Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Sep 12;73(Pt 10):1439–1442. doi: 10.1107/S2056989017012737

Crystal structure of flucetosulfuron

Hyunjin Park a, Jineun Kim a,*, Eunjin Kwon a, Tae Ho Kim a,*
PMCID: PMC5730291  PMID: 29250354

The title compound, C18H22FN5O8S, is used as a herbicide. The crystal structure is stabilized by N/C—H⋯O hydrogen bond, C—H⋯F and C—H⋯π inter­actions with weak π–π inter­actions contacts to form a three-dimensional architecture.

Keywords: crystal structure, herbicides, pyrimidinyl­sulfonyl­urea herbicide, flucetosulfuron

Abstract

The title compound, {systematic name: 1-[3-({[(4,6-di­meth­oxy­pyrimidin-2-yl)carbamo­yl]amino}­sulfon­yl)pyridin-2-yl]-2-fluoro­propyl 2-meth­oxy­acetate}, C18H22FN5O8S, is used as a herbicide (pyrimidinyl­sulfonyl­urea herbicide). The dihedral angle between the mean planes of the pyridine and pyrimidine rings is 86.90 (7)°. In the crystal, N/C—H⋯O hydrogen bonds, C—H⋯F and C—H⋯π inter­actions link adjacent mol­ecules, forming a chain along [020]. A further two C—H⋯O hydrogen bonds together with weak π–π inter­actions [ring centroid separation = 3.7584 (12) Å] further aggregate the structure into a three-dimensional architecture.

Chemical context  

Flucetosulfuron, a relatively new herbicide, inhibits acetolactate synthase (ALS) in plants, as do other ALS inhibitors such as imidazolinones, pyrimidinyloxybenzoates, triazolo­pyrimidines, and sulfonyl­amino­carbonyl­triazolinones (Lee et al., 2014). It is a novel post-emergence sulfonyl­urea herbicide providing excellent control of Galium aparine and other important broadleaf weeds with good safety to cereal crops, wheat and barley (Kim, Lee et al., 2003) In rice, the herbicide provides excellent control of Echinochloa crus-galli, which is not or only marginally controlled by common sulfonyl­urea products, and also controls annual broadleaf weeds, sedges and perennial weeds of rice with similar efficacy to other sulfonyl­urea rice herbicides (Kim, Koo et al., 2003). Until now, its crystal structure had not been reported and we describe it herein.graphic file with name e-73-01439-scheme1.jpg

Structural commentary  

The structure of flucetosulfuron is shown in Fig. 1. The dihedral angle between the mean planes of the pyridine and pyrimidine rings is 86.90 (7)°. All bond lengths and angles are normal and comparable to those observed in similar crystal structures (Jeon et al., 2015; Chopra et al., 2004).

Figure 1.

Figure 1

The mol­ecular structure of the title compound with the atom labelling and displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.

Supra­molecular features  

In the crystal, mol­ecules are linked by C1—H1A⋯O3i, N3—H3N⋯O8i and C2—H2B⋯F1ii hydrogen bonds [H⋯O = 2.58, 2.01 and H⋯F = 2.53 Å; Table 1] and C1—H1BCg1i inter­actions [H⋯π = 2.74 Å], forming a chain structure along [020] (yellow dashed lines in Fig. 2). In addition, the chains are linked by C12—H12⋯O2iii hydrogen bonds [H⋯O =2.42 Å], forming a two-dimensional network structure parallel to (020) (red dashed lines in Fig. 2). The C17—H17⋯O5iv hydrogen bond [H⋯O =2.55 Å] and weak π–π inter­actions (N1–N2/C3–C6) [Cg2⋯Cg2v= 3.7584 (12) Å; symmetry code: (v) −x + 2, −y + 1, −z + 1] generate a three-dimensional architecture with mol­ecules stacked along the a-axis direction (black dashed lines in Fig. 3).

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the N5/C8–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O8i 0.88 2.01 2.885 (2) 174
C1—H1A⋯O3i 0.98 2.58 3.368 (3) 137
C2—H2B⋯F1ii 0.98 2.53 3.161 (2) 122
C12—H12⋯O2iii 0.95 2.42 3.229 (3) 143
C17—H17A⋯O5iv 0.99 2.55 3.367 (3) 139
C1—H1BCg1i 0.98 2.74 3.488 (2) 134

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 2.

Figure 2

The N/C—H⋯O hydrogen bond, C—H⋯F and C—H⋯π inter­actions (yellow dashed lines) link adjacent mol­ecules, forming chains along [020]. The chains are further linked by C—H⋯O hydrogen bonds (red dashed lines), forming a two-dimensional network parallel to (020). H atoms have been omitted for clarity.

Figure 3.

Figure 3

A packing diagram showing the three-dimensional architecture formed by inter­molecular C—H⋯O hydrogen bonds (red dashed lines) and π–π inter­actions (black dashed lines). H atoms have been omitted for clarity.

Database survey  

We have reported the crystal structures of several pesticides including compounds with pyrimidinyl­sulfonyl­urea, di­meth­oxy­pyrimidin and sulfonyl­urea ring (Kang et al., 2015; Jeon et al., 2015; Kwon et al., 2016). Moreover, a database search (CSD Version 5.27, last update February 2017; Groom et al., 2016) yielded other comparable structures, methyl 2-{[3-(4,6-di­meth­oxy­pyrimidin-2-yl)ureido]sulfonyl­meth­yl}benzoate (Xia et al., 2008), 2-amino-4,6-di­meth­oxy­pyrimidin-1-ium 2,2-di­chloro­acetate (Lin et al., 2012), N-[(perhydro­cyclo­penta­[c]pyrrol-2-yl)amino­carbon­yl]-o-toluene­sulfonamide (Wu et al., 2012) and 4-{4-[N-(5,6-di­meth­oxy­pyrimidin-4-yl)sulfamo­yl]phenyl­carbamo­yl}-2,6-di­meth­oxy­phenyl acetate (Pan et al., 2012).

Synthesis and crystallization  

The title compound was purchased from Dr Ehrenstorfer GmbH. Colourless single crystals suitable for X-ray diffraction were obtained from a CH3CN solution by slow evaporation at room temperature.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were positioned geometrically and refined using a riding model with d(N—H) = 0.88 Å, U iso = 1.2U eq(C) for urea N—H, d(C—H) = 0.95 Å, U iso = 1.2U eq(C) for aromatic C—H, d(C—H) = 0.98 Å, U iso = 1.5U eq(C) for methyl groups, d(C—H) = 0.99 Å, U iso = 1.2U eq(C) for CH2 group, d(C—H) = 1.00 Å, U iso = 1.5U eq(C) for Csp 3—H.

Table 2. Experimental details.

Crystal data
Chemical formula C18H22FN5O8S
M r 487.46
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 173
a, b, c (Å) 8.3993 (3), 9.1030 (3), 15.6862 (5)
α, β, γ (°) 92.116 (2), 101.113 (2), 112.810 (2)
V3) 1076.53 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.22
Crystal size (mm) 0.36 × 0.06 × 0.05
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014)
T min, T max 0.702, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 10919, 3773, 3081
R int 0.031
(sin θ/λ)max−1) 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.039, 0.099, 1.06
No. of reflections 3773
No. of parameters 302
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.45, −0.39

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXS97 and SHELXTL (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), DIAMOND (Brandenburg, 2010) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989017012737/hg5495sup1.cif

e-73-01439-sup1.cif (384.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017012737/hg5495Isup2.hkl

e-73-01439-Isup2.hkl (300.8KB, hkl)

CCDC reference: 1572854

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C18H22FN5O8S Z = 2
Mr = 487.46 F(000) = 508
Triclinic, P1 Dx = 1.504 Mg m3
a = 8.3993 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.1030 (3) Å Cell parameters from 3325 reflections
c = 15.6862 (5) Å θ = 2.5–26.9°
α = 92.116 (2)° µ = 0.22 mm1
β = 101.113 (2)° T = 173 K
γ = 112.810 (2)° Needle, colourless
V = 1076.53 (6) Å3 0.36 × 0.06 × 0.05 mm

Data collection

Bruker APEXII CCD diffractometer 3081 reflections with I > 2σ(I)
φ and ω scans Rint = 0.031
Absorption correction: multi-scan (SADABS; Bruker, 2014) θmax = 25.0°, θmin = 1.3°
Tmin = 0.702, Tmax = 0.746 h = −9→9
10919 measured reflections k = −10→10
3773 independent reflections l = −18→18

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039 H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0439P)2 + 0.337P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
3773 reflections Δρmax = 0.45 e Å3
302 parameters Δρmin = −0.39 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.39351 (7) 0.10312 (6) 0.18674 (3) 0.02316 (15)
F1 0.2117 (2) 0.35690 (17) −0.01327 (8) 0.0529 (4)
O1 1.0327 (2) 0.78934 (17) 0.56837 (9) 0.0345 (4)
O2 0.97933 (18) 0.63951 (17) 0.27393 (9) 0.0268 (3)
O3 0.34138 (19) 0.08587 (18) 0.37121 (9) 0.0309 (4)
O4 0.48165 (18) 0.18107 (17) 0.12133 (9) 0.0278 (4)
O5 0.3822 (2) −0.05369 (17) 0.20150 (10) 0.0330 (4)
O6 0.26027 (17) 0.48834 (16) 0.21292 (8) 0.0226 (3)
O7 0.55822 (19) 0.62252 (18) 0.24672 (9) 0.0302 (4)
O8 0.53183 (18) 0.72872 (16) 0.41130 (9) 0.0262 (4)
N1 0.8060 (2) 0.5524 (2) 0.49899 (11) 0.0227 (4)
N2 0.7821 (2) 0.4766 (2) 0.34862 (10) 0.0213 (4)
N3 0.5794 (2) 0.3194 (2) 0.42532 (11) 0.0249 (4)
H3N 0.5538 0.3064 0.4771 0.030*
N4 0.4990 (2) 0.2289 (2) 0.27617 (10) 0.0252 (4)
H4N 0.5839 0.3209 0.2718 0.030*
N5 −0.0364 (2) 0.2072 (2) 0.11793 (12) 0.0310 (4)
C1 0.9641 (3) 0.7561 (3) 0.64590 (14) 0.0356 (6)
H1A 0.8389 0.7393 0.6326 0.053*
H1B 1.0313 0.8472 0.6918 0.053*
H1C 0.9752 0.6593 0.6662 0.053*
C2 0.8773 (3) 0.5257 (3) 0.19662 (13) 0.0285 (5)
H2A 0.8717 0.4188 0.2079 0.043*
H2B 0.9342 0.5588 0.1475 0.043*
H2C 0.7571 0.5224 0.1821 0.043*
C3 0.9464 (3) 0.6843 (2) 0.49563 (13) 0.0238 (5)
C4 0.7292 (3) 0.4557 (2) 0.42344 (13) 0.0207 (4)
C5 0.9225 (3) 0.6125 (2) 0.34821 (13) 0.0215 (5)
C6 1.0123 (3) 0.7244 (2) 0.42113 (13) 0.0253 (5)
H6 1.1113 0.8211 0.4205 0.030*
C7 0.4640 (3) 0.2007 (2) 0.35825 (13) 0.0234 (5)
C8 0.1749 (3) 0.0953 (2) 0.16496 (12) 0.0209 (5)
C9 0.1326 (3) 0.2238 (2) 0.13956 (13) 0.0229 (5)
C10 −0.1640 (3) 0.0645 (3) 0.12140 (15) 0.0358 (6)
H10 −0.2836 0.0525 0.1041 0.043*
C11 −0.1331 (3) −0.0655 (3) 0.14834 (15) 0.0356 (6)
H11 −0.2283 −0.1633 0.1518 0.043*
C12 0.0406 (3) −0.0500 (3) 0.17037 (14) 0.0303 (5)
H12 0.0674 −0.1376 0.1889 0.036*
C13 0.2671 (3) 0.3930 (2) 0.13829 (12) 0.0219 (5)
H13 0.3884 0.3942 0.1447 0.026*
C14 0.2184 (3) 0.4629 (3) 0.05544 (13) 0.0320 (5)
H14 0.0981 0.4629 0.0509 0.038*
C15 0.3463 (3) 0.6282 (3) 0.04812 (15) 0.0416 (6)
H15A 0.3513 0.7036 0.0959 0.062*
H15B 0.3069 0.6609 −0.0082 0.062*
H15C 0.4642 0.6286 0.0519 0.062*
C16 0.4167 (3) 0.5958 (2) 0.26289 (13) 0.0210 (5)
C17 0.3826 (3) 0.6730 (3) 0.34038 (12) 0.0240 (5)
H17A 0.3527 0.7642 0.3228 0.029*
H17B 0.2799 0.5939 0.3590 0.029*
C18 0.6598 (3) 0.8857 (3) 0.40752 (15) 0.0316 (5)
H18A 0.7041 0.8858 0.3541 0.047*
H18B 0.7587 0.9161 0.4588 0.047*
H18C 0.6045 0.9628 0.4071 0.047*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0254 (3) 0.0223 (3) 0.0209 (3) 0.0097 (2) 0.0034 (2) 0.0019 (2)
F1 0.0876 (12) 0.0416 (9) 0.0248 (7) 0.0235 (8) 0.0082 (7) −0.0018 (6)
O1 0.0420 (10) 0.0256 (9) 0.0233 (8) 0.0007 (7) 0.0076 (7) −0.0027 (6)
O2 0.0279 (8) 0.0261 (8) 0.0212 (8) 0.0035 (7) 0.0090 (6) 0.0038 (6)
O3 0.0267 (8) 0.0276 (9) 0.0286 (8) 0.0001 (7) 0.0071 (7) 0.0052 (7)
O4 0.0300 (8) 0.0334 (9) 0.0232 (8) 0.0144 (7) 0.0096 (6) 0.0055 (6)
O5 0.0405 (9) 0.0229 (8) 0.0371 (9) 0.0164 (7) 0.0046 (7) 0.0044 (7)
O6 0.0216 (7) 0.0217 (8) 0.0199 (7) 0.0049 (6) 0.0032 (6) −0.0016 (6)
O7 0.0216 (8) 0.0325 (9) 0.0329 (9) 0.0077 (7) 0.0056 (7) −0.0022 (7)
O8 0.0252 (8) 0.0225 (8) 0.0203 (7) 0.0007 (6) 0.0004 (6) 0.0015 (6)
N1 0.0227 (9) 0.0216 (9) 0.0217 (9) 0.0069 (8) 0.0043 (7) 0.0032 (7)
N2 0.0211 (9) 0.0224 (9) 0.0186 (9) 0.0070 (8) 0.0040 (7) 0.0049 (7)
N3 0.0247 (9) 0.0261 (10) 0.0169 (9) 0.0028 (8) 0.0044 (7) 0.0040 (7)
N4 0.0259 (10) 0.0240 (10) 0.0191 (9) 0.0034 (8) 0.0038 (7) 0.0039 (7)
N5 0.0226 (10) 0.0291 (11) 0.0374 (11) 0.0090 (9) 0.0027 (8) −0.0029 (8)
C1 0.0451 (14) 0.0327 (13) 0.0241 (12) 0.0103 (11) 0.0094 (10) −0.0029 (10)
C2 0.0318 (12) 0.0303 (12) 0.0216 (11) 0.0106 (10) 0.0060 (9) 0.0018 (9)
C3 0.0255 (11) 0.0194 (11) 0.0240 (11) 0.0079 (9) 0.0028 (9) 0.0022 (9)
C4 0.0201 (10) 0.0211 (11) 0.0212 (11) 0.0088 (9) 0.0034 (8) 0.0062 (9)
C5 0.0217 (11) 0.0226 (11) 0.0218 (11) 0.0098 (9) 0.0061 (8) 0.0072 (9)
C6 0.0242 (11) 0.0212 (11) 0.0256 (11) 0.0042 (9) 0.0046 (9) 0.0047 (9)
C7 0.0228 (11) 0.0234 (12) 0.0231 (11) 0.0088 (10) 0.0039 (9) 0.0045 (9)
C8 0.0233 (11) 0.0186 (11) 0.0166 (10) 0.0054 (9) 0.0018 (8) −0.0006 (8)
C9 0.0230 (11) 0.0237 (11) 0.0178 (10) 0.0059 (9) 0.0030 (8) −0.0018 (8)
C10 0.0206 (12) 0.0335 (14) 0.0439 (14) 0.0042 (11) 0.0030 (10) −0.0089 (11)
C11 0.0285 (13) 0.0265 (13) 0.0412 (14) 0.0001 (11) 0.0088 (10) −0.0034 (11)
C12 0.0348 (13) 0.0212 (12) 0.0303 (12) 0.0062 (10) 0.0077 (10) 0.0018 (9)
C13 0.0267 (11) 0.0214 (11) 0.0187 (10) 0.0104 (9) 0.0063 (8) 0.0004 (8)
C14 0.0467 (14) 0.0288 (13) 0.0205 (11) 0.0157 (11) 0.0065 (10) 0.0016 (9)
C15 0.0630 (18) 0.0304 (14) 0.0261 (13) 0.0128 (12) 0.0096 (12) 0.0091 (10)
C16 0.0221 (11) 0.0171 (10) 0.0213 (11) 0.0061 (9) 0.0024 (9) 0.0063 (8)
C17 0.0206 (11) 0.0246 (11) 0.0199 (11) 0.0028 (9) 0.0026 (8) 0.0019 (9)
C18 0.0281 (12) 0.0224 (12) 0.0343 (13) 0.0002 (10) 0.0058 (10) 0.0007 (10)

Geometric parameters (Å, º)

S1—O5 1.4242 (15) C1—H1C 0.9800
S1—O4 1.4295 (15) C2—H2A 0.9800
S1—N4 1.6369 (17) C2—H2B 0.9800
S1—C8 1.774 (2) C2—H2C 0.9800
F1—C14 1.397 (2) C3—C6 1.389 (3)
O1—C3 1.343 (2) C5—C6 1.379 (3)
O1—C1 1.437 (3) C6—H6 0.9500
O2—C5 1.338 (2) C8—C12 1.385 (3)
O2—C2 1.448 (2) C8—C9 1.398 (3)
O3—C7 1.207 (2) C9—C13 1.520 (3)
O6—C16 1.359 (2) C10—C11 1.371 (3)
O6—C13 1.455 (2) C10—H10 0.9500
O7—C16 1.197 (2) C11—C12 1.383 (3)
O8—C17 1.412 (2) C11—H11 0.9500
O8—C18 1.429 (2) C12—H12 0.9500
N1—C3 1.329 (3) C13—C14 1.522 (3)
N1—C4 1.336 (2) C13—H13 1.0000
N2—C4 1.328 (2) C14—C15 1.497 (3)
N2—C5 1.339 (2) C14—H14 1.0000
N3—C7 1.388 (3) C15—H15A 0.9800
N3—C4 1.389 (2) C15—H15B 0.9800
N3—H3N 0.8800 C15—H15C 0.9800
N4—C7 1.386 (3) C16—C17 1.510 (3)
N4—H4N 0.8800 C17—H17A 0.9900
N5—C10 1.337 (3) C17—H17B 0.9900
N5—C9 1.341 (3) C18—H18A 0.9800
C1—H1A 0.9800 C18—H18B 0.9800
C1—H1B 0.9800 C18—H18C 0.9800
O5—S1—O4 119.31 (9) C12—C8—S1 116.68 (16)
O5—S1—N4 110.36 (9) C9—C8—S1 123.71 (15)
O4—S1—N4 103.89 (9) N5—C9—C8 121.03 (18)
O5—S1—C8 107.60 (9) N5—C9—C13 113.94 (18)
O4—S1—C8 109.39 (9) C8—C9—C13 124.95 (18)
N4—S1—C8 105.49 (9) N5—C10—C11 124.2 (2)
C3—O1—C1 117.99 (17) N5—C10—H10 117.9
C5—O2—C2 117.95 (16) C11—C10—H10 117.9
C16—O6—C13 117.59 (15) C10—C11—C12 118.0 (2)
C17—O8—C18 114.20 (16) C10—C11—H11 121.0
C3—N1—C4 114.61 (17) C12—C11—H11 121.0
C4—N2—C5 116.32 (17) C11—C12—C8 118.9 (2)
C7—N3—C4 130.02 (17) C11—C12—H12 120.5
C7—N3—H3N 115.0 C8—C12—H12 120.5
C4—N3—H3N 115.0 O6—C13—C9 105.26 (15)
C7—N4—S1 124.61 (15) O6—C13—C14 108.51 (16)
C7—N4—H4N 117.7 C9—C13—C14 111.96 (17)
S1—N4—H4N 117.7 O6—C13—H13 110.3
C10—N5—C9 118.31 (19) C9—C13—H13 110.3
O1—C1—H1A 109.5 C14—C13—H13 110.3
O1—C1—H1B 109.5 F1—C14—C15 108.89 (18)
H1A—C1—H1B 109.5 F1—C14—C13 105.03 (17)
O1—C1—H1C 109.5 C15—C14—C13 115.37 (19)
H1A—C1—H1C 109.5 F1—C14—H14 109.1
H1B—C1—H1C 109.5 C15—C14—H14 109.1
O2—C2—H2A 109.5 C13—C14—H14 109.1
O2—C2—H2B 109.5 C14—C15—H15A 109.5
H2A—C2—H2B 109.5 C14—C15—H15B 109.5
O2—C2—H2C 109.5 H15A—C15—H15B 109.5
H2A—C2—H2C 109.5 C14—C15—H15C 109.5
H2B—C2—H2C 109.5 H15A—C15—H15C 109.5
N1—C3—O1 119.08 (18) H15B—C15—H15C 109.5
N1—C3—C6 124.73 (19) O7—C16—O6 124.13 (18)
O1—C3—C6 116.20 (18) O7—C16—C17 126.38 (18)
N2—C4—N1 126.77 (18) O6—C16—C17 109.49 (17)
N2—C4—N3 117.95 (17) O8—C17—C16 111.44 (17)
N1—C4—N3 115.28 (17) O8—C17—H17A 109.3
O2—C5—N2 118.40 (17) C16—C17—H17A 109.3
O2—C5—C6 118.68 (18) O8—C17—H17B 109.3
N2—C5—C6 122.91 (18) C16—C17—H17B 109.3
C5—C6—C3 114.59 (19) H17A—C17—H17B 108.0
C5—C6—H6 122.7 O8—C18—H18A 109.5
C3—C6—H6 122.7 O8—C18—H18B 109.5
O3—C7—N4 123.77 (18) H18A—C18—H18B 109.5
O3—C7—N3 121.97 (18) O8—C18—H18C 109.5
N4—C7—N3 114.23 (18) H18A—C18—H18C 109.5
C12—C8—C9 119.55 (19) H18B—C18—H18C 109.5
O5—S1—N4—C7 −48.10 (19) O4—S1—C8—C9 −42.99 (19)
O4—S1—N4—C7 −177.12 (16) N4—S1—C8—C9 68.21 (18)
C8—S1—N4—C7 67.84 (19) C10—N5—C9—C8 0.1 (3)
C4—N1—C3—O1 179.93 (18) C10—N5—C9—C13 −176.75 (18)
C4—N1—C3—C6 0.4 (3) C12—C8—C9—N5 −1.9 (3)
C1—O1—C3—N1 −2.3 (3) S1—C8—C9—N5 175.19 (15)
C1—O1—C3—C6 177.23 (18) C12—C8—C9—C13 174.60 (19)
C5—N2—C4—N1 −3.1 (3) S1—C8—C9—C13 −8.3 (3)
C5—N2—C4—N3 177.34 (17) C9—N5—C10—C11 2.1 (3)
C3—N1—C4—N2 2.1 (3) N5—C10—C11—C12 −2.4 (3)
C3—N1—C4—N3 −178.32 (17) C10—C11—C12—C8 0.5 (3)
C7—N3—C4—N2 −4.5 (3) C9—C8—C12—C11 1.6 (3)
C7—N3—C4—N1 175.92 (19) S1—C8—C12—C11 −175.75 (16)
C2—O2—C5—N2 4.5 (3) C16—O6—C13—C9 137.43 (16)
C2—O2—C5—C6 −176.37 (17) C16—O6—C13—C14 −102.57 (19)
C4—N2—C5—O2 −179.30 (17) N5—C9—C13—O6 70.7 (2)
C4—N2—C5—C6 1.6 (3) C8—C9—C13—O6 −106.1 (2)
O2—C5—C6—C3 −178.55 (17) N5—C9—C13—C14 −47.0 (2)
N2—C5—C6—C3 0.6 (3) C8—C9—C13—C14 136.2 (2)
N1—C3—C6—C5 −1.6 (3) O6—C13—C14—F1 −174.62 (16)
O1—C3—C6—C5 178.85 (17) C9—C13—C14—F1 −58.9 (2)
S1—N4—C7—O3 −6.7 (3) O6—C13—C14—C15 65.5 (2)
S1—N4—C7—N3 175.33 (14) C9—C13—C14—C15 −178.77 (19)
C4—N3—C7—O3 177.7 (2) C13—O6—C16—O7 4.0 (3)
C4—N3—C7—N4 −4.4 (3) C13—O6—C16—C17 −175.72 (16)
O5—S1—C8—C12 3.21 (18) C18—O8—C17—C16 85.3 (2)
O4—S1—C8—C12 134.21 (16) O7—C16—C17—O8 −25.1 (3)
N4—S1—C8—C12 −114.60 (16) O6—C16—C17—O8 154.58 (15)
O5—S1—C8—C9 −173.98 (16)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the N5/C8–C12 ring.

D—H···A D—H H···A D···A D—H···A
N3—H3N···O8i 0.88 2.01 2.885 (2) 174
C1—H1A···O3i 0.98 2.58 3.368 (3) 137
C2—H2B···F1ii 0.98 2.53 3.161 (2) 122
C12—H12···O2iii 0.95 2.42 3.229 (3) 143
C17—H17A···O5iv 0.99 2.55 3.367 (3) 139
C1—H1B···Cg1i 0.98 2.74 3.488 (2) 134

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+1, −z; (iii) x−1, y−1, z; (iv) x, y+1, z.

Funding Statement

This work was funded by National Research Foundation of Korea grants 2015R1D1A4A01020317 and 2017R1D1A3A03000534.

References

  1. Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc.,Madison, Wisconsin, USA.
  3. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst B72, 171–179. [DOI] [PMC free article] [PubMed]
  4. Chopra, D., Mohan, T. P., Rao, K. S. & Guru Row, T. N. (2004). Acta Cryst. E60, o2418–o2420.
  5. Jeon, Y., Kim, J., Kwon, E. & Kim, T. H. (2015). Acta Cryst. E71, o470–o471. [DOI] [PMC free article] [PubMed]
  6. Kang, G., Kim, J., Kwon, E. & Kim, T. H. (2015). Acta Cryst. E71, o631–o632. [DOI] [PMC free article] [PubMed]
  7. Kim, D. S., Koo, S. J., Lee, J. N., Hwang, K. H., Kim, T. Y., Kang, K. G., Hwang, K. S., Joe, G. H., Cho, J. H. & Kim, D. W. (2003). Congress Proceedings-BCPC International Congress: Crop Sci. & Tech 1, 87–92.
  8. Kim, D. S., Lee, J. N., Hwang, K. H., Kang, K. G., Kim, T. Y., Koo, S. J. & Caseley, J. C. (2003). Congress Proceedings-BCPC International Congress: Crop Sci. & Tech 2, 941-946.
  9. Kwon, E., Kim, J., Park, H. & Kim, T. H. (2016). Acta Cryst. E72, 1468–1470. [DOI] [PMC free article] [PubMed]
  10. Lee, Y.-S., Liu, K.-H., Moon, J.-K., Ko, B. J., Choi, H., Hwang, K.-S., Kim, E. & Kim, J.-H. (2014). J. Agric. Food Chem. 62, 3057–3063. [DOI] [PubMed]
  11. Lin, C.-H. & Liu, N.-S. (2012). Acta Cryst. E68, o1898. [DOI] [PMC free article] [PubMed]
  12. Pan, W.-G., Zhao, Z.-D., Luo, P., Lin, C.-W. & Miao, J.-H. (2012). Z. Kristallogr. NCS, 224, 583-585.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  15. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  16. Wu, D., Wang, X., Pang, D., Su, W. & Sun, Y. (2012). Acta Cryst. E68, o446. [DOI] [PMC free article] [PubMed]
  17. Xia, J., Li, F., Yin, L., Yu, D. & Wu, D. (2008). Acta Cryst. E64, o632. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989017012737/hg5495sup1.cif

e-73-01439-sup1.cif (384.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017012737/hg5495Isup2.hkl

e-73-01439-Isup2.hkl (300.8KB, hkl)

CCDC reference: 1572854

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES