Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Sep 19;73(Pt 10):1513–1516. doi: 10.1107/S205698901701324X

Crystal structure of ebastinium 3,5-di­nitro­benzoate

Mohammed A E Shaibah a, Belakavadi K Sagar a, Hemmige S Yathirajan a,*, S Madan Kumar b, Christopher Glidewell c
PMCID: PMC5730306  PMID: 29250369

In the cation of the title mol­ecular salt, one of the non-H substituents on the piperidine ring occupies an equatorial site and the other an axial site. The ions are linked into sheets by a combination of one N—H⋯O and two C—H⋯O hydrogen bonds.

Keywords: mol­ecular structure, disorder, conformation, hydrogen bonding, supra­molecular assembly, crystal structure

Abstract

Ebastine, 4-(benzhydr­yloxy)-1-[4-(4-tert-butyl­phen­yl)-4-oxobut­yl]piperidine, reacts with 3,5-di­nitro­benzoic acid in methanol solution to give the title 1:1 salt, ebastinium 3,5-di­nitro­benzoate, C32H40NO2 +·C7H3N2O6 . In the cation, the disubstituted aryl ring exhibits orientational disorder over two sets of atomic sites having occupancies 0.706 (4) and 0.294 (6), with a dihedral angle of 41.2 (5)° between the two orientations: the bulky Ph2CH—O– substituent occupies an axial site on the piperidine ring. The two ions in the selected asymmetric unit are linked by a nearly linear N—H⋯O hydrogen bond and this, in combination with two C—H⋯O hydrogen bonds, links the ions into complex sheets.

Chemical context  

Ebastine, or 4-(benzhydr­yloxy)-1-[4-(4-tert-butyl­phen­yl)-4-oxo­but­yl]piperidine, is a non-sedating second generation H1 receptor antagonist, which is effective in the treatment of both allergic rhinitis, whether seasonal or perennial, and chronic idiopathic urticaria (Wiseman & Faulds, 1996; Van Cauwenberge et al., 2004). The structure of ebastine has been the subject of two recent reports (Cheng et al., 2005: Sharma et al., 2015). Herein, we report the mol­ecular and supra­molecular structure of the 1:1 salt ebastinium 3,5-di­nitro­benzoate (I), formed in the reaction between ebastine and 3,5-di­nitro­benzoic acid.graphic file with name e-73-01513-scheme1.jpg

Structural commentary  

The title compound (I), consists of an N-protonated ebastinium cation and a 3,5-di­nitro­benzoate anion (Fig. 1), which are linked within the selected asymmetric unit a by a fairly short and nearly linear N—H⋯O hydrogen bond (Fig. 1, Table 1). The disubstituted aryl ring in the cation is disordered over two sets of atomic sites having occupancies 0.706 (4) for the major ring orientation, labelled C161–C166, and 0.294 (4) for the minor orientation, labeled C171–C176: the dihedral angle between these two ring planes is 41.2 (5)° (Fig. 1). The piperidine ring adopts an almost perfect chair conformation, with a ring-puckering angle, calculated for the atom sequence (N1,C2,C3,C4,C5,C6) of θ = 0.0 (3)°, identical within experimental uncertainty to the idealized value for a perfect chair form of θ = 0.0° (Boeyens, 1978). However, although the non-H substituent at atom N1 in the ring occupies an equatorial site, as expected, the bulky Ph2CHO substituent at atom C4 unexpectedly occupies an axial site. This observation is the more surprising since in ebastine itself, both non-H substit­uents on the piperidine ring occupy equatorial sites (Cheng et al., 2005: Sharma et al., 2015). The 3,5-di­nitro­benzoate anion in compound (I) is nearly planar: the dihedral angles between the aryl ring and the substituents at atoms C21, C23 and C25 are 1.4 (2), 4.2 (2) and 10.7 (2)°, respectively: only the O atoms of the 5-nitro group are significantly displaced from the mean plane of the anion as a whole, 0.219 (2) Å for atom O25 and 0.187 (2) Å for atom O26: the r.m.s. deviation from the mean plane for the entire anion is only 0.082 Å.

Figure 1.

Figure 1

The mol­ecular structure of the ionic components of compound (I), showing the atom-labelling scheme, the N—H⋯O hydrogen bond within the selected asymmetric unit, and the orientational disorder of the disubstituted aryl ring (the major component is drawn with full lines and the minor component with broken lines). Displacement ellipsoids are drawn at the 30% probability level and, for clarity, a few of the atom labels have been omitted.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O22 0.99 (3) 1.66 (2) 2.634 (3) 167 (2)
C2—H2A⋯O25i 0.97 2.50 3.444 (3) 163
C11—H11A⋯O14ii 0.97 2.49 3.358 (4) 150

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Supra­molecular features  

In addition to the N—H⋯O hydrogen bond within the selected asymmetric unit, already noted (cf. Fig. 1 and Table 1), there are two C—H⋯O hydrogen bonds in the crystal of compound (I), which link the components into complex sheets, whose formation can, however, be readily analysed in terms of two simple, one-dimensional sub-structures (Ferguson et al., 1998a ,b ; Gregson et al., 2000). In the simpler of the two sub-structures, cations related by translation are linked by a single C—H⋯O hydrogen bond to form a C(6) chain running parallel to the [100] direction (Fig. 2, Table 1). The second sub-structure involves the cations and the anions, and a combination of the N—H⋯O hydrogen bond and a second C—H⋯O hydrogen bond links ions related by a c-glide plane into a Inline graphic(11) chain, running parallel to the [20Inline graphic] direction, in which cations and anions alternate (Fig. 3, Table 1). The combination of these two chain motifs generates a sheet lying parallel to (010) in the domain 0.5 < y < 1.0, and a second such sheet, related to the first by inversion, lies in the domain 0.0 < y < 0.5, but there are no direction-specific inter­actions between adjacent sheets. It is inter­esting to note that none of the hydrogen bonds in compound (I) involves the Ph2CHO substituent, so that direction-specific inter­actions cannot be held responsible for the location of this substituent at an axial site on the piperidine ring.

Figure 2.

Figure 2

Part of the crystal structure of compound (I), showing a hydrogen-bonded C(6) chain of cations running parallel to [100]. For clarity, the anions, the minor disorder component of the cation, and the H atoms bonded to carrier atoms not involved in the motif shown have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (−1 + x, y, z) and (1 + x, y, z) respectively.

Figure 3.

Figure 3

Part of the crystal structure of compound (I), showing a hydrogen-bonded Inline graphic(11) chain running parallel to [20Inline graphic]. For clarity, the minor disorder component of the cation, and the H atoms bonded to C atoms not involved in the motif shown have been omitted.

Database survey  

The mol­ecular structure of neutral ebastine (Cheng et al., 2005; Sharma et al., 2015) differs from that of the ebastinium cation in compound (I) in two significant respects. Firstly, there is no disorder in the neutral compound as opposed to the orientation disorder of the disubstituted aryl ring in (I) and secondly, both of the non-H substituents on the piperidine ring occupy equatorial sites in the neutral compound as opposed to the presence of one axial and one equatorial substituent in (I). Neither of the two reports on the structure of ebastine gave any description of the supra­molecular assembly: one (Cheng et al., 2005) noted the presence of hydrogen bonds, but the second (Sharma et al., 2015) did not record these. Accordingly, we have now examined the supra­molecular assembly of ebastine using the most recently reported atomic coordinates (Sharma et al., 2015): a combination of one C—H⋯N hydrogen bond and one C—H⋯O hydrogen bond links the mol­ecules into sheets lying parallel to (100) and containing Inline graphic(20) and Inline graphic(48) rings, both centrosymmetric, arranges in chess board fashion (Fig. 4). Structures have also been reported recently for some structurally related compounds with pharmacological activity, including the picrate salt of the anti­cholinergic drug propiverine, 4-(2,2-diphenyl-2-prop­oxy­acet­oxy)-1-meth­ylpiperidin-1-ium picrate (Jasinski et al., 2009), and the anti-spasmodic drug pargeverine, N,N-dimeth­yl-[2-(2,2-diphen­yl)-2-prop-2-yn­yloxy)acet­oxy]ethyl­amine and its picrate and (2R,3R)-(hydrogentartrate) salts (Shaibah et al., 2017).

Figure 4.

Figure 4

Part of the crystal structure of ebastine showing the formation of a hydrogen-bonded sheet of Inline graphic(20) and Inline graphic(48) rings. The original atomic coordinates (Sharma et al., 2015) have been used and, for the sake of clarity, the H atoms not involved in the motifs shown have been omitted.

Synthesis and crystallization  

A sample of ebastine was a gift from RL Fine Chem, Pvt. Ltd., Bengaluru, India. For the synthesis of compound (I), ebastine (100 mg, 0.20 mmol) and 3,5-di­nitro­benzoic acid (45 mg, 0.20 mmol) were dissolved in hot methanol and held at 333 K for 30 min, with magnetic stirring throughout. The resulting solution was then allowed to cool slowly to room temperature, giving colourless block-like crystals (m.p. 424–428 K).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. Three low-angle reflections (021), (002) and (012), which had been attenuated by the beam stop, were omitted from the refinements. It was apparent from an early stage in the refinement that the disubstituted aryl ring was disordered over two sets of atomic sights having unequal occupancies, and corresponding to different orientations of this ring relative to its substituents. For the minor orientation, the bonded distances and the 1,3-non-bonded distances were restrained to be the same as the corresponding distances in the major orientation, subject to s.u.s of 0.01 and 0.02 Å, respect­ively: in addition, the anisotropic displacement parameters for corresponding pairs of atomic sites were constrained to be equal. All H atoms, other than those in the minor disorder components, were located in difference-Fourier maps. The C-bound H atoms were all treated as riding atoms in geometrically idealized positions: C—H 0.93 Å (aromatic), 0.96 Å (CH3), 0.97 Å (CH2) or 0.98 Å (aliphatic C—H), with U iso(H) = 1.5U eq(C-meth­yl) and 1.2U eq(C) for other H atoms. The methyl groups were permitted to rotate but not to tilt. For the H atom bonded to the N atom, the atomic coordinates were refined with U iso(H) = 1.2U eq(N), giving an N—H distance of 0.99 (3) Å. Subject to these conditions, the occupancies of the two disordered components refined to 0.706 (4) and 0.294 (4). In the final analysis of variance there was a large value, 15.256, of K = [mean(F o 2)/mean(F c 2)] for the group of 867 very weak reflections having F c/F c(max) in the range 0.000 < F c/F c(max) < 0.005.

Table 2. Experimental details.

Crystal data
Chemical formula C32H40NO2·C7H3N2O6
M r 681.76
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 5.9168 (3), 28.3733 (12), 21.0782 (11)
β (°) 97.836 (5)
V3) 3505.6 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.23 × 0.21 × 0.18
 
Data collection
Diffractometer Rigaku Saturn724
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.956, 0.984
No. of measured, independent and observed [I > 2σ(I)] reflections 40112, 7331, 4388
R int 0.061
(sin θ/λ)max−1) 0.629
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.065, 0.179, 1.05
No. of reflections 7331
No. of parameters 470
No. of restraints 22
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.20, −0.25

Computer programs: CrystalClear (Rigaku, 2011), SHELXS86 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S205698901701324X/su5391sup1.cif

e-73-01513-sup1.cif (1.6MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901701324X/su5391Isup2.hkl

e-73-01513-Isup2.hkl (582.4KB, hkl)

Supporting information file. DOI: 10.1107/S205698901701324X/su5391Isup3.cml

CCDC reference: 1574718

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the DST–PURSE Lab. (Mangalore University) for the diffractometer and other facilities. MAES thanks the University of Mysore for research facilities and BKS thanks the UGC for the award of a Rajiv Gandhi National Fellowship.

supplementary crystallographic information

Crystal data

C32H40NO2+·C7H3N2O6 F(000) = 1448
Mr = 681.76 Dx = 1.292 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 5.9168 (3) Å Cell parameters from 10431 reflections
b = 28.3733 (12) Å θ = 2.4–31.2°
c = 21.0782 (11) Å µ = 0.09 mm1
β = 97.836 (5)° T = 293 K
V = 3505.6 (3) Å3 Block, colourless
Z = 4 0.23 × 0.21 × 0.18 mm

Data collection

Rigaku Saturn724 diffractometer 4388 reflections with I > 2σ(I)
Radiation source: fine focus sealed tube Rint = 0.061
φ and ω scans θmax = 26.6°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −7→7
Tmin = 0.956, Tmax = 0.984 k = −35→35
40112 measured reflections l = −26→25
7331 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065 Hydrogen site location: mixed
wR(F2) = 0.179 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0661P)2 + 1.0412P] where P = (Fo2 + 2Fc2)/3
7331 reflections (Δ/σ)max = 0.001
470 parameters Δρmax = 0.20 e Å3
22 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1 0.3135 (4) 0.72898 (6) 0.37455 (11) 0.0510 (5)
H1 0.374 (4) 0.7192 (8) 0.3349 (12) 0.061*
C2 0.4460 (4) 0.77114 (8) 0.40021 (11) 0.0479 (6)
H2B 0.6062 0.7629 0.4097 0.057*
H2A 0.3938 0.7811 0.4398 0.057*
C3 0.4185 (4) 0.81101 (8) 0.35285 (11) 0.0457 (6)
H3A 0.4826 0.8018 0.3147 0.055*
H3B 0.5027 0.8382 0.3713 0.055*
C4 0.1701 (4) 0.82448 (8) 0.33437 (11) 0.0457 (6)
H4 0.1579 0.8488 0.3011 0.055*
C5 0.0386 (4) 0.78137 (9) 0.30906 (12) 0.0553 (7)
H5A −0.1219 0.7892 0.2994 0.066*
H5B 0.0916 0.7713 0.2697 0.066*
C6 0.0676 (4) 0.74172 (9) 0.35682 (13) 0.0575 (7)
H6A 0.0043 0.7510 0.3950 0.069*
H6B −0.0160 0.7144 0.3388 0.069*
O4 0.0623 (3) 0.84055 (5) 0.38735 (7) 0.0484 (4)
C41 0.1566 (4) 0.88157 (8) 0.41962 (11) 0.0460 (6)
H41 0.3107 0.8739 0.4403 0.055*
C141 0.0098 (4) 0.89282 (8) 0.47183 (11) 0.0453 (6)
C142 −0.1660 (4) 0.86412 (9) 0.48464 (11) 0.0511 (6)
H142 −0.1975 0.8367 0.4610 0.061*
C143 −0.2974 (5) 0.87546 (10) 0.53237 (12) 0.0613 (7)
H143 −0.4159 0.8557 0.5403 0.074*
C144 −0.2527 (6) 0.91565 (10) 0.56772 (13) 0.0686 (8)
H144 −0.3422 0.9236 0.5991 0.082*
C145 −0.0755 (6) 0.94408 (10) 0.55665 (15) 0.0798 (10)
H145 −0.0426 0.9711 0.5812 0.096*
C146 0.0550 (6) 0.93287 (9) 0.50904 (14) 0.0719 (8)
H146 0.1749 0.9525 0.5019 0.086*
C151 0.1735 (4) 0.92244 (8) 0.37464 (11) 0.0469 (6)
C152 0.3761 (5) 0.94689 (9) 0.37596 (14) 0.0612 (7)
H152 0.5016 0.9380 0.4050 0.073*
C153 0.3962 (6) 0.98416 (10) 0.33510 (18) 0.0770 (9)
H153 0.5338 1.0003 0.3368 0.092*
C154 0.2134 (7) 0.99730 (11) 0.29230 (17) 0.0808 (10)
H154 0.2264 1.0222 0.2644 0.097*
C155 0.0086 (6) 0.97356 (11) 0.29040 (15) 0.0754 (9)
H155 −0.1161 0.9827 0.2613 0.091*
C156 −0.0118 (5) 0.93637 (9) 0.33152 (13) 0.0603 (7)
H156 −0.1504 0.9207 0.3302 0.072*
C11 0.3376 (6) 0.68892 (10) 0.42095 (17) 0.0865 (11)
H11A 0.2213 0.6656 0.4071 0.104*
H11B 0.3101 0.7005 0.4625 0.104*
C12 0.5687 (5) 0.66527 (9) 0.42801 (16) 0.0724 (9)
H12A 0.6523 0.6664 0.4737 0.087*
H12B 0.6523 0.6776 0.4014 0.087*
C13 0.5462 (5) 0.61430 (10) 0.41343 (17) 0.0833 (10)
H13A 0.4697 0.6108 0.3700 0.100*
H13B 0.4481 0.6005 0.4417 0.100*
C14 0.7637 (6) 0.58644 (10) 0.41954 (15) 0.0709 (8)
O14 0.9451 (4) 0.60527 (8) 0.43408 (16) 0.1170 (10)
C161 0.7488 (5) 0.53513 (9) 0.40590 (14) 0.0659 (8) 0.706 (4)
C162 0.5497 (7) 0.51590 (14) 0.3727 (3) 0.0902 (17) 0.706 (4)
H162 0.4245 0.5351 0.3599 0.108* 0.706 (4)
C163 0.5386 (7) 0.46828 (14) 0.3589 (3) 0.0907 (18) 0.706 (4)
H163 0.4054 0.4561 0.3364 0.109* 0.706 (4)
C164 0.7209 (5) 0.43792 (9) 0.37782 (13) 0.0587 (7) 0.706 (4)
C165 0.9157 (9) 0.45915 (18) 0.4048 (5) 0.103 (4) 0.706 (4)
H165 1.0458 0.4407 0.4147 0.124* 0.706 (4)
C166 0.9308 (9) 0.50664 (17) 0.4185 (4) 0.099 (3) 0.706 (4)
H166 1.0697 0.5192 0.4367 0.119* 0.706 (4)
C171 0.7488 (5) 0.53513 (9) 0.40590 (14) 0.0659 (8) 0.294 (4)
C172 0.5662 (15) 0.5073 (3) 0.4211 (5) 0.0902 (17) 0.294 (4)
H172 0.4497 0.5216 0.4396 0.108* 0.294 (4)
C173 0.5554 (15) 0.4594 (3) 0.4093 (5) 0.0907 (18) 0.294 (4)
H173 0.4382 0.4415 0.4223 0.109* 0.294 (4)
C174 0.7209 (5) 0.43792 (9) 0.37782 (13) 0.0587 (7) 0.294 (4)
C175 0.9160 (17) 0.4626 (4) 0.3793 (15) 0.103 (4) 0.294 (4)
H175 1.0483 0.4468 0.3726 0.124* 0.294 (4)
C176 0.9267 (18) 0.5104 (4) 0.3905 (12) 0.099 (3) 0.294 (4)
H176 1.0625 0.5262 0.3872 0.119* 0.294 (4)
C181 0.7009 (5) 0.38550 (9) 0.36135 (13) 0.0591 (7)
C182 0.6091 (6) 0.35909 (12) 0.41549 (16) 0.0925 (11)
H18A 0.5908 0.3264 0.4044 0.139*
H18B 0.4643 0.3721 0.4220 0.139*
H18C 0.7145 0.3622 0.4541 0.139*
C183 0.9278 (5) 0.36413 (11) 0.35081 (18) 0.0903 (11)
H18D 1.0326 0.3661 0.3897 0.135*
H18E 0.9883 0.3811 0.3175 0.135*
H18F 0.9059 0.3317 0.3386 0.135*
C184 0.5349 (5) 0.37825 (11) 0.29982 (14) 0.0753 (8)
H18G 0.5895 0.3949 0.2653 0.113*
H18H 0.3872 0.3900 0.3058 0.113*
H18I 0.5240 0.3453 0.2898 0.113*
C21 0.7522 (4) 0.69940 (8) 0.19856 (11) 0.0431 (5)
C22 0.8763 (4) 0.66079 (8) 0.22368 (11) 0.0458 (6)
H22 0.8338 0.6448 0.2587 0.055*
C23 1.0631 (4) 0.64614 (8) 0.19644 (12) 0.0486 (6)
C24 1.1306 (4) 0.66812 (9) 0.14419 (12) 0.0525 (6)
H24 1.2571 0.6579 0.1263 0.063*
C25 1.0032 (4) 0.70587 (9) 0.11964 (11) 0.0505 (6)
C26 0.8156 (4) 0.72192 (8) 0.14567 (11) 0.0493 (6)
H26 0.7327 0.7476 0.1278 0.059*
C27 0.5535 (4) 0.71822 (9) 0.23013 (13) 0.0504 (6)
O21 0.4514 (3) 0.75292 (7) 0.20644 (9) 0.0689 (5)
O22 0.5158 (3) 0.69618 (6) 0.27979 (9) 0.0649 (5)
N23 1.1983 (4) 0.60593 (8) 0.22480 (13) 0.0672 (6)
O23 1.1460 (4) 0.58894 (8) 0.27369 (12) 0.0920 (7)
O24 1.3561 (4) 0.59235 (8) 0.19822 (12) 0.1010 (8)
N25 1.0724 (5) 0.72964 (9) 0.06325 (12) 0.0700 (7)
O25 1.2546 (4) 0.71894 (9) 0.04679 (11) 0.0974 (8)
O26 0.9409 (5) 0.75808 (9) 0.03539 (11) 0.1034 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0585 (13) 0.0405 (10) 0.0606 (13) 0.0002 (9) 0.0321 (11) −0.0031 (10)
C2 0.0490 (14) 0.0496 (13) 0.0474 (14) 0.0035 (11) 0.0147 (11) −0.0072 (11)
C3 0.0470 (14) 0.0421 (12) 0.0508 (14) −0.0017 (10) 0.0168 (11) −0.0075 (11)
C4 0.0480 (14) 0.0472 (13) 0.0444 (13) 0.0039 (11) 0.0150 (11) −0.0043 (11)
C5 0.0430 (14) 0.0664 (16) 0.0576 (16) 0.0005 (12) 0.0108 (12) −0.0223 (13)
C6 0.0514 (16) 0.0545 (15) 0.0722 (18) −0.0128 (12) 0.0285 (14) −0.0229 (14)
O4 0.0520 (10) 0.0442 (9) 0.0527 (10) 0.0011 (7) 0.0203 (8) −0.0131 (7)
C41 0.0446 (13) 0.0415 (12) 0.0521 (14) 0.0040 (10) 0.0076 (11) −0.0054 (11)
C141 0.0513 (14) 0.0397 (12) 0.0453 (13) 0.0080 (11) 0.0082 (11) −0.0019 (10)
C142 0.0510 (15) 0.0579 (15) 0.0441 (14) 0.0011 (12) 0.0058 (12) −0.0045 (12)
C143 0.0581 (17) 0.0772 (19) 0.0501 (15) 0.0059 (14) 0.0130 (13) 0.0065 (14)
C144 0.088 (2) 0.0690 (18) 0.0540 (17) 0.0236 (17) 0.0277 (16) 0.0054 (15)
C145 0.122 (3) 0.0537 (17) 0.070 (2) 0.0072 (18) 0.040 (2) −0.0174 (15)
C146 0.100 (2) 0.0518 (16) 0.0696 (19) −0.0091 (15) 0.0334 (18) −0.0129 (14)
C151 0.0498 (14) 0.0416 (12) 0.0521 (14) 0.0045 (11) 0.0171 (12) −0.0075 (11)
C152 0.0595 (17) 0.0526 (15) 0.0755 (19) 0.0007 (13) 0.0234 (15) −0.0081 (14)
C153 0.079 (2) 0.0557 (17) 0.106 (3) 0.0001 (16) 0.047 (2) −0.0010 (18)
C154 0.117 (3) 0.0544 (17) 0.083 (2) 0.0105 (19) 0.056 (2) 0.0096 (16)
C155 0.092 (2) 0.0709 (19) 0.0646 (19) 0.0251 (18) 0.0133 (17) 0.0088 (16)
C156 0.0614 (17) 0.0567 (16) 0.0640 (17) 0.0072 (13) 0.0131 (14) 0.0013 (14)
C11 0.109 (3) 0.0547 (16) 0.110 (3) 0.0158 (17) 0.069 (2) 0.0279 (17)
C12 0.089 (2) 0.0500 (15) 0.086 (2) 0.0124 (15) 0.0381 (18) 0.0181 (15)
C13 0.087 (2) 0.0635 (18) 0.095 (2) 0.0207 (16) −0.0026 (19) −0.0269 (17)
C14 0.073 (2) 0.0543 (16) 0.083 (2) 0.0038 (15) 0.0015 (17) −0.0062 (15)
O14 0.0782 (17) 0.0650 (14) 0.200 (3) −0.0039 (12) −0.0078 (17) −0.0152 (16)
C161 0.0586 (17) 0.0523 (15) 0.085 (2) 0.0033 (14) 0.0038 (15) −0.0064 (14)
C162 0.071 (3) 0.063 (2) 0.125 (5) 0.028 (2) −0.031 (3) −0.023 (3)
C163 0.062 (2) 0.065 (2) 0.136 (5) 0.0107 (19) −0.023 (3) −0.029 (3)
C164 0.0531 (16) 0.0537 (15) 0.0714 (18) 0.0057 (13) 0.0157 (14) −0.0063 (13)
C165 0.064 (2) 0.056 (2) 0.181 (11) 0.0166 (17) −0.013 (3) −0.014 (4)
C166 0.061 (2) 0.057 (2) 0.170 (10) 0.0066 (17) −0.017 (3) −0.011 (3)
C171 0.0586 (17) 0.0523 (15) 0.085 (2) 0.0033 (14) 0.0038 (15) −0.0064 (14)
C172 0.071 (3) 0.063 (2) 0.125 (5) 0.028 (2) −0.031 (3) −0.023 (3)
C173 0.062 (2) 0.065 (2) 0.136 (5) 0.0107 (19) −0.023 (3) −0.029 (3)
C174 0.0531 (16) 0.0537 (15) 0.0714 (18) 0.0057 (13) 0.0157 (14) −0.0063 (13)
C175 0.064 (2) 0.056 (2) 0.181 (11) 0.0166 (17) −0.013 (3) −0.014 (4)
C176 0.061 (2) 0.057 (2) 0.170 (10) 0.0066 (17) −0.017 (3) −0.011 (3)
C181 0.0610 (17) 0.0529 (15) 0.0659 (17) 0.0014 (13) 0.0175 (14) 0.0020 (13)
C182 0.121 (3) 0.087 (2) 0.073 (2) −0.007 (2) 0.028 (2) 0.0090 (18)
C183 0.079 (2) 0.069 (2) 0.124 (3) 0.0164 (17) 0.019 (2) −0.014 (2)
C184 0.085 (2) 0.0685 (18) 0.074 (2) −0.0021 (16) 0.0180 (17) −0.0076 (16)
C21 0.0455 (13) 0.0423 (12) 0.0432 (13) −0.0045 (10) 0.0127 (11) −0.0105 (10)
C22 0.0518 (14) 0.0467 (13) 0.0406 (13) −0.0047 (11) 0.0124 (11) −0.0067 (10)
C23 0.0479 (14) 0.0481 (13) 0.0496 (14) 0.0050 (11) 0.0062 (12) −0.0117 (11)
C24 0.0476 (14) 0.0601 (15) 0.0527 (15) −0.0056 (12) 0.0173 (12) −0.0186 (13)
C25 0.0535 (15) 0.0581 (15) 0.0428 (14) −0.0097 (12) 0.0169 (12) −0.0076 (12)
C26 0.0536 (15) 0.0480 (13) 0.0472 (14) −0.0034 (11) 0.0106 (12) −0.0072 (11)
C27 0.0486 (15) 0.0505 (14) 0.0548 (16) −0.0031 (12) 0.0166 (12) −0.0165 (13)
O21 0.0677 (13) 0.0620 (12) 0.0798 (13) 0.0171 (10) 0.0207 (10) −0.0063 (10)
O22 0.0747 (13) 0.0646 (11) 0.0634 (12) 0.0063 (9) 0.0386 (10) −0.0071 (10)
N23 0.0668 (16) 0.0624 (15) 0.0715 (16) 0.0143 (12) 0.0064 (14) −0.0117 (13)
O23 0.1038 (18) 0.0849 (15) 0.0873 (16) 0.0259 (13) 0.0133 (14) 0.0247 (13)
O24 0.0920 (17) 0.1013 (17) 0.1138 (19) 0.0466 (14) 0.0293 (15) −0.0112 (15)
N25 0.0849 (19) 0.0748 (17) 0.0557 (15) −0.0129 (14) 0.0292 (15) −0.0015 (13)
O25 0.0960 (18) 0.127 (2) 0.0806 (16) −0.0088 (15) 0.0543 (14) −0.0002 (14)
O26 0.132 (2) 0.1008 (18) 0.0844 (17) 0.0167 (16) 0.0413 (16) 0.0340 (15)

Geometric parameters (Å, º)

N1—C2 1.491 (3) C13—H13A 0.9700
N1—C11 1.493 (3) C13—H13B 0.9700
N1—C6 1.496 (3) C14—O14 1.201 (3)
N1—H1 0.99 (3) C14—C161 1.484 (4)
C2—C3 1.503 (3) C161—C166 1.344 (5)
C2—H2B 0.9700 C161—C162 1.397 (5)
C2—H2A 0.9700 C162—C163 1.382 (5)
C3—C4 1.517 (3) C162—H162 0.9300
C3—H3A 0.9700 C163—C164 1.396 (4)
C3—H3B 0.9700 C163—H163 0.9300
C4—O4 1.434 (3) C164—C165 1.355 (6)
C4—C5 1.507 (3) C164—C181 1.528 (4)
C4—H4 0.9800 C165—C166 1.378 (5)
C5—C6 1.504 (4) C165—H165 0.9300
C5—H5A 0.9700 C166—H166 0.9300
C5—H5B 0.9700 C172—C173 1.381 (8)
C6—H6A 0.9700 C172—H172 0.9300
C6—H6B 0.9700 C173—H173 0.9300
O4—C41 1.423 (3) C175—C176 1.376 (8)
C41—C151 1.510 (3) C175—H175 0.9300
C41—C141 1.526 (3) C176—H176 0.9300
C41—H41 0.9800 C181—C183 1.517 (4)
C141—C142 1.377 (3) C181—C182 1.526 (4)
C141—C146 1.386 (3) C181—C184 1.530 (4)
C142—C143 1.390 (3) C182—H18A 0.9600
C142—H142 0.9300 C182—H18B 0.9600
C143—C144 1.368 (4) C182—H18C 0.9600
C143—H143 0.9300 C183—H18D 0.9600
C144—C145 1.368 (4) C183—H18E 0.9600
C144—H144 0.9300 C183—H18F 0.9600
C145—C146 1.384 (4) C184—H18G 0.9600
C145—H145 0.9300 C184—H18H 0.9600
C146—H146 0.9300 C184—H18I 0.9600
C151—C152 1.382 (3) C21—C26 1.380 (3)
C151—C156 1.383 (4) C21—C22 1.383 (3)
C152—C153 1.379 (4) C21—C27 1.524 (3)
C152—H152 0.9300 C22—C23 1.378 (3)
C153—C154 1.363 (5) C22—H22 0.9300
C153—H153 0.9300 C23—C24 1.371 (3)
C154—C155 1.382 (5) C23—N23 1.473 (3)
C154—H154 0.9300 C24—C25 1.370 (3)
C155—C156 1.381 (4) C24—H24 0.9300
C155—H155 0.9300 C25—C26 1.381 (3)
C156—H156 0.9300 C25—N25 1.472 (3)
C11—C12 1.512 (4) C26—H26 0.9300
C11—H11A 0.9700 C27—O21 1.226 (3)
C11—H11B 0.9700 C27—O22 1.265 (3)
C12—C13 1.481 (4) N23—O24 1.215 (3)
C12—H12A 1.0216 N23—O23 1.215 (3)
C12—H12B 0.8703 N25—O26 1.215 (3)
C13—C14 1.501 (4) N25—O25 1.215 (3)
C2—N1—C11 112.0 (2) C11—C12—H12A 113.2
C2—N1—C6 110.00 (18) C13—C12—H12B 107.6
C11—N1—C6 110.5 (2) C11—C12—H12B 110.1
C2—N1—H1 107.3 (14) H12A—C12—H12B 110.5
C11—N1—H1 109.0 (14) C12—C13—C14 116.4 (3)
C6—N1—H1 107.9 (15) C12—C13—H13A 108.2
N1—C2—C3 111.04 (19) C14—C13—H13A 108.2
N1—C2—H2B 109.4 C12—C13—H13B 108.2
C3—C2—H2B 109.4 C14—C13—H13B 108.2
N1—C2—H2A 109.4 H13A—C13—H13B 107.3
C3—C2—H2A 109.4 O14—C14—C161 120.9 (3)
H2B—C2—H2A 108.0 O14—C14—C13 120.9 (3)
C2—C3—C4 111.94 (19) C161—C14—C13 118.2 (3)
C2—C3—H3A 109.2 C166—C161—C162 117.5 (3)
C4—C3—H3A 109.2 C166—C161—C14 121.8 (3)
C2—C3—H3B 109.2 C162—C161—C14 120.3 (3)
C4—C3—H3B 109.2 C163—C162—C161 120.0 (4)
H3A—C3—H3B 107.9 C163—C162—H162 120.0
O4—C4—C5 105.72 (18) C161—C162—H162 120.0
O4—C4—C3 113.48 (19) C162—C163—C164 122.1 (4)
C5—C4—C3 108.75 (19) C162—C163—H163 119.0
O4—C4—H4 109.6 C164—C163—H163 119.0
C5—C4—H4 109.6 C165—C164—C163 115.2 (3)
C3—C4—H4 109.6 C165—C164—C181 124.3 (3)
C6—C5—C4 111.3 (2) C163—C164—C181 120.2 (3)
C6—C5—H5A 109.4 C164—C165—C166 123.3 (5)
C4—C5—H5A 109.4 C164—C165—H165 118.3
C6—C5—H5B 109.4 C166—C165—H165 118.3
C4—C5—H5B 109.4 C161—C166—C165 121.3 (5)
H5A—C5—H5B 108.0 C161—C166—H166 119.3
N1—C6—C5 111.49 (19) C165—C166—H166 119.3
N1—C6—H6A 109.3 C173—C172—H172 119.0
C5—C6—H6A 109.3 C172—C173—H173 120.1
N1—C6—H6B 109.3 C176—C175—H175 118.8
C5—C6—H6B 109.3 C175—C176—H176 118.7
H6A—C6—H6B 108.0 C183—C181—C182 109.0 (3)
C41—O4—C4 116.44 (17) C183—C181—C164 112.3 (2)
O4—C41—C151 112.52 (19) C182—C181—C164 109.4 (2)
O4—C41—C141 106.93 (18) C183—C181—C184 107.5 (2)
C151—C41—C141 112.66 (18) C182—C181—C184 108.4 (2)
O4—C41—H41 108.2 C164—C181—C184 110.1 (2)
C151—C41—H41 108.2 C181—C182—H18A 109.5
C141—C41—H41 108.2 C181—C182—H18B 109.5
C142—C141—C146 117.8 (2) H18A—C182—H18B 109.5
C142—C141—C41 122.5 (2) C181—C182—H18C 109.5
C146—C141—C41 119.7 (2) H18A—C182—H18C 109.5
C141—C142—C143 121.1 (2) H18B—C182—H18C 109.5
C141—C142—H142 119.4 C181—C183—H18D 109.5
C143—C142—H142 119.4 C181—C183—H18E 109.5
C144—C143—C142 120.1 (3) H18D—C183—H18E 109.5
C144—C143—H143 120.0 C181—C183—H18F 109.5
C142—C143—H143 120.0 H18D—C183—H18F 109.5
C145—C144—C143 119.7 (3) H18E—C183—H18F 109.5
C145—C144—H144 120.2 C181—C184—H18G 109.5
C143—C144—H144 120.2 C181—C184—H18H 109.5
C144—C145—C146 120.3 (3) H18G—C184—H18H 109.5
C144—C145—H145 119.9 C181—C184—H18I 109.5
C146—C145—H145 119.9 H18G—C184—H18I 109.5
C145—C146—C141 121.0 (3) H18H—C184—H18I 109.5
C145—C146—H146 119.5 C26—C21—C22 119.2 (2)
C141—C146—H146 119.5 C26—C21—C27 120.1 (2)
C152—C151—C156 118.5 (2) C22—C21—C27 120.7 (2)
C152—C151—C41 120.3 (2) C23—C22—C21 119.6 (2)
C156—C151—C41 121.2 (2) C23—C22—H22 120.2
C153—C152—C151 121.4 (3) C21—C22—H22 120.2
C153—C152—H152 119.3 C24—C23—C22 122.4 (2)
C151—C152—H152 119.3 C24—C23—N23 118.5 (2)
C154—C153—C152 119.7 (3) C22—C23—N23 119.2 (2)
C154—C153—H153 120.2 C25—C24—C23 117.0 (2)
C152—C153—H153 120.2 C25—C24—H24 121.5
C153—C154—C155 120.0 (3) C23—C24—H24 121.5
C153—C154—H154 120.0 C24—C25—C26 122.6 (2)
C155—C154—H154 120.0 C24—C25—N25 117.6 (2)
C156—C155—C154 120.4 (3) C26—C25—N25 119.8 (2)
C156—C155—H155 119.8 C21—C26—C25 119.3 (2)
C154—C155—H155 119.8 C21—C26—H26 120.3
C155—C156—C151 120.1 (3) C25—C26—H26 120.3
C155—C156—H156 120.0 O21—C27—O22 127.0 (2)
C151—C156—H156 120.0 O21—C27—C21 118.1 (2)
N1—C11—C12 114.0 (2) O22—C27—C21 115.0 (2)
N1—C11—H11A 108.8 O24—N23—O23 124.5 (3)
C12—C11—H11A 108.8 O24—N23—C23 117.9 (3)
N1—C11—H11B 108.8 O23—N23—C23 117.7 (2)
C12—C11—H11B 108.8 O26—N25—O25 124.2 (3)
H11A—C11—H11B 107.7 O26—N25—C25 117.6 (3)
C13—C12—C11 111.0 (3) O25—N25—C25 118.1 (3)
C13—C12—H12A 104.2
C11—N1—C2—C3 −179.77 (19) O14—C14—C161—C166 10.3 (6)
C6—N1—C2—C3 −56.5 (2) C13—C14—C161—C166 −170.9 (5)
N1—C2—C3—C4 57.2 (2) O14—C14—C161—C162 −162.5 (4)
C2—C3—C4—O4 61.4 (2) C13—C14—C161—C162 16.4 (5)
C2—C3—C4—C5 −55.9 (2) C166—C161—C162—C163 5.6 (7)
O4—C4—C5—C6 −66.3 (2) C14—C161—C162—C163 178.6 (4)
C3—C4—C5—C6 55.8 (3) C161—C162—C163—C164 0.8 (7)
C2—N1—C6—C5 57.0 (2) C162—C163—C164—C165 −6.2 (8)
C11—N1—C6—C5 −178.8 (2) C162—C163—C164—C181 −179.9 (4)
C4—C5—C6—N1 −57.7 (3) C163—C164—C165—C166 5.7 (11)
C5—C4—O4—C41 −179.83 (19) C181—C164—C165—C166 179.0 (6)
C3—C4—O4—C41 61.1 (3) C162—C161—C166—C165 −6.3 (10)
C4—O4—C41—C151 53.7 (3) C14—C161—C166—C165 −179.2 (6)
C4—O4—C41—C141 177.88 (18) C164—C165—C166—C161 0.5 (13)
O4—C41—C141—C142 4.6 (3) C165—C164—C181—C183 −24.9 (6)
C151—C41—C141—C142 128.7 (2) C163—C164—C181—C183 148.2 (4)
O4—C41—C141—C146 −176.5 (2) C165—C164—C181—C182 96.3 (6)
C151—C41—C141—C146 −52.4 (3) C163—C164—C181—C182 −90.6 (4)
C146—C141—C142—C143 1.4 (4) C165—C164—C181—C184 −144.6 (6)
C41—C141—C142—C143 −179.7 (2) C163—C164—C181—C184 28.4 (4)
C141—C142—C143—C144 −0.2 (4) C26—C21—C22—C23 1.4 (3)
C142—C143—C144—C145 −1.2 (4) C27—C21—C22—C23 −176.3 (2)
C143—C144—C145—C146 1.4 (5) C21—C22—C23—C24 −0.9 (4)
C144—C145—C146—C141 −0.1 (5) C21—C22—C23—N23 178.1 (2)
C142—C141—C146—C145 −1.3 (4) C22—C23—C24—C25 0.0 (4)
C41—C141—C146—C145 179.8 (3) N23—C23—C24—C25 −179.0 (2)
O4—C41—C151—C152 −129.7 (2) C23—C24—C25—C26 0.4 (4)
C141—C41—C151—C152 109.3 (2) C23—C24—C25—N25 −179.6 (2)
O4—C41—C151—C156 50.5 (3) C22—C21—C26—C25 −1.0 (3)
C141—C41—C151—C156 −70.5 (3) C27—C21—C26—C25 176.7 (2)
C156—C151—C152—C153 −0.6 (4) C24—C25—C26—C21 0.1 (4)
C41—C151—C152—C153 179.6 (2) N25—C25—C26—C21 −180.0 (2)
C151—C152—C153—C154 −0.2 (4) C26—C21—C27—O21 1.3 (3)
C152—C153—C154—C155 0.6 (5) C22—C21—C27—O21 179.0 (2)
C153—C154—C155—C156 −0.3 (5) C26—C21—C27—O22 −177.2 (2)
C154—C155—C156—C151 −0.5 (4) C22—C21—C27—O22 0.5 (3)
C152—C151—C156—C155 0.9 (4) C24—C23—N23—O24 −4.2 (4)
C41—C151—C156—C155 −179.3 (2) C22—C23—N23—O24 176.8 (2)
C2—N1—C11—C12 −72.4 (3) C24—C23—N23—O23 174.9 (2)
C6—N1—C11—C12 164.5 (3) C22—C23—N23—O23 −4.1 (4)
N1—C11—C12—C13 −122.9 (3) C24—C25—N25—O26 168.7 (3)
C11—C12—C13—C14 −179.2 (3) C26—C25—N25—O26 −11.3 (4)
C12—C13—C14—O14 −1.7 (5) C24—C25—N25—O25 −9.9 (4)
C12—C13—C14—C161 179.5 (3) C26—C25—N25—O25 170.2 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O22 0.99 (3) 1.66 (2) 2.634 (3) 167 (2)
C2—H2A···O25i 0.97 2.50 3.444 (3) 163
C11—H11A···O14ii 0.97 2.49 3.358 (4) 150

Symmetry codes: (i) x−1, −y+3/2, z+1/2; (ii) x−1, y, z.

References

  1. Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320.
  2. Cheng, J., Zhou, Z. & Yang, G. (2005). Acta Cryst. E61, o2932–o2933.
  3. Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.
  4. Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.
  5. Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57. [DOI] [PubMed]
  6. Jasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2009). Acta Cryst. E65, o1738–o1739. [DOI] [PMC free article] [PubMed]
  7. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  8. Rigaku (2011). CrystalClear. Rigaku Corporation, Tokyo, Japan.
  9. Shaibah, M. A. E., Yathirajan, H. S., Kumar, S. M., Byrappa, K. & Glidewell, C. (2017). E73, 1488–1493. [DOI] [PMC free article] [PubMed]
  10. Sharma, R., Prasher, D. & Tiwari, R. K. (2015). J. Appl. Cryst. 48, 1299–1301.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Van Cauwenberge, P., De Belder, T. & Sys, L. (2004). Expert Opin. Pharmacother. 5, 1807–1813. [DOI] [PubMed]
  15. Wiseman, L. R. & Faulds, D. (1996). Drugs, 51, 260–277. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S205698901701324X/su5391sup1.cif

e-73-01513-sup1.cif (1.6MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901701324X/su5391Isup2.hkl

e-73-01513-Isup2.hkl (582.4KB, hkl)

Supporting information file. DOI: 10.1107/S205698901701324X/su5391Isup3.cml

CCDC reference: 1574718

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES