Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Sep 12;73(Pt 10):1449–1452. doi: 10.1107/S2056989017011707

Crystal structure and DFT study of (E)-2,6-di-tert-butyl-4-{[2-(pyridin-2-yl)hydrazin-1-yl­idene)meth­yl}phenol

Md Serajul Haque Faizi a,*, Ashanul Haque a, Mustafa Dege b, Necmi Dege c, Maria L Malysheva d
PMCID: PMC5730293  PMID: 29250356

The title Schiff base was synthesized via the condensation reaction of 3,5-di-tert-butyl-4-hy­droxy­benzaldehyde and 2-hydrazinyl­pyridine and crystallized with a single mol­ecule in the asymmetric unit. The conformation about the C=N bond is E. In the crystal, N—H⋯N hydrogen bonds connect pairs of mol­ecules into dimers. In addition, weak C—H⋯O hydrogen bonds and C—H⋯π inter­actions are observed.

Keywords: crystal structure; hydrazine; 2- hydrazino­pyridine; 3,5-di-tert-butyl-4-hy­droxy­benzaldehyde; hydrogen bonding; Schiff base

Abstract

The title compound, C20H27N3O, was synthesized by condensation reaction of 3,5-di-tert-butyl-4-hy­droxy­benzaldehyde and 2-hydrazinyl­pyridine, and crystallizes in the centrosymmetric monoclinic space group C2/c. The conformation about the C=N bond is E. The dihedral angle between the rings is 18.1 (3)°. An inter­molecular N—H⋯N hydrogen bond generates an R 2 2(8) ring motif. In the crystal, N—H⋯N hydrogen bonds connect pairs of mol­ecules, forming dimers. Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state.

Chemical context  

Sterically hindered phenol anti-oxidants are widely used in polymers and lubricants. They can protect polymers by increasing both their process stability and their long-term stability against oxidative degradation (Yamazaki & Seguchi, 1997; Silin et al., 1999). Hydrazones and Schiff bases have attracted much attention for their excellent biological properties, especially for their potential pharmacological and anti­tumor properties (Küçükgüzel et al., 2006; Khattab, 2005; Karthikeyan et al., 2006; Okabe et al., 1993). Furthermore, 3,5-di-tert-butyl-2-hy­droxy­benzaldehyde-derived Schiff bases shows proton tautomerization, which plays an important role in many fields of chemistry and biochemistry. The tautomerization in salicylideneanilines has been the subject of particular inter­est because it is closely related to thermochromism and photochromism. While salicylideneanilines are widely used as precursor compounds for the design of various type new metal complexes, they are also convenient model compounds for studying theoretical aspects of coordination chemistry and photochemistry, as well as for designing mol­ecular architectures by means of mol­ecular motifs capable of hydrogen-bond formation. The present work is a part of an ongoing structural study of Schiff bases and their utilization in the synthesis of quinoxaline derivatives (Faizi et al., 2016a ), fluorescence sensors (Faizi et al., 2016b ) and azo­imine compounds (Faizi et al., 2015, 2017). We report herein on the synthesis and crystal structure and DFT computational calculation of the new title Schiff base compound with a sterically hindered phenol, (I). The results of calculations by density functional theory (DFT) on (I) carried out at the B3LYP/6-311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state.graphic file with name e-73-01449-scheme1.jpg

Structural commentary  

The mol­ecular structure of (I), shown in Fig. 1, is not planar, with the dihedral angle between the pyridyl and tert-butyl substituted benzene rings being 18.19 (3)°. The N—N and N—C bond lengths are of 1.396 (7) and 1.253 (7) Å, respectively, indicate single- and double-bond character for these bonds. The C1—O1 bond length of 1.370 (6) Å indicates single-bond character. The conformation about the C15=N1 bond is E with an N2—N1—C15—C4 torsion angle of 177.9 (5)°. Bond distances for (I) are comparable to those found in closely related structures (Fun et al., 2013). It appears that the hy­droxy group is prevented from forming a hydrogen bond because of steric hindrance by the tert-butyl groups.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 40% probability level.

Supra­molecular features  

In the crystal, mol­ecules are connected by pairs of N—H⋯N hydrogen bonds (Fig. 2, Table 1), forming dimers with graph set Inline graphic (8). In addition, weak C—H⋯O hydrogen bonds and C—H⋯π interactions connect the dimers, forming chains along [100] (Fig. 3). There are no other significant inter­molecular contacts present.

Figure 2.

Figure 2

Mol­ecules of the title compound forming a dimer through N—H⋯N hydrogen bonds, generating an Inline graphic(8) ring motif.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N3i 0.86 2.23 3.062 (8) 162

Symmetry code: (i) Inline graphic.

Figure 3.

Figure 3

Part of the structure exhibiting weak C—H⋯O hydrogen bonds and C—H⋯π inter­actions (shown as dashed lines) along a axis.

DFT study  

The DFT quantum-chemical calculations were performed at the B3LYP/6-311 G(d,p) level (Becke, 1993) as implemented in GAUSSIAN09 (Frisch et al., 2009). DFT structure optimization of (I) was performed starting from the X-ray geometry and the values compared with experimental values (see Table 2). From these results we can conclude that basis set 6-311 G(d,p) is well suited in its approach to the experimental data.

Table 2. Comparison of selected observed (X-ray data) and calculated (DFT) geometric parameters (Å, °).

Parameter X-ray B3LYP/6–311G(d,p)
O1—C1 1.370 (6) 1.370
C15—N1 1.253 (7) 1.252
N3—C20 1.386 (8) 1.386
N1—N2 1.396 (7) 1.395
N3—C16 1.292 (8) 1.292
C16—N2—N1 122.6 (6) 122.7
C15—N1—N2 118.8 (6) 118.9
N1—C15—C4 121.9 (6) 121.9
N2—N1—C15—C4 177.9 (5) 177.8

The DFT study of (I) shows that the HOMO and LUMO are localized in the plane extending from the whole pyridine ring to the phenol ring. The electron distribution of the HOMO-1, HOMO, LUMO and the LUMO+1 energy levels are shown in Fig. 4. The HOMO mol­ecular orbital exhibits both σ and π character, whereas HOMO-1 is dominated by π-orbital density. The LUMO is mainly composed of σ-density while LUMO+1 has both σ and π electronic density. The HOMO–LUMO gap was found to be 0.1562 a.u. and the frontier mol­ecular orbital energies, E HOMO and E LUMO are −0.201 and −0.045 a.u., respectively.

Figure 4.

Figure 4

Electron distribution of the HOMO-1, HOMO, LUMO and LUMO+1 energy levels for the title compound.

Database survey  

There are very few examples of similar compounds in the literature. To the best of our knowledge, the similar compound synthesized by (Cuadro et al., 1998) for biological evaluation of 5-lipoxygenase inhibitors has not been structurally characterized. Two very similar compounds have been reported, one synthesized from 2-hydrazinyl­pyridine and 4-tert-butyl-2,6-di­formyl­phenol (Li et al., 2013) as a fluorescent chemosensor for ZnII and applications in live cell imaging. The other compound is the Schiff base 2,4-di-tert-butyl-6-{[2-(pyridin-2-yl)hydrazono]meth­yl}phenol used for stabilization of oxidovanadium(IV) (Kundu et al., 2013).A search of the Cambridge Structural Database (CSD, Version 5.37, update May 2016; Groom et al., 2016) shows that these compounds have not been characterized by X-ray diffraction.

Synthesis and crystallization  

A mixture of 3,5-di-tert-butyl-4-hy­droxy­benzaldehyde 0.100 g (0.427 mmol) and 2-hydrazinyl­pyridine 0.046 g (0.427 mmol) in methanol was refluxed for 3 h in the presence of a catalytic amount of glacial acetic acid. After cooling, the red-coloured precipitate was washed with hot methanol several times, and then dried, giving a red-coloured shiny crystalline compound in 86% yield (0.120 g). Red block-like crystals of the title compound were obtained by slow evaporation of a solution in di­chloro­methane and ethanol (5:1 v/v).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. All C-bound hydrogen atoms were included in calculated positions with C—H = 0.93 (aromatic) or 0.96 Å (methyl­ene) and allowed to ride, with U iso(H) = 1.2U eq(C). The N-bound H atom was located in a difference-Fourier map but was also allowed to ride in the refinement with N—H = 0.86 Å and U iso(H) = 1.2U eq(N).

Table 3. Experimental details.

Crystal data
Chemical formula C20H27N3O
M r 325.44
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 29.5091 (15), 6.2270 (4), 20.2703 (10)
β (°) 91.130 (4)
V3) 3724.0 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.33 × 0.24 × 0.08
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002)
T min, T max 0.978, 0.994
No. of measured, independent and observed [I > 2σ(I)] reflections 17357, 3468, 1430
R int 0.097
(sin θ/λ)max−1) 0.606
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.101, 0.321, 0.96
No. of reflections 3468
No. of parameters 222
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.95, −0.34

Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002), SHELXT (Sheldrick 2015a ), SHELXL2016 (Sheldrick, 2015b ), ORTEP-3 for Windows and WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017011707/hg5492sup1.cif

e-73-01449-sup1.cif (638.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017011707/hg5492Isup2.hkl

e-73-01449-Isup2.hkl (277.2KB, hkl)

CCDC reference: 1567740

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the National Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01601 Kyiv, Ukraine, for financial support, and to Dr Musheer Ahmad and Dr Graham Smith for helpful discussions.

supplementary crystallographic information

Crystal data

C20H27N3O F(000) = 1408
Mr = 325.44 Dx = 1.161 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 29.5091 (15) Å Cell parameters from 10906 reflections
b = 6.2270 (4) Å θ = 1.4–26.8°
c = 20.2703 (10) Å µ = 0.07 mm1
β = 91.130 (4)° T = 296 K
V = 3724.0 (4) Å3 Stick, red
Z = 8 0.33 × 0.24 × 0.08 mm

Data collection

Stoe IPDS 2 diffractometer 3468 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus 1430 reflections with I > 2σ(I)
Plane graphite monochromator Rint = 0.097
Detector resolution: 6.67 pixels mm-1 θmax = 25.5°, θmin = 1.4°
rotation method scans h = −35→35
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) k = −7→7
Tmin = 0.978, Tmax = 0.994 l = −24→24
17357 measured reflections

Refinement

Refinement on F2 4 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.101 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.321 w = 1/[σ2(Fo2) + (0.1794P)2] where P = (Fo2 + 2Fc2)/3
S = 0.96 (Δ/σ)max < 0.001
3468 reflections Δρmax = 0.95 e Å3
222 parameters Δρmin = −0.34 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.44818 (13) 0.9043 (6) 0.53805 (18) 0.0870 (13)
C6 0.40894 (16) 0.6560 (8) 0.4671 (2) 0.0602 (12)
C1 0.41473 (17) 0.7532 (8) 0.5303 (2) 0.0643 (13)
N3 0.25835 (18) −0.3445 (11) 0.4118 (3) 0.0956 (15)
C5 0.37623 (17) 0.4983 (8) 0.4620 (2) 0.0653 (13)
H5 0.371669 0.430688 0.421532 0.078*
C2 0.38832 (17) 0.6977 (7) 0.5845 (2) 0.0616 (13)
C7 0.43754 (17) 0.7232 (8) 0.4082 (2) 0.0652 (13)
C4 0.34989 (16) 0.4362 (8) 0.5145 (2) 0.0630 (13)
C3 0.35632 (17) 0.5396 (8) 0.5744 (2) 0.0682 (13)
H3 0.338180 0.500452 0.609405 0.082*
C11 0.39633 (18) 0.8015 (8) 0.6539 (2) 0.0692 (14)
C16 0.2803 (2) −0.1665 (11) 0.4050 (3) 0.0854 (18)
C15 0.31797 (19) 0.2599 (9) 0.5093 (3) 0.0753 (15)
H15 0.299604 0.229578 0.544903 0.090*
N1 0.31443 (18) 0.1472 (10) 0.4583 (3) 0.1040 (17)
C9 0.48786 (17) 0.6685 (9) 0.4218 (3) 0.0788 (15)
H9A 0.498240 0.741762 0.460985 0.118*
H9B 0.491083 0.516377 0.427934 0.118*
H9C 0.505562 0.713463 0.385090 0.118*
C14 0.3634 (2) 0.7150 (10) 0.7038 (3) 0.0892 (18)
H14A 0.367140 0.562344 0.707671 0.134*
H14B 0.369399 0.781038 0.745907 0.134*
H14C 0.332975 0.746899 0.689537 0.134*
C8 0.4238 (2) 0.6008 (10) 0.3455 (2) 0.0842 (17)
H8A 0.442361 0.646829 0.309754 0.126*
H8B 0.427952 0.449608 0.352592 0.126*
H8C 0.392568 0.629283 0.334777 0.126*
C10 0.4322 (2) 0.9641 (8) 0.3928 (3) 0.0794 (15)
H10A 0.440539 1.046680 0.431129 0.119*
H10B 0.451519 1.002048 0.357028 0.119*
H10C 0.401251 0.993870 0.380523 0.119*
N2 0.2841 (2) −0.0247 (10) 0.4575 (3) 0.1095 (18)
H2 0.267022 −0.043331 0.490969 0.131*
C13 0.3886 (2) 1.0443 (9) 0.6502 (3) 0.0920 (19)
H13A 0.408889 1.106044 0.618980 0.138*
H13B 0.357876 1.072581 0.636557 0.138*
H13C 0.394300 1.106719 0.692927 0.138*
C20 0.2570 (2) −0.4838 (11) 0.3587 (4) 0.0966 (19)
H20 0.241637 −0.613249 0.362703 0.116*
C17 0.3004 (2) −0.1115 (11) 0.3471 (4) 0.0971 (19)
H17 0.314885 0.020392 0.343305 0.117*
C12 0.4451 (2) 0.7483 (11) 0.6794 (3) 0.0922 (18)
H12A 0.450337 0.816345 0.721370 0.138*
H12B 0.466707 0.799996 0.648434 0.138*
H12C 0.448268 0.595631 0.684231 0.138*
C19 0.2775 (2) −0.4384 (12) 0.3005 (3) 0.0912 (18)
H19 0.276520 −0.535037 0.265545 0.109*
C18 0.2992 (2) −0.2481 (13) 0.2956 (3) 0.098 (2)
H18 0.313282 −0.211489 0.256542 0.117*
H1 0.4585 (7) 0.975 (3) 0.5674 (9) 0.22 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.101 (3) 0.082 (3) 0.078 (2) −0.042 (2) 0.008 (2) −0.013 (2)
C6 0.065 (3) 0.054 (3) 0.061 (3) −0.006 (2) 0.005 (2) 0.002 (2)
C1 0.074 (3) 0.056 (3) 0.063 (3) −0.012 (3) 0.006 (2) −0.005 (2)
N3 0.086 (3) 0.110 (4) 0.091 (3) 0.011 (3) 0.016 (3) 0.009 (3)
C5 0.080 (3) 0.057 (3) 0.058 (3) −0.008 (3) 0.001 (2) 0.002 (2)
C2 0.073 (3) 0.049 (3) 0.063 (3) 0.001 (2) 0.003 (2) −0.002 (2)
C7 0.074 (3) 0.061 (3) 0.061 (3) −0.009 (2) 0.011 (2) 0.001 (2)
C4 0.066 (3) 0.054 (3) 0.069 (3) −0.006 (2) 0.004 (2) 0.003 (2)
C3 0.069 (3) 0.064 (3) 0.072 (3) −0.008 (3) 0.009 (2) 0.007 (3)
C11 0.083 (3) 0.064 (3) 0.062 (3) −0.002 (3) 0.006 (3) −0.002 (2)
C16 0.094 (4) 0.074 (4) 0.087 (4) 0.003 (4) −0.014 (4) −0.012 (4)
C15 0.084 (4) 0.070 (3) 0.071 (3) −0.014 (3) −0.003 (3) −0.014 (3)
N1 0.096 (4) 0.099 (4) 0.116 (4) −0.026 (3) 0.007 (3) 0.020 (3)
C9 0.075 (3) 0.079 (4) 0.082 (3) −0.002 (3) 0.013 (3) −0.002 (3)
C14 0.109 (4) 0.096 (4) 0.064 (3) 0.011 (4) 0.025 (3) 0.004 (3)
C8 0.101 (4) 0.089 (4) 0.062 (3) −0.016 (3) 0.000 (3) −0.006 (3)
C10 0.089 (4) 0.066 (3) 0.083 (3) −0.006 (3) 0.010 (3) 0.015 (3)
N2 0.115 (4) 0.109 (4) 0.105 (4) −0.034 (4) 0.020 (3) −0.002 (3)
C13 0.130 (5) 0.062 (4) 0.084 (4) 0.003 (3) 0.015 (4) −0.011 (3)
C20 0.087 (4) 0.089 (5) 0.114 (5) −0.017 (4) 0.009 (4) 0.006 (4)
C17 0.096 (5) 0.089 (5) 0.106 (5) −0.009 (4) −0.003 (4) 0.010 (4)
C12 0.094 (4) 0.111 (5) 0.071 (3) 0.007 (4) −0.005 (3) −0.006 (3)
C19 0.083 (4) 0.106 (5) 0.085 (4) −0.014 (4) 0.013 (3) −0.022 (4)
C18 0.087 (4) 0.127 (6) 0.081 (4) −0.013 (4) 0.007 (3) −0.002 (4)

Geometric parameters (Å, º)

O1—C1 1.370 (6) C9—H9A 0.9600
O1—H1 0.794 (15) C9—H9B 0.9600
C6—C5 1.379 (6) C9—H9C 0.9600
C6—C1 1.423 (6) C14—H14A 0.9600
C6—C7 1.534 (7) C14—H14B 0.9600
C1—C2 1.403 (7) C14—H14C 0.9600
N3—C16 1.292 (8) C8—H8A 0.9600
N3—C20 1.383 (8) C8—H8B 0.9600
C5—C4 1.385 (7) C8—H8C 0.9600
C5—H5 0.9300 C10—H10A 0.9600
C2—C3 1.377 (7) C10—H10B 0.9600
C2—C11 1.561 (7) C10—H10C 0.9600
C7—C8 1.530 (7) N2—H2 0.8600
C7—C10 1.540 (7) C13—H13A 0.9600
C7—C9 1.543 (7) C13—H13B 0.9600
C4—C3 1.384 (7) C13—H13C 0.9600
C4—C15 1.449 (7) C20—C19 1.364 (9)
C3—H3 0.9300 C20—H20 0.9300
C11—C14 1.515 (7) C17—C18 1.347 (9)
C11—C13 1.531 (7) C17—H17 0.9300
C11—C12 1.555 (7) C12—H12A 0.9600
C16—C17 1.369 (9) C12—H12B 0.9600
C16—N2 1.386 (8) C12—H12C 0.9600
C15—N1 1.253 (7) C19—C18 1.351 (9)
C15—H15 0.9300 C19—H19 0.9300
N1—N2 1.396 (7) C18—H18 0.9300
C1—O1—H1 136.7 (16) C11—C14—H14A 109.5
C5—C6—C1 116.2 (4) C11—C14—H14B 109.5
C5—C6—C7 122.0 (4) H14A—C14—H14B 109.5
C1—C6—C7 121.7 (4) C11—C14—H14C 109.5
O1—C1—C2 119.3 (4) H14A—C14—H14C 109.5
O1—C1—C6 117.9 (4) H14B—C14—H14C 109.5
C2—C1—C6 122.8 (4) C7—C8—H8A 109.5
C16—N3—C20 117.4 (5) C7—C8—H8B 109.5
C6—C5—C4 122.9 (4) H8A—C8—H8B 109.5
C6—C5—H5 118.5 C7—C8—H8C 109.5
C4—C5—H5 118.5 H8A—C8—H8C 109.5
C3—C2—C1 116.7 (4) H8B—C8—H8C 109.5
C3—C2—C11 121.5 (5) C7—C10—H10A 109.5
C1—C2—C11 121.8 (4) C7—C10—H10B 109.5
C8—C7—C6 111.8 (4) H10A—C10—H10B 109.5
C8—C7—C10 107.0 (4) C7—C10—H10C 109.5
C6—C7—C10 111.6 (4) H10A—C10—H10C 109.5
C8—C7—C9 106.1 (4) H10B—C10—H10C 109.5
C6—C7—C9 110.0 (4) C16—N2—N1 122.6 (6)
C10—C7—C9 110.2 (4) C16—N2—H2 118.7
C3—C4—C5 118.3 (4) N1—N2—H2 118.7
C3—C4—C15 119.6 (5) C11—C13—H13A 109.5
C5—C4—C15 122.0 (5) C11—C13—H13B 109.5
C2—C3—C4 123.1 (5) H13A—C13—H13B 109.5
C2—C3—H3 118.5 C11—C13—H13C 109.5
C4—C3—H3 118.5 H13A—C13—H13C 109.5
C14—C11—C13 106.7 (5) H13B—C13—H13C 109.5
C14—C11—C12 107.6 (4) C19—C20—N3 122.5 (6)
C13—C11—C12 111.2 (5) C19—C20—H20 118.7
C14—C11—C2 111.5 (4) N3—C20—H20 118.7
C13—C11—C2 110.3 (4) C18—C17—C16 120.1 (7)
C12—C11—C2 109.5 (4) C18—C17—H17 120.0
N3—C16—C17 122.2 (6) C16—C17—H17 120.0
N3—C16—N2 119.8 (7) C11—C12—H12A 109.5
C17—C16—N2 118.0 (6) C11—C12—H12B 109.5
N1—C15—C4 121.9 (6) H12A—C12—H12B 109.5
N1—C15—H15 119.1 C11—C12—H12C 109.5
C4—C15—H15 119.1 H12A—C12—H12C 109.5
C15—N1—N2 118.8 (6) H12B—C12—H12C 109.5
C7—C9—H9A 109.5 C18—C19—C20 117.6 (6)
C7—C9—H9B 109.5 C18—C19—H19 121.2
H9A—C9—H9B 109.5 C20—C19—H19 121.2
C7—C9—H9C 109.5 C17—C18—C19 120.1 (6)
H9A—C9—H9C 109.5 C17—C18—H18 119.9
H9B—C9—H9C 109.5 C19—C18—H18 119.9
C5—C6—C1—O1 177.4 (4) C15—C4—C3—C2 175.1 (5)
C7—C6—C1—O1 −2.6 (7) C3—C2—C11—C14 −3.1 (7)
C5—C6—C1—C2 −1.4 (7) C1—C2—C11—C14 179.9 (5)
C7—C6—C1—C2 178.6 (5) C3—C2—C11—C13 −121.5 (5)
C1—C6—C5—C4 0.4 (7) C1—C2—C11—C13 61.6 (6)
C7—C6—C5—C4 −179.6 (5) C3—C2—C11—C12 115.8 (6)
O1—C1—C2—C3 −177.8 (4) C1—C2—C11—C12 −61.1 (6)
C6—C1—C2—C3 1.0 (7) C20—N3—C16—C17 2.1 (9)
O1—C1—C2—C11 −0.7 (7) C20—N3—C16—N2 −177.6 (6)
C6—C1—C2—C11 178.1 (4) C3—C4—C15—N1 −172.4 (6)
C5—C6—C7—C8 1.9 (7) C5—C4—C15—N1 4.0 (8)
C1—C6—C7—C8 −178.1 (5) C4—C15—N1—N2 177.9 (5)
C5—C6—C7—C10 121.7 (5) N3—C16—N2—N1 166.7 (6)
C1—C6—C7—C10 −58.3 (6) C17—C16—N2—N1 −13.1 (9)
C5—C6—C7—C9 −115.6 (5) C15—N1—N2—C16 −175.4 (6)
C1—C6—C7—C9 64.4 (6) C16—N3—C20—C19 −0.5 (9)
C6—C5—C4—C3 1.0 (7) N3—C16—C17—C18 −2.5 (10)
C6—C5—C4—C15 −175.5 (5) N2—C16—C17—C18 177.3 (6)
C1—C2—C3—C4 0.5 (7) N3—C20—C19—C18 −0.8 (10)
C11—C2—C3—C4 −176.6 (5) C16—C17—C18—C19 1.1 (10)
C5—C4—C3—C2 −1.5 (8) C20—C19—C18—C17 0.5 (10)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2···N3i 0.86 2.23 3.062 (8) 162

Symmetry code: (i) −x+1/2, −y−1/2, −z+1.

References

  1. Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.
  2. Cuadro, A. M., Valenciano, J., Vaquero, J. J., Alvarez-Builla, J., Sunkel, C., de Casa-Juana, M. F. & Ortega, M. P. (1998). Bioorg. Med. Chem. 6, 173–180. [DOI] [PubMed]
  3. Faizi, M. S. H., Ali, A. & Potaskalov, V. A. (2016a). Acta Cryst. E72, 1366–1369. [DOI] [PMC free article] [PubMed]
  4. Faizi, M. S. H., Dege, N., Haque, A., Kalibabchuk, V. A. & Cemberci, M. (2017). Acta Cryst. E73, 96–98. [DOI] [PMC free article] [PubMed]
  5. Faizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016b). Sens. Actuators B Chem. 222, 15–20.
  6. Faizi, M. S. H. & Prisyazhnaya, E. V. (2015). Acta Cryst. E71, m175–m176. [DOI] [PMC free article] [PubMed]
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.
  9. Fun, H.-K., Chantrapromma, S., Nilwanna, B., Kobkeatthawin, T. & Boonnak, N. (2013). Acta Cryst. E69, o1203–o1204. [DOI] [PMC free article] [PubMed]
  10. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  11. Karthikeyan, M. S., Prasad, D. J., Poojary, B., Subrahmanya Bhat, K., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489. [DOI] [PubMed]
  12. Khattab, S. N. (2005). Molecules, 10, 1218–1228. [DOI] [PMC free article] [PubMed]
  13. Küçükgüzel, G., Kocatepe, A., De Clercq, E., Şahin, F. & Güllüce, M. (2006). Eur. J. Med. Chem. 41, 353–359. [DOI] [PubMed]
  14. Kundu, S., Maity, S., Maity, A. N., Ke, S.-C. & Ghosh, P. (2013). Dalton Trans. 42, 4586–4601. [DOI] [PubMed]
  15. Li, K., Wang, X. & Tong, A. (2013). Anal. Chim. Acta, 776, 69–73. [DOI] [PubMed]
  16. Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.
  17. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  18. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  19. Silin, M. A., Kelaren, V. I., Abu-Ammar, V., Putkaradze, D. Kh. & Golubeva, I. A. (1999). Pet. Chem. 40, 209–214.
  20. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  21. Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.
  22. Yamazaki, T. & Seguchi, T. (1997). J. Polym. Sci. A Polym. Chem. 35, 2431–2439.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017011707/hg5492sup1.cif

e-73-01449-sup1.cif (638.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017011707/hg5492Isup2.hkl

e-73-01449-Isup2.hkl (277.2KB, hkl)

CCDC reference: 1567740

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES