Skip to main content
Molecular Systems Biology logoLink to Molecular Systems Biology
. 2017 Nov 9;13(11):953. doi: 10.15252/msb.20177763

Temporal fluxomics reveals oscillations in TCA cycle flux throughout the mammalian cell cycle

Eunyong Ahn 1,, Praveen Kumar 2,, Dzmitry Mukha 2, Amit Tzur 3,4, Tomer Shlomi 1,2,5,
PMCID: PMC5731346  PMID: 29109155

Abstract

Cellular metabolic demands change throughout the cell cycle. Nevertheless, a characterization of how metabolic fluxes adapt to the changing demands throughout the cell cycle is lacking. Here, we developed a temporal‐fluxomics approach to derive a comprehensive and quantitative view of alterations in metabolic fluxes throughout the mammalian cell cycle. This is achieved by combining pulse‐chase LC‐MS‐based isotope tracing in synchronized cell populations with computational deconvolution and metabolic flux modeling. We find that TCA cycle fluxes are rewired as cells progress through the cell cycle with complementary oscillations of glucose versus glutamine‐derived fluxes: Oxidation of glucose‐derived flux peaks in late G1 phase, while oxidative and reductive glutamine metabolism dominates S phase. These complementary flux oscillations maintain a constant production rate of reducing equivalents and oxidative phosphorylation flux throughout the cell cycle. The shift from glucose to glutamine oxidation in S phase plays an important role in cell cycle progression and cell proliferation.

Keywords: cell cycle, cellular metabolism, isotope tracing, LC‐MS, metabolic flux analysis

Subject Categories: Cell Cycle, Genome-Scale & Integrative Biology, Metabolism

Supporting information

Appendix

Dataset EV1

Dataset EV2

Dataset EV3

Review Process File

Mol Syst Biol. (2017) 13: 953

References

  1. Almeida A, Bolanos JP, Moncada S (2010) E3 ubiquitin ligase APC/C‐Cdh1 accounts for the Warburg effect by linking glycolysis to cell proliferation. Proc Natl Acad Sci USA 107: 738–741 [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Antoniewicz MR, Kelleher JK, Stephanopoulos G (2006) Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements. Metab Eng 8: 324–337 [DOI] [PubMed] [Google Scholar]
  3. Banko MR, Allen JJ, Schaffer BE, Wilker EW, Tsou P, White JL, Villen J, Wang B, Kim SR, Sakamoto K, Gygi SP, Cantley LC, Yaffe MB, Shokat KM, Brunet A (2011) Chemical genetic screen for AMPKalpha2 substrates uncovers a network of proteins involved in mitosis. Mol Cell 44: 878–892 [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bar‐Joseph Z, Siegfried Z, Brandeis M, Brors B, Lu Y, Eils R, Dynlacht BD, Simon I (2008) Genome‐wide transcriptional analysis of the human cell cycle identifies genes differentially regulated in normal and cancer cells. Proc Natl Acad Sci USA 105: 955–960 [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bennett BD, Yuan J, Kimball EH, Rabinowitz JD (2008) Absolute quantitation of intracellular metabolite concentrations by an isotope ratio‐based approach. Nat Protoc 3: 1299–1311 [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447: 407–412 [DOI] [PubMed] [Google Scholar]
  7. Bienvenu F, Jirawatnotai S, Elias JE, Meyer CA, Mizeracka K, Marson A, Frampton GM, Cole MF, Odom DT, Odajima J, Geng Y, Zagozdzon A, Jecrois M, Young RA, Liu XS, Cepko CL, Gygi SP, Sicinski P (2010) Transcriptional role of cyclin D1 in development revealed by a genetic‐proteomic screen. Nature 463: 374–378 [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Blagosklonny MV, Pardee AB (2002) The restriction point of the cell cycle. Cell Cycle 1: 103–110 [PubMed] [Google Scholar]
  9. Chen Z, Odstrcil EA, Tu BP, McKnight SL (2007) Restriction of DNA replication to the reductive phase of the metabolic cycle protects genome integrity. Science 316: 1916–1919 [DOI] [PubMed] [Google Scholar]
  10. Clasquin MF, Melamud E, Rabinowitz JD (2012) LC‐MS data processing with MAVEN: a metabolomic analysis and visualization engine. Curr Protoc Bioinformatics. 37: 14.11.1–14.11.23 [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Colombo SL, Palacios‐Callender M, Frakich N, Carcamo S, Kovacs I, Tudzarova S, Moncada S (2011) Molecular basis for the differential use of glucose and glutamine in cell proliferation as revealed by synchronized HeLa cells. Proc Natl Acad Sci USA 108: 21069–21074 [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Costenoble R, Müller D, Barl T, Van Gulik WM, Van Winden WA, Reuss M, Heijnen JJ (2007) 13C‐Labeled metabolic flux analysis of a fed‐batch culture of elutriated Saccharomyces cerevisiae . FEMS Yeast Res 7: 511–526 [DOI] [PubMed] [Google Scholar]
  13. Cuyàs E, Corominas‐Faja B, Joven J, Menendez JA (2014) Cell cycle regulation by the nutrient‐sensing mammalian target of rapamycin (mTOR) pathway. Methods Mol Biol 1170: 113–144 [DOI] [PubMed] [Google Scholar]
  14. Diaz‐Moralli S, Tarrado‐Castellarnau M, Miranda A, Cascante M (2013) Targeting cell cycle regulation in cancer therapy. Pharmacol Ther 138: 255–271 [DOI] [PubMed] [Google Scholar]
  15. Duckwall CS, Murphy TA, Young JD (2013) Mapping cancer cell metabolism with(13)C flux analysis: recent progress and future challenges. J Carcinog 12: 13 [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Estevez‐Garcia IO, Cordoba‐Gonzalez V, Lara‐Padilla E, Fuentes‐Toledo A, Falfan‐Valencia R, Campos‐Rodriguez R, Abarca‐Rojano E (2014) Glucose and glutamine metabolism control by APC and SCF during the G1‐to‐S phase transition of the cell cycle. J Physiol Biochem 70: 569–581 [DOI] [PubMed] [Google Scholar]
  17. Fan J, Kamphorst JJ, Mathew R, Chung MK, White E, Shlomi T, Rabinowitz JD (2013) Glutamine‐driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Mol Syst Biol 9: 712 [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Fell D (1997) Understanding the control of metabolism. Front Metab 2: 300 [Google Scholar]
  19. Fendt S‐M, Bell EL, Keibler MA, Olenchock BA, Mayers JR, Wasylenko TM, Vokes NI, Guarente L, Vander Heiden MG, Stephanopoulos G (2013) Reductive glutamine metabolism is a function of the α‐ketoglutarate to citrate ratio in cells. Nat Commun 4: 2236 [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Fingar DC, Blenis J (2004) Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 23: 3151–3171 [DOI] [PubMed] [Google Scholar]
  21. Gaglio D, Soldati C, Vanoni M, Alberghina L, Chiaradonna F (2009) Glutamine deprivation induces abortive s‐phase rescued by deoxyribonucleotides in k‐ras transformed fibroblasts. PLoS ONE 4: e4715 [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hsieh MCF, Das D, Sambandam N, Zhang MQ, Nahlé Z (2008) Regulation of the PDK4 isozyme by the Rb‐E2F1 complex. J Biol Chem 283: 27410–27417 [DOI] [PubMed] [Google Scholar]
  23. Jiang L, Shestov AA, Swain P, Yang C, Parker SJ, Wang QA, Terada LS, Adams ND, McCabe MT, Pietrak B, Schmidt S, Metallo CM, Dranka BP, Schwartz B, DeBerardinis RJ (2016) Reductive carboxylation supports redox homeostasis during anchorage‐independent growth. Nature 532: 255–258 [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kaplon J, van Dam L, Peeper D (2015) Two‐way communication between the metabolic and cell cycle machineries: the molecular basis. Cell Cycle 14: 2022–2032 [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Levine AJ, Puzio‐Kuter AM (2010) The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 330: 1340–1344 [DOI] [PubMed] [Google Scholar]
  26. Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128: 707–719 [DOI] [PubMed] [Google Scholar]
  27. Metallo CM, Walther JL, Stephanopoulos G (2009) Evaluation of 13C isotopic tracers for metabolic flux analysis in mammalian cells. J Biotechnol 144: 167–174 [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K, Jewell CM, Johnson ZR, Irvine DJ, Guarente L, Kelleher JK, Vander Heiden MG, Iliopoulos O, Stephanopoulos G (2012) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481: 380–384 [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mitra K, Wunder C, Roysam B, Lin G, Lippincott‐Schwartz J (2009) A hyperfused mitochondrial state achieved at G1‐S regulates cyclin E buildup and entry into S phase. Proc Natl Acad Sci USA 106: 11960–11965 [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mullen AR, Wheaton WW, Jin ES, Chen PH, Sullivan LB, Cheng T, Yang Y, Linehan WM, Chandel NS, DeBerardinis RJ (2012) Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481: 385–388 [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Noack S, Noh K, Moch M, Oldiges M, Wiechert W (2011) Stationary versus non‐stationary (13)C‐MFA: a comparison using a consistent dataset. J Biotechnol 154: 179–190 [DOI] [PubMed] [Google Scholar]
  32. Noh K, Wahl A, Wiechert W (2006) Computational tools for isotopically instationary 13C labeling experiments under metabolic steady state conditions. Metab Eng 8: 554–577 [DOI] [PubMed] [Google Scholar]
  33. Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, Brunak S, Mann M (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3: ra3 [DOI] [PubMed] [Google Scholar]
  34. Oredsson SM (2003) Polyamine dependence of normal cell‐cycle progression. Biochem Soc Trans 31: 366–370 [DOI] [PubMed] [Google Scholar]
  35. Park JO, Rubin SA, Xu Y‐F, Amador‐Noguez D, Fan J, Shlomi T, Rabinowitz JD (2016) Metabolite concentrations, fluxes and free energies imply efficient enzyme usage. Nat Chem Biol 12: 482–489 [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Saqcena M, Mukhopadhyay S, Hosny C, Alhamed A, Chatterjee A, Foster DA (2015) Blocking anaplerotic entry of glutamine into the TCA cycle sensitizes K‐Ras mutant cancer cells to cytotoxic drugs. Oncogene 34: 2672–2680 [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sauer U (2006) Metabolic networks in motion: 13C‐based flux analysis. Mol Syst Biol 2: 62 [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sung HJ, Ma W, Wang P, Hynes J, O'Riordan TC, Combs CA, McCoy JP, Bunz F, Kang J, Hwang PM (2010) Mitochondrial respiration protects against oxygen‐associated DNA damage. Nat Commun 1: 5 [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sutendra G, Kinnaird A, Dromparis P, Paulin R, Stenson TH, Haromy A, Hashimoto K, Zhang N, Flaim E, Michelakis ED (2014) A nuclear pyruvate dehydrogenase complex is important for the generation of Acetyl‐CoA and histone acetylation. Cell 158: 84–97 [DOI] [PubMed] [Google Scholar]
  40. Tudzarova S, Colombo SL, Stoeber K, Carcamo S, Williams GH, Moncada S (2011) Two ubiquitin ligases, APC/C‐Cdh1 and SKP1‐CUL1‐F (SCF)‐beta‐TrCP, sequentially regulate glycolysis during the cell cycle. Proc Natl Acad Sci USA 108: 5278–5283 [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Vizan P, Alcarraz‐Vizan G, Diaz‐Moralli S, Solovjeva ON, Frederiks WM, Cascante M (2009) Modulation of pentose phosphate pathway during cell cycle progression in human colon adenocarcinoma cell line HT29. Int J Cancer 124: 2789–2796 [DOI] [PubMed] [Google Scholar]
  42. Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB (2009) ATP‐citrate lyase links cellular metabolism to histone acetylation. Science 324: 1076–1080 [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wiechert W (2002) An introduction to 13C metabolic flux analysis. Genet Eng (N Y) 24: 215–238 [DOI] [PubMed] [Google Scholar]
  44. Yalcin A, Clem BF, Simmons A, Lane A, Nelson K, Clem AL, Brock E, Siow D, Wattenberg B, Telang S, Chesney J (2009) Nuclear targeting of 6‐phosphofructo‐2‐kinase (PFKFB3) increases proliferation via cyclin‐dependent kinases. J Biol Chem 284: 24223–24232 [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Yang W, Xia Y, Ji H, Zheng Y, Liang J, Huang W, Gao X, Aldape K, Lu Z (2011) Nuclear PKM2 regulates β‐catenin transactivation upon EGFR activation. Nature 478: 118–122 [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Yang W, Zheng Y, Xia Y, Ji H, Chen X, Guo F, Lyssiotis CA, Aldape K, Cantley LC, Lu Z (2012) ERK1/2‐dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat Cell Biol 14: 1295–1304 [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Yuan J, Bennett BD, Rabinowitz JD (2008) Kinetic flux profiling for quantitation of cellular metabolic fluxes. Nat Protoc 3: 1328–1340 [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Appendix

Dataset EV1

Dataset EV2

Dataset EV3

Review Process File


Articles from Molecular Systems Biology are provided here courtesy of Nature Publishing Group

RESOURCES