C10A—H10A 119.8 C5B—C10B—H10B 120.0
C9A—C10A—C5A 120.5 (3) C9B—C10B—C5B 119.9 (2)
C9A—C10A—H10A 119.8 C9B—C10B—H10B 120.0
C16A—C11A—C12A 119.8 (3) C12B—C11B—C16B 120.9 (3)
C16A—C11A—N1A 119.7 (2) C12B—C11B—N1B 120.3 (2)
C12A—C11A—N1A 120.5 (3) C16B—C11B—N1B 118.8 (2)
C11A—C16A—H16A 120.2 C11B—C12B—H12B 120.1
C11A—C16A—C15A 119.6 (3) C11B—C12B—C13B 119.9 (3)
C15A—C16A—H16A 120.2 C13B—C12B—H12B 120.1
C16A—C15A—H15A 119.9 C12B—C13B—H13B 120.1
C14A—C15A—C16A 120.3 (3) C14B—C13B—C12B 119.8 (4)
C14A—C15A—H15A 119.9 C14B—C13B—H13B 120.1
C15A—C14A—H14A 120.0 C13B—C14B—H14B 119.9
C13A—C14A—C15A 120.0 (3) C15B—C14B—C13B 120.3 (3)
C13A—C14A—H14A 120.0 C15B—C14B—H14B 119.9
C14A—C13A—H13A 119.7 C14B—C15B—H15B 119.7
C14A—C13A—C12A 120.6 (3) C14B—C15B—C16B 120.7 (3)
C12A—C13A—H13A 119.7 C16B—C15B—H15B 119.7
C11A—C12A—C13A 119.7 (3) C11B—C16B—C15B 118.5 (3)
C11A—C12A—H12A 120.2 C11B—C16B—H16B 120.7
C13A—C12A—H12A 120.2 C15B—C16B—H16B 120.7
N2A—C17A—C18A 116.0 (2) N2B—C17B—C18B 116.0 (3)
O3A—C17A—C18A 121.6 (3) O3B—C17B—C18B 122.0 (3)
O3A—C17A—N2A 122.4 (2) O3B—C17B—N2B 121.9 (2)
C17A—C18A—H18A 109.5 C17B—C18B—H18D 109.5
C17A—C18A—H18B 109.5 C17B—C18B—H18E 109.5
C17A—C18A—H18C 109.5 C17B—C18B—H18F 109.5
H18A—C18A—H18B 109.5 H18D—C18B—H18E 109.5
H18A—C18A—H18C 109.5 H18D—C18B—H18F 109.5
H18B—C18A—H18C 109.5 H18E—C18B—H18F 109.5
C2A—N1A—C1A 127.96 (19) C2B—N1B—C1B 128.89 (19)
C2A—N1A—C11A 117.19 (18) C2B—N1B—C11B 117.93 (19)
C11A—N1A—C1A 114.79 (18) C11B—N1B—C1B 113.1 (2)
C3A—N2A—H2A 120.0 (16) C3B—N2B—H2B 120 (2)
C17A—N2A—C3A 121.0 (2) C17B—N2B—C3B 121.5 (2)
C17A—N2A—H2A 118.6 (16) C17B—N2B—H2B 119 (2)
C4A—S1A—C1A 94.46 (11) C4B—S1B—C1B 94.54 (11)
O1A—S1A—C1A 107.22 (13) O1B—S1B—C1B 105.93 (12)
O1A—S1A—C4A 105.71 (11) O1B—S1B—C4B 105.70 (14)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2A—H2A···O2Bi 0.91 (3) 2.25 (3) 3.137 (3) 164 (2)
N2B—H2B···O1Bii 0.79 (3) 2.14 (3) 2.916 (3) 168 (3)
C10A—H10A···O3A 0.93 2.42 3.259 (3) 149
C10B—H10B···O3B 0.93 2.44 3.232 (4) 143
C4B—H4BB···O2Aiii 0.97 2.25 3.116 (3) 148

Symmetry codes: (i) x+1, y, z; (ii) −x, y+1/2, −z; (iii) −x+1, y+1/2, −z.

Funding Statement

This work was funded by National Science Foundation grant CHEM-0131112. Penn State Schuylkill grant .

References

  1. Bentley, R. (2005). Chem. Soc. Rev. 34, 609–624.
  2. Bruker (2016). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cannon, K., Gandla, D., Lauro, S., Silverberg, L., Tierney, J. & Lagalante, A. (2015). Int. J. Chem. 7(2), 73–84.
  4. Chen, H., Zai-Hong, G., Qing-Mei, Y. & Xiao-Liu, L. (2011). Chin. J. Org. Chem. 31, 249–255.
  5. Colombo, A., Fernàndez, J. C., Fernández-Forner, D., de la Figuera, N., Albericio, F. & Forns, P. (2008). Tetrahedron Lett. 49, 1569–1572.
  6. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  7. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  8. Elks, J. & Ganellin, C. R. (1990). Editors. Dictionary of Drugs, p. 382. Cambridge, UK: Chapman and Hall.
  9. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  10. Johnson, M. R., Fazio, M. J., Ward, D. L. & Sousa, L. R. (1983). J. Org. Chem. 48, 494–499.
  11. O’Neil, M. J. (2006). Editor. The Merck Index, 14th ed., p. 349, Whitehouse Station, NJ: Merck & Co. Inc.
  12. Ryabukhin, Y. I., Korzhavina, O. B. & Suzdalev, K. F. (1996). Adv. Heterocycl. Chem. 66, 131–190.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Surrey, A. R. (1963a). US Patent 3082209.
  15. Surrey, A. R. (1963b). US Patent 3093639.
  16. Surrey, A. R., Webb, W. G. & Gesler, R. M. (1958). J. Am. Chem. Soc. 80, 3469–3471.
  17. Tanaka, R. & Horayama, N. (2005). X-Ray Struct. Anal. Online, 21, x57–x58.
  18. Wang, Q., Xu, Z. & Sun, Y. (2010). Acta Cryst. E66, o1422. [DOI] [PMC free article] [PubMed]
  19. Yennawar, H. P., Fox, R., Moyer, Q. J., Yang, Z. & Silverberg, L. J. (2017). Acta Cryst. E73, 1189–1191. [DOI] [PMC free article] [PubMed]
  20. Yennawar, H. P., Noble, D. J., Yang, Z. & Silverberg, L. J. (2017). IUCrData, 2, x171112.
  21. Yennawar, H. P., Singh, H. & Silverberg, L. J. (2015). Acta Cryst. E71, 62–64. [DOI] [PMC free article] [PubMed]
  22. Yennawar, H. P., Tierney, J., Hullihen, P. D. & Silverberg, L. J. (2015). Acta Cryst. E71, 264–267. [DOI] [PMC free article] [PubMed]
  23. Yennawar, H. P., Yang, Z. & Silverberg, L. J. (2016). Acta Cryst. E72, 1541–1543. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017012488/zs2387sup1.cif

e-73-01417-sup1.cif (33.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017012488/zs2387Isup2.hkl

e-73-01417-Isup2.hkl (395.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017012488/zs2387Isup3.mol

Analysis of short ring interactions.. DOI: 10.1107/S2056989017012488/zs2387sup4.pdf

e-73-01417-sup4.pdf (17.6KB, pdf)

CCDC reference: 1571357

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES