Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Sep 15;73(Pt 10):1475–1478. doi: 10.1107/S2056989017012816

Crystal structure of ochraceolide A isolated from Elaeodendron trichotomum (Turcz.) Lundell

Angel D Herrera-España a, Gonzalo J Mena-Rejón a, Simón Hernández-Ortega b, Leovigildo Quijano b, Gumersindo Mirón-López a,*
PMCID: PMC5730298  PMID: 29250361

The crystal structure of the triterpene lactone ochraceolide A (3-oxolup-20 (29)-en-30,21α-olide) isolated from Elaeodendron trichotomum (Turcz.) Lundell is reported.

Keywords: crystal structure, ochraceolide A, triterpene lactone, Elaeodendron trichotomum

Abstract

The title compound, C30H44O3 [systematic name: 6aR,6 bR,8aS,9aR,12aR,14bR)-4,4,6a,6;b,8a,14b-hexa­methyl-12-methyl­eneicosa­hydro-3H-phenanthro[1′,2′:6,7]indeno­[2,1-b]furan-3,11(2H)-dione], is a triterpene lactone, which was isolated from di­chloro­methane extract of Elaeodendron trichotomum (Turcz.) Lundell (celastraceae) stem bark. The compound has a lupane skeleton and consists of four fused six-membered rings and two five-membered rings. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds into a three-dimensional network. The configuration of ochraceolide A was proposed based on analogue compounds which belong to the lupane type.

Chemical context  

Ochraceolides A–E are a group of cytotoxic lupane γ-lactones isolated from the Celastraceae family. Ochraceolide A was firstly isolated from Kokoona ochracea (Elm.) Merril stem bark (Ngassapa et al., 1991) and afterwards from Lophopetalum wallichii (Sturm et al., 1996) and Cassine xylocarpa (Callies et al., 2015). The title compound has shown significant cytotoxic activity against murine lymphocytic leukemia cells (P-388) with an ED50 of 0.6 µM; human oral epidermoid carcinoma (KB-3) with an ED50 of 6.0 µM; and hormone-dependent breast cancer with an ED50 of 9.9 µM (Ngassapa et al., 1991; Sturm et al., 1996). In the same way, this compound has exhibited significant inhibitory activity in the FPTase assay with an IC50 of 2.2 µM (Sturm et al., 1996) and inhibitory effects of human immunodeficiency virus type 1 replication with an IC50 of 39.0 µM (Callies et al., 2015). Ochraceolide A is part of the structure of the Diels–Alder adduct (i.e. celastroidine A or volubilide) isolated from Hippocratea celastroides K. (Jiménez-Estrada et al., 2000) and Hyppocratea volubilis L. (Alvarenga et al., 2000). In these publications, the crystal structure of the adduct was reported as a solvate of di­chloro­methane and toluene, respectively. The X-ray analysis showed that the Diels–Alder adduct was integrated by the triterpene ochraceolide A and a theoretical diterpene, in which the former seems to have acted as dienophile and the latter as diene in the biosynthesis. Herein the first isolation of ochraceolide A from Elaeodendron trichotomum (Turcz.) Lundell stem bark is reported and the crystal structure described.graphic file with name e-73-01475-scheme1.jpg

Structural commentary  

The title compound has a lupane skeleton and crystallizes in the ortho­rhom­bic space group P212121 with one mol­ecule in the asymmetric unit (Fig. 1). The triterpene skeleton consists of four fused six-membered rings (AD) and two five-membered rings (E and F). The cyclo­hexane rings are trans-fused and in standard chair conformations. The cyclo­pentane (C17–C19/C21/C22) ring is trans-fused to the triterpene D ring and exhibits an envelope conformation [Q = 0.451 (4) Å and θ = 356.7 (5)°] with the puckered C17 atom having the maximum deviation of 0.285 (4) Å. The α-methyl­ene γ-lactone is cis-fused at C19–C21 to the cyclo­pentane E ring and is essentially planar with a maximum deviation of 0.006 (4) Å for atom C19. The torsion angle C20—C19—C21—O2 is 0.8 (4)° and the weighted average absolute inter­nal torsion angle for the lactone ring is 0.7 (2)°

Figure 1.

Figure 1

The molecular structure of the title compound with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radius.

Supra­molecular features  

In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds (Table 1, Fig. 2). The lactone and A rings of adjacent mol­ecules inter­act through two hydrogen bonds (C2—H2A⋯O2 and C24—H24A⋯O3) in a head-to-tail arrangement, forming chains along [001]. These chains are further connected through a weak hydrogen bond between the oxygen of the ketone group (O1) and a methyl­ene group on the C ring (C12), forming an overall three-dimensional network.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O2i 0.99 2.57 3.395 (5) 141
C12—H12A⋯O1ii 0.99 2.45 3.310 (6) 146
C24—H24A⋯O3i 0.98 2.58 3.357 (6) 137

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

Part of the crystal structure showing hydrogen bonds as blue lines.

Database survey  

A search of the Cambridge Structural Database (CSD Version 5.38, update November 2016; Groom et al., 2016) for α-methyl­ene γ-lactone fused to a cyclo­pentane ring gave only one entry for 6,6-dimethyl-3-methyl­ene­tetra­hydro-2H-cyclo­penta­[b]furan-2,5(3H)-dione (CCDC 658922; Edwards et al., 2008). In both compounds, the principal supra­molecular inter­actions are C—H⋯O hydrogen bonds and the α-methyl­ene γ-lactones are cis-fused to the corresponding cyclo­pentane ring. However, unlike the title compound, the γ-lactone of the synthetic compound presents a twisted conformation.

Isolation and crystallization  

Elaeodendron trichotomum (Turcz.) Lundell was collected from Chunchucmil, Yucatán, México (20o 51.032′ N, 90o 11.488′ W). A voucher specimen (JTun2328) was deposited at the Herbarium Alfredo Barrera Marín, Universidad Autónoma de Yucatán, México. Dried and milled stem bark (2100 g) was exhaustively extracted by di­chloro­methane using a Soxhlet extraction apparatus to yield 184.2 g of crude extract. A portion of the extract (100 g) was chromatographed on silica gel (40–60 µm) using a gradient elution with n-hexa­ne–ethyl acetate (10–100% ethyl acetate), to obtain 44 fractions. Single crystals suitable for X-ray structure analysis were obtained by slow evaporation of the mixture of solvents present in fractions 7–10 at room temperature.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms bonded to C atoms were positioned geometrically and refined using a riding model with C—H = 0.95–1.00 Å with U iso(H) = 1.2U eq(C) or 1.5U eq(methyl C).

Table 2. Experimental details.

Crystal data
Chemical formula C30H44O3
M r 452.65
Crystal system, space group Orthorhombic, P212121
Temperature (K) 150
a, b, c (Å) 7.6131 (5), 11.7216 (7), 27.7076 (17)
V3) 2472.6 (3)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.59
Crystal size (mm) 0.36 × 0.27 × 0.25
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.783, 0.864
No. of measured, independent and observed [I > 2σ(I)] reflections 14632, 4513, 4057
R int 0.061
(sin θ/λ)max−1) 0.603
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.061, 0.164, 1.09
No. of reflections 4513
No. of parameters 304
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.19
Absolute structure Flack x determined using 1515 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013).
Absolute structure parameter 0.2 (3)

Computer programs: APEX3 and SAINT (Bruker, 2014), SHELXS2014 (Bruker, 2014), SHELXL2014/7 (Sheldrick, 2015), Mercury (Macrae et al., 2006), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017012816/lh4023sup1.cif

e-73-01475-sup1.cif (510.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017012816/lh4023Isup2.hkl

e-73-01475-Isup2.hkl (359.5KB, hkl)

CCDC reference: 1573017

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

ADHE, GJMR and GML are grateful to Dra Reyna Reyes-Martínez for assistance in preparing the manuscript. ADHE thanks the Consejo Nacional de Ciencias y Tecnología–CONACYT for a postdoctoral fellowship.

supplementary crystallographic information

Crystal data

C30H44O3 Dx = 1.216 Mg m3
Mr = 452.65 Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P212121 Cell parameters from 9889 reflections
a = 7.6131 (5) Å θ = 3.2–68.3°
b = 11.7216 (7) Å µ = 0.59 mm1
c = 27.7076 (17) Å T = 150 K
V = 2472.6 (3) Å3 Prism, colourless
Z = 4 0.36 × 0.27 × 0.25 mm
F(000) = 992

Data collection

Bruker D8 Venture diffractometer 4513 independent reflections
Radiation source: micro-focus X-ray source 4057 reflections with I > 2σ(I)
Detector resolution: 52.0833 pixels mm-1 Rint = 0.061
ω–scans θmax = 68.3°, θmin = 3.2°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −9→8
Tmin = 0.783, Tmax = 0.864 k = −13→14
14632 measured reflections l = −33→33

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.061 w = 1/[σ2(Fo2) + (0.0789P)2 + 0.8039P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.164 (Δ/σ)max < 0.001
S = 1.09 Δρmax = 0.28 e Å3
4513 reflections Δρmin = −0.19 e Å3
304 parameters Absolute structure: Flack x determined using 1515 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
0 restraints Absolute structure parameter: 0.2 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.7000 (9) 0.2747 (4) 1.1228 (2) 0.127 (2)
O2 0.2109 (5) 0.5554 (3) 0.68677 (10) 0.0712 (10)
O3 0.0663 (6) 0.3910 (4) 0.68208 (13) 0.0865 (12)
C1 0.4287 (7) 0.3773 (4) 1.02722 (13) 0.0568 (11)
H1A 0.3012 0.3872 1.0216 0.068*
H1B 0.4687 0.3118 1.0075 0.068*
C2 0.4602 (8) 0.3508 (4) 1.08081 (14) 0.0692 (14)
H2A 0.3999 0.4094 1.1005 0.083*
H2B 0.4059 0.2762 1.0884 0.083*
C3 0.6490 (8) 0.3471 (4) 1.09523 (16) 0.0674 (14)
C4 0.7745 (6) 0.4361 (3) 1.07509 (13) 0.0498 (10)
C5 0.7231 (6) 0.4658 (3) 1.02182 (11) 0.0415 (8)
H5 0.7540 0.3957 1.0031 0.050*
C6 0.8379 (6) 0.5589 (3) 0.99999 (13) 0.0482 (9)
H6A 0.9620 0.5455 1.0091 0.058*
H6B 0.8022 0.6339 1.0131 0.058*
C7 0.8213 (5) 0.5604 (3) 0.94485 (12) 0.0443 (8)
H7A 0.8673 0.4876 0.9319 0.053*
H7B 0.8953 0.6228 0.9319 0.053*
C8 0.6322 (5) 0.5770 (3) 0.92684 (11) 0.0347 (7)
C9 0.5071 (5) 0.4933 (3) 0.95387 (10) 0.0372 (8)
H9 0.5416 0.4159 0.9420 0.045*
C10 0.5260 (5) 0.4859 (3) 1.01054 (11) 0.0420 (8)
C11 0.3177 (5) 0.5085 (4) 0.93680 (12) 0.0460 (9)
H11A 0.2746 0.5839 0.9478 0.055*
H11B 0.2436 0.4494 0.9522 0.055*
C12 0.2954 (5) 0.5006 (3) 0.88168 (12) 0.0424 (8)
H12A 0.3119 0.4204 0.8715 0.051*
H12B 0.1743 0.5235 0.8730 0.051*
C13 0.4255 (5) 0.5761 (3) 0.85450 (11) 0.0326 (7)
H13 0.3992 0.6569 0.8634 0.039*
C14 0.6178 (4) 0.5509 (3) 0.87041 (11) 0.0321 (7)
C15 0.7510 (5) 0.6247 (3) 0.84160 (12) 0.0410 (8)
H15A 0.7459 0.7039 0.8539 0.049*
H15B 0.8708 0.5953 0.8478 0.049*
C16 0.7197 (5) 0.6269 (4) 0.78673 (12) 0.0457 (9)
H16A 0.7982 0.6842 0.7718 0.055*
H16B 0.7496 0.5514 0.7730 0.055*
C17 0.5299 (5) 0.6555 (3) 0.77439 (12) 0.0405 (8)
C18 0.4109 (4) 0.5670 (3) 0.79938 (11) 0.0336 (7)
H18 0.4567 0.4900 0.7903 0.040*
C19 0.2307 (5) 0.5807 (3) 0.77408 (12) 0.0415 (8)
H19 0.1522 0.6334 0.7925 0.050*
C20 0.1359 (5) 0.4732 (3) 0.76020 (13) 0.0460 (9)
C21 0.2797 (6) 0.6321 (4) 0.72350 (13) 0.0522 (10)
H21 0.2275 0.7099 0.7198 0.063*
C22 0.4785 (6) 0.6384 (4) 0.72141 (12) 0.0504 (10)
H22A 0.5178 0.7034 0.7013 0.060*
H22B 0.5291 0.5670 0.7083 0.060*
C30 0.1290 (6) 0.4657 (5) 0.70646 (16) 0.0625 (13)
C29 0.0717 (5) 0.3894 (4) 0.78608 (15) 0.0525 (10)
H29A 0.0215 0.3248 0.7706 0.063*
H29B 0.0754 0.3932 0.8203 0.063*
C26 0.5821 (6) 0.7027 (3) 0.93685 (12) 0.0470 (9)
H26A 0.6189 0.7235 0.9696 0.071*
H26B 0.4546 0.7118 0.9339 0.071*
H26C 0.6411 0.7523 0.9134 0.071*
C28 0.4863 (6) 0.7796 (3) 0.78893 (14) 0.0491 (9)
H28A 0.5315 0.7947 0.8214 0.074*
H28B 0.3587 0.7905 0.7886 0.074*
H28C 0.5410 0.8324 0.7660 0.074*
C27 0.6651 (5) 0.4251 (3) 0.85928 (11) 0.0382 (8)
H27A 0.6767 0.4150 0.8243 0.057*
H27B 0.5721 0.3750 0.8715 0.057*
H27C 0.7765 0.4057 0.8750 0.057*
C25 0.4458 (7) 0.5894 (4) 1.03594 (13) 0.0546 (11)
H25A 0.3345 0.6096 1.0203 0.082*
H25B 0.5271 0.6540 1.0338 0.082*
H25C 0.4243 0.5709 1.0699 0.082*
C24 0.7708 (7) 0.5395 (4) 1.10971 (13) 0.0584 (12)
H24A 0.6501 0.5677 1.1127 0.088*
H24B 0.8460 0.6002 1.0969 0.088*
H24C 0.8140 0.5161 1.1415 0.088*
C23 0.9581 (8) 0.3866 (5) 1.07703 (17) 0.0815 (18)
H23A 0.9834 0.3605 1.1099 0.122*
H23B 1.0434 0.4453 1.0677 0.122*
H23C 0.9665 0.3220 1.0547 0.122*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.166 (5) 0.085 (3) 0.131 (4) 0.003 (3) −0.022 (4) 0.066 (3)
O2 0.079 (2) 0.100 (3) 0.0340 (13) 0.015 (2) −0.0172 (15) 0.0057 (15)
O3 0.090 (3) 0.108 (3) 0.062 (2) 0.011 (2) −0.0361 (19) −0.023 (2)
C1 0.084 (3) 0.058 (2) 0.0289 (17) −0.010 (2) 0.0078 (19) 0.0033 (16)
C2 0.116 (4) 0.061 (3) 0.0311 (19) −0.014 (3) 0.013 (2) 0.0049 (18)
C3 0.115 (4) 0.041 (2) 0.046 (2) 0.011 (2) −0.007 (3) 0.0053 (18)
C4 0.076 (3) 0.0434 (19) 0.0296 (16) 0.0128 (19) −0.0052 (17) 0.0002 (14)
C5 0.064 (2) 0.0337 (16) 0.0270 (15) 0.0099 (16) −0.0007 (15) −0.0032 (13)
C6 0.057 (2) 0.050 (2) 0.0371 (18) −0.0026 (18) −0.0093 (17) 0.0000 (15)
C7 0.050 (2) 0.049 (2) 0.0336 (16) −0.0053 (17) −0.0016 (16) 0.0048 (15)
C8 0.0472 (19) 0.0259 (14) 0.0312 (15) −0.0022 (13) 0.0003 (14) −0.0001 (12)
C9 0.050 (2) 0.0376 (17) 0.0242 (14) −0.0016 (15) 0.0050 (14) −0.0011 (12)
C10 0.060 (2) 0.0402 (18) 0.0253 (14) 0.0005 (17) 0.0048 (15) −0.0029 (13)
C11 0.045 (2) 0.061 (2) 0.0320 (16) −0.0069 (17) 0.0054 (15) 0.0050 (16)
C12 0.0439 (19) 0.050 (2) 0.0329 (16) −0.0072 (16) 0.0017 (15) 0.0037 (15)
C13 0.0406 (17) 0.0297 (15) 0.0274 (14) 0.0047 (13) 0.0028 (13) 0.0006 (12)
C14 0.0400 (17) 0.0275 (15) 0.0288 (14) 0.0006 (13) 0.0038 (13) 0.0023 (11)
C15 0.0418 (19) 0.0447 (18) 0.0364 (17) −0.0028 (15) 0.0029 (14) 0.0093 (14)
C16 0.047 (2) 0.054 (2) 0.0360 (18) 0.0031 (17) 0.0089 (15) 0.0156 (16)
C17 0.049 (2) 0.0415 (18) 0.0305 (16) 0.0104 (15) 0.0075 (15) 0.0103 (14)
C18 0.0394 (18) 0.0333 (16) 0.0280 (15) 0.0087 (14) −0.0002 (13) 0.0013 (12)
C19 0.0452 (19) 0.0445 (18) 0.0348 (16) 0.0176 (15) −0.0005 (15) 0.0002 (14)
C20 0.0397 (19) 0.055 (2) 0.0432 (19) 0.0165 (17) −0.0098 (16) −0.0102 (17)
C21 0.063 (2) 0.058 (2) 0.0356 (18) 0.024 (2) −0.0016 (17) 0.0059 (16)
C22 0.062 (2) 0.061 (2) 0.0288 (17) 0.0212 (19) 0.0064 (16) 0.0122 (16)
C30 0.057 (3) 0.087 (3) 0.044 (2) 0.022 (3) −0.021 (2) −0.014 (2)
C29 0.043 (2) 0.060 (2) 0.055 (2) 0.0029 (18) −0.0046 (18) −0.0162 (19)
C26 0.075 (3) 0.0307 (17) 0.0350 (17) −0.0006 (17) −0.0062 (18) −0.0047 (13)
C28 0.063 (3) 0.0358 (18) 0.049 (2) 0.0035 (17) 0.0063 (19) 0.0128 (16)
C27 0.052 (2) 0.0354 (17) 0.0271 (14) 0.0116 (15) −0.0014 (14) 0.0004 (13)
C25 0.070 (3) 0.062 (2) 0.0316 (17) 0.020 (2) 0.0030 (18) −0.0088 (17)
C24 0.093 (3) 0.052 (2) 0.0298 (16) 0.011 (2) −0.0087 (19) −0.0049 (16)
C23 0.106 (4) 0.095 (4) 0.044 (2) 0.049 (4) −0.019 (3) −0.010 (2)

Geometric parameters (Å, º)

O1—C3 1.206 (6) C14—C15 1.553 (5)
O2—C30 1.338 (7) C15—C16 1.539 (5)
O2—C21 1.455 (6) C15—H15A 0.9900
O3—C30 1.205 (6) C15—H15B 0.9900
C1—C2 1.536 (5) C16—C17 1.522 (5)
C1—C10 1.544 (6) C16—H16A 0.9900
C1—H1A 0.9900 C16—H16B 0.9900
C1—H1B 0.9900 C17—C22 1.532 (5)
C2—C3 1.492 (8) C17—C18 1.542 (5)
C2—H2A 0.9900 C17—C28 1.545 (5)
C2—H2B 0.9900 C18—C19 1.549 (5)
C3—C4 1.521 (7) C18—H18 1.0000
C4—C23 1.515 (7) C19—C20 1.502 (6)
C4—C24 1.546 (5) C19—C21 1.570 (5)
C4—C5 1.566 (4) C19—H19 1.0000
C5—C6 1.523 (6) C20—C29 1.311 (6)
C5—C10 1.550 (6) C20—C30 1.492 (5)
C5—H5 1.0000 C21—C22 1.517 (6)
C6—C7 1.533 (5) C21—H21 1.0000
C6—H6A 0.9900 C22—H22A 0.9900
C6—H6B 0.9900 C22—H22B 0.9900
C7—C8 1.536 (5) C29—H29A 0.9500
C7—H7A 0.9900 C29—H29B 0.9500
C7—H7B 0.9900 C26—H26A 0.9800
C8—C26 1.546 (5) C26—H26B 0.9800
C8—C9 1.559 (5) C26—H26C 0.9800
C8—C14 1.597 (4) C28—H28A 0.9800
C9—C11 1.528 (5) C28—H28B 0.9800
C9—C10 1.579 (4) C28—H28C 0.9800
C9—H9 1.0000 C27—H27A 0.9800
C10—C25 1.530 (5) C27—H27B 0.9800
C11—C12 1.539 (4) C27—H27C 0.9800
C11—H11A 0.9900 C25—H25A 0.9800
C11—H11B 0.9900 C25—H25B 0.9800
C12—C13 1.527 (5) C25—H25C 0.9800
C12—H12A 0.9900 C24—H24A 0.9800
C12—H12B 0.9900 C24—H24B 0.9800
C13—C18 1.535 (4) C24—H24C 0.9800
C13—C14 1.557 (5) C23—H23A 0.9800
C13—H13 1.0000 C23—H23B 0.9800
C14—C27 1.549 (4) C23—H23C 0.9800
C30—O2—C21 111.6 (3) C16—C15—H15B 108.6
C2—C1—C10 112.4 (4) C14—C15—H15B 108.6
C2—C1—H1A 109.1 H15A—C15—H15B 107.6
C10—C1—H1A 109.1 C17—C16—C15 111.9 (3)
C2—C1—H1B 109.1 C17—C16—H16A 109.2
C10—C1—H1B 109.1 C15—C16—H16A 109.2
H1A—C1—H1B 107.8 C17—C16—H16B 109.2
C3—C2—C1 114.5 (4) C15—C16—H16B 109.2
C3—C2—H2A 108.6 H16A—C16—H16B 107.9
C1—C2—H2A 108.6 C16—C17—C22 115.4 (3)
C3—C2—H2B 108.6 C16—C17—C18 108.0 (3)
C1—C2—H2B 108.6 C22—C17—C18 101.1 (3)
H2A—C2—H2B 107.6 C16—C17—C28 110.7 (4)
O1—C3—C2 120.0 (6) C22—C17—C28 108.5 (3)
O1—C3—C4 120.9 (6) C18—C17—C28 112.9 (3)
C2—C3—C4 119.1 (4) C13—C18—C17 111.0 (3)
C23—C4—C3 107.7 (4) C13—C18—C19 120.5 (3)
C23—C4—C24 107.2 (4) C17—C18—C19 104.3 (3)
C3—C4—C24 107.4 (4) C13—C18—H18 106.8
C23—C4—C5 110.4 (3) C17—C18—H18 106.8
C3—C4—C5 110.0 (4) C19—C18—H18 106.8
C24—C4—C5 113.9 (3) C20—C19—C18 117.0 (3)
C6—C5—C10 111.5 (3) C20—C19—C21 101.9 (3)
C6—C5—C4 113.0 (3) C18—C19—C21 103.5 (3)
C10—C5—C4 117.7 (3) C20—C19—H19 111.2
C6—C5—H5 104.3 C18—C19—H19 111.2
C10—C5—H5 104.3 C21—C19—H19 111.2
C4—C5—H5 104.3 C29—C20—C30 119.2 (4)
C5—C6—C7 110.9 (3) C29—C20—C19 131.9 (3)
C5—C6—H6A 109.5 C30—C20—C19 108.8 (4)
C7—C6—H6A 109.5 O2—C21—C22 111.3 (3)
C5—C6—H6B 109.5 O2—C21—C19 107.6 (4)
C7—C6—H6B 109.5 C22—C21—C19 106.9 (3)
H6A—C6—H6B 108.0 O2—C21—H21 110.3
C6—C7—C8 113.7 (3) C22—C21—H21 110.3
C6—C7—H7A 108.8 C19—C21—H21 110.3
C8—C7—H7A 108.8 C21—C22—C17 103.0 (3)
C6—C7—H7B 108.8 C21—C22—H22A 111.2
C8—C7—H7B 108.8 C17—C22—H22A 111.2
H7A—C7—H7B 107.7 C21—C22—H22B 111.2
C7—C8—C26 107.0 (3) C17—C22—H22B 111.2
C7—C8—C9 109.7 (3) H22A—C22—H22B 109.1
C26—C8—C9 111.3 (3) O3—C30—O2 121.8 (4)
C7—C8—C14 111.0 (3) O3—C30—C20 128.1 (5)
C26—C8—C14 110.0 (3) O2—C30—C20 110.1 (4)
C9—C8—C14 107.9 (2) C20—C29—H29A 120.0
C11—C9—C8 110.7 (3) C20—C29—H29B 120.0
C11—C9—C10 113.6 (3) H29A—C29—H29B 120.0
C8—C9—C10 117.1 (3) C8—C26—H26A 109.5
C11—C9—H9 104.6 C8—C26—H26B 109.5
C8—C9—H9 104.6 H26A—C26—H26B 109.5
C10—C9—H9 104.6 C8—C26—H26C 109.5
C25—C10—C1 108.9 (3) H26A—C26—H26C 109.5
C25—C10—C5 114.5 (3) H26B—C26—H26C 109.5
C1—C10—C5 106.2 (3) C17—C28—H28A 109.5
C25—C10—C9 112.2 (3) C17—C28—H28B 109.5
C1—C10—C9 107.4 (3) H28A—C28—H28B 109.5
C5—C10—C9 107.3 (3) C17—C28—H28C 109.5
C9—C11—C12 113.8 (3) H28A—C28—H28C 109.5
C9—C11—H11A 108.8 H28B—C28—H28C 109.5
C12—C11—H11A 108.8 C14—C27—H27A 109.5
C9—C11—H11B 108.8 C14—C27—H27B 109.5
C12—C11—H11B 108.8 H27A—C27—H27B 109.5
H11A—C11—H11B 107.7 C14—C27—H27C 109.5
C13—C12—C11 112.5 (3) H27A—C27—H27C 109.5
C13—C12—H12A 109.1 H27B—C27—H27C 109.5
C11—C12—H12A 109.1 C10—C25—H25A 109.5
C13—C12—H12B 109.1 C10—C25—H25B 109.5
C11—C12—H12B 109.1 H25A—C25—H25B 109.5
H12A—C12—H12B 107.8 C10—C25—H25C 109.5
C12—C13—C18 113.8 (3) H25A—C25—H25C 109.5
C12—C13—C14 111.1 (3) H25B—C25—H25C 109.5
C18—C13—C14 109.7 (3) C4—C24—H24A 109.5
C12—C13—H13 107.3 C4—C24—H24B 109.5
C18—C13—H13 107.3 H24A—C24—H24B 109.5
C14—C13—H13 107.3 C4—C24—H24C 109.5
C27—C14—C15 106.0 (3) H24A—C24—H24C 109.5
C27—C14—C13 110.0 (3) H24B—C24—H24C 109.5
C15—C14—C13 111.3 (3) C4—C23—H23A 109.5
C27—C14—C8 111.2 (2) C4—C23—H23B 109.5
C15—C14—C8 110.6 (3) H23A—C23—H23B 109.5
C13—C14—C8 107.8 (2) C4—C23—H23C 109.5
C16—C15—C14 114.6 (3) H23A—C23—H23C 109.5
C16—C15—H15A 108.6 H23B—C23—H23C 109.5
C14—C15—H15A 108.6
C10—C1—C2—C3 −52.1 (6) C18—C13—C14—C8 172.8 (2)
C1—C2—C3—O1 −139.3 (5) C7—C8—C14—C27 62.4 (4)
C1—C2—C3—C4 41.2 (6) C26—C8—C14—C27 −179.3 (3)
O1—C3—C4—C23 24.3 (6) C9—C8—C14—C27 −57.8 (4)
C2—C3—C4—C23 −156.2 (4) C7—C8—C14—C15 −55.1 (3)
O1—C3—C4—C24 −90.8 (6) C26—C8—C14—C15 63.2 (4)
C2—C3—C4—C24 88.7 (5) C9—C8—C14—C15 −175.3 (3)
O1—C3—C4—C5 144.7 (5) C7—C8—C14—C13 −176.9 (3)
C2—C3—C4—C5 −35.8 (5) C26—C8—C14—C13 −58.7 (4)
C23—C4—C5—C6 −64.0 (5) C9—C8—C14—C13 62.9 (3)
C3—C4—C5—C6 177.2 (3) C27—C14—C15—C16 72.7 (4)
C24—C4—C5—C6 56.6 (5) C13—C14—C15—C16 −46.9 (4)
C23—C4—C5—C10 163.7 (4) C8—C14—C15—C16 −166.6 (3)
C3—C4—C5—C10 44.9 (4) C14—C15—C16—C17 50.6 (4)
C24—C4—C5—C10 −75.7 (5) C15—C16—C17—C22 −169.3 (3)
C10—C5—C6—C7 −61.6 (4) C15—C16—C17—C18 −57.2 (4)
C4—C5—C6—C7 163.1 (3) C15—C16—C17—C28 66.9 (4)
C5—C6—C7—C8 57.3 (4) C12—C13—C18—C17 173.2 (3)
C6—C7—C8—C26 72.4 (4) C14—C13—C18—C17 −61.6 (3)
C6—C7—C8—C9 −48.5 (4) C12—C13—C18—C19 51.0 (4)
C6—C7—C8—C14 −167.6 (3) C14—C13—C18—C19 176.2 (3)
C7—C8—C9—C11 179.7 (3) C16—C17—C18—C13 64.1 (4)
C26—C8—C9—C11 61.4 (4) C22—C17—C18—C13 −174.3 (3)
C14—C8—C9—C11 −59.3 (3) C28—C17—C18—C13 −58.6 (4)
C7—C8—C9—C10 47.2 (4) C16—C17—C18—C19 −164.7 (3)
C26—C8—C9—C10 −71.1 (4) C22—C17—C18—C19 −43.1 (3)
C14—C8—C9—C10 168.2 (3) C28—C17—C18—C19 72.6 (4)
C2—C1—C10—C25 −66.7 (5) C13—C18—C19—C20 −98.8 (4)
C2—C1—C10—C5 57.0 (5) C17—C18—C19—C20 135.8 (3)
C2—C1—C10—C9 171.6 (4) C13—C18—C19—C21 150.0 (3)
C6—C5—C10—C25 −68.7 (4) C17—C18—C19—C21 24.7 (3)
C4—C5—C10—C25 64.3 (4) C18—C19—C20—C29 63.3 (5)
C6—C5—C10—C1 171.1 (3) C21—C19—C20—C29 175.3 (4)
C4—C5—C10—C1 −56.0 (4) C18—C19—C20—C30 −113.1 (3)
C6—C5—C10—C9 56.5 (4) C21—C19—C20—C30 −1.0 (4)
C4—C5—C10—C9 −170.6 (3) C30—O2—C21—C22 116.4 (4)
C11—C9—C10—C25 −55.7 (4) C30—O2—C21—C19 −0.3 (4)
C8—C9—C10—C25 75.5 (4) C20—C19—C21—O2 0.8 (4)
C11—C9—C10—C1 64.0 (4) C18—C19—C21—O2 122.7 (3)
C8—C9—C10—C1 −164.8 (3) C20—C19—C21—C22 −118.8 (4)
C11—C9—C10—C5 177.8 (3) C18—C19—C21—C22 3.1 (4)
C8—C9—C10—C5 −51.0 (4) O2—C21—C22—C17 −146.9 (3)
C8—C9—C11—C12 53.1 (4) C19—C21—C22—C17 −29.8 (4)
C10—C9—C11—C12 −172.7 (3) C16—C17—C22—C21 160.8 (3)
C9—C11—C12—C13 −49.7 (4) C18—C17—C22—C21 44.7 (4)
C11—C12—C13—C18 178.0 (3) C28—C17—C22—C21 −74.3 (4)
C11—C12—C13—C14 53.6 (4) C21—O2—C30—O3 −178.3 (4)
C12—C13—C14—C27 60.9 (3) C21—O2—C30—C20 −0.4 (5)
C18—C13—C14—C27 −65.8 (3) C29—C20—C30—O3 1.8 (7)
C12—C13—C14—C15 178.1 (3) C19—C20—C30—O3 178.7 (4)
C18—C13—C14—C15 51.4 (3) C29—C20—C30—O2 −176.0 (4)
C12—C13—C14—C8 −60.5 (3) C19—C20—C30—O2 0.9 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2A···O2i 0.99 2.57 3.395 (5) 141
C12—H12A···O1ii 0.99 2.45 3.310 (6) 146
C24—H24A···O3i 0.98 2.58 3.357 (6) 137

Symmetry codes: (i) −x+1/2, −y+1, z+1/2; (ii) −x−1, y+1/2, −z+5/2.

Funding Statement

This work was funded by Facultad de Química, Universidad Autonoma de Yucatan grant SISTPROY FQUI-2016-0006.

References

  1. Alvarenga, N. L., Ferro, E. A., Ravelo, A. G., Kennedy, M. L., Maestro, M. A. & González, A. G. (2000). Tetrahedron, 56, 3771–3774.
  2. Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Callies, O., Bedoya, L. M., Beltrán, M., Muñoz, A., Calderón, P. O., Osorio, A. A., Jiménez, I. A., Alcamí, J. & Bazzocchi, I. L. (2015). J. Nat. Prod. 78, 1045–1055. [DOI] [PubMed]
  4. Edwards, M. G., Kenworthy, M. N., Kitson, R. A., Scott, M. S. & Taylor, R. K. (2008). Angew. Chem. Int. Ed. 47, 1935–1937. [DOI] [PubMed]
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Jiménez-Estrada, M., Reyes-Chilpa, R., Hernández-Ortega, S., Cristobal-Telésforo, E., Torres-Colín, L., Jankowski, C. K., Aumelas, A. & Van Calsteren, M. R. (2000). Can. J. Chem. 78, 248–254.
  7. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  8. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  9. Ngassapa, O. D., Soejarto, D. D., Che, C., Pezzuto, J. M. & Farnsworth, N. R. (1991). J. Nat. Prod. 54, 1353–1359. [DOI] [PubMed]
  10. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  11. Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8.
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Sturm, S., Gil, R. R., Chai, H., Ngassapa, O. D., Santisuk, T., Reutrakul, V., Howe, A., Moss, M., Besterman, J. M., Yang, S., Farthing, J. E., Tait, R. M., Lewis, J. A., O’Neill, M. J., Farnsworth, N. R., Cordell, G. A., Pezzuto, J. M. & Kinghorn, A. D. (1996). J. Nat. Prod. 59, 658–663. [DOI] [PubMed]
  14. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017012816/lh4023sup1.cif

e-73-01475-sup1.cif (510.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017012816/lh4023Isup2.hkl

e-73-01475-Isup2.hkl (359.5KB, hkl)

CCDC reference: 1573017

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES