Skip to main content
Data in Brief logoLink to Data in Brief
. 2017 Dec 5;16:732–751. doi: 10.1016/j.dib.2017.11.082

Data on DNA gel sample load, gel electrophoresis, PCR and cost analysis

Ramona Kuhn 1,, Jörg Böllmann 1, Kathrin Krahl 1, Isaac Mbir Bryant 1, Marion Martienssen 1
PMCID: PMC5735262  PMID: 29270456

Abstract

The data presented in this article provide supporting information to the related research article “Comparison of ten different DNA extraction procedures with respect to their suitability for environmental samples” (Kuhn et al., 2017) [1]. In that article, we compared the suitability of ten selected DNA extraction methods based on DNA quality, purity, quantity and applicability to universal PCR. Here we provide the data on the specific DNA gel sample load, all unreported gel images of crude DNA and PCR results, and the complete cost analysis for all tested extraction procedures and in addition two commercial DNA extraction kits for soil and water.

Keywords: Cost analysis, DNA sample load, Gel electrophoresis


Specifications Table

Subject area Biology
More specific subject area Molecular Biology
Type of data Tables, figures, equations
How data was acquired Bio View Biostep transilluminator
Data format Raw and analyzed
Experimental factors Sample were preserved at −20 °C before DNA extraction
Experimental features DNA extraction, universal PCR, DNA visualization, cost analysis
Data source location Cottbus, Germany
Data accessibility Data is within this article

Value of the data

  • The data on the gel sample load are valuable to serve as indirect control for DNA quantification with fluorescence stain called PicoGreen.

  • This data provide additional gel images of crude DNA and PCR of the tested DNA extraction procedures.

  • The cost analysis of the DNA extraction procedures provided are valuable for further economical comparison.

1. Data

Table 1 presents the DNA sample load (in µL) necessary to visualize the crude DNA on the agarose gels. Different DNA loads were used in order to achieve comparable DNA concentrations ranging between 250 and 300 ng on the gel. Higher DNA loads were necessary for visualization on the agarose gels, especially for the crude DNA extracts from the Havel River sediment (procedure A, D, F, G, and H).

Table 1.

Sample load in µL on the agarose gel for visualization of crude DNA extracts.

Extraction protocol according to first author Origin of samples
Activated sludge Havel River sediment Anaerobic digestion sludge Nitrifying sludge
A Bourrain 4 15 5 8
B Gabor harsh 2 8 5 8
C Garbor soft 2 8 5 15
D Shan 4 12 10 20
E Orsini/Spica 4 8 6 15
F Singka 4 12 15 15
G Soya method 1 20 3 15
H Tabatabaei 2 10 12 8
I Tresse 1 6 6 10
J Wilson 2 4 12 8

The visual DNA quality control of crude DNA extracts and PCR of procedures B, C, D, E, H, I and J is presented in Fig. 1, Fig. 2, Fig. 3, Fig. 4. The results for crude DNA extracts and PCR amplification of procedure B and C (method according to [2]) were almost similar. In both cases, intensive fragmentation was found for crude DNA extracts of the activated sludge and no distinct genomic DNA band was visible (Fig. 1, D1 & E1). The crude DNA of the sediment and anaerobic digestion sludge indicated a good quality with lower content of impurities, while the quality of the crude DNA for the nitrifying sludge was lower. A higher content of impurities was visible on both gel images. Positive PCR amplification was only feasible for the anaerobic digestion sludge and showed a very good quality of the amplicon (Fig. 1, D2 & E2).

Fig. 1.

Fig. 1

Agarose gel electrophoresis of crude DNA (D1 & E1) and universal PCR (D2 & E2) using universal primer set 27f and 1525r. D1 & D2: Procedure B (Gabor harsh). E1 & E2: Procedure C (Gabor soft). Lane declaration for all crude DNA and universal PCR gel images: lane 1 to 3 activated sludge; lane 4 to 6 Havel River sediment; lane 7 to 9 anaerobic digestion sludge; lane 10 to 12 nitrifying sludge; M in all gel images: 10 kb MassRuler DNA ladder.

Fig. 2.

Fig. 2

Agarose gel electrophoresis of crude DNA (F1 & G1) and universal PCR (F2 & G2) using universal primer set 27f and 1525r. F1 & F2: Procedure D (Shan). G1 & G2: Procedure E (Orsini & Romano-Spica). Lane declaration for all crude DNA and universal PCR gel images: lane 1 to 3 activated sludge; lane 4 to 6 Havel River sediment; lane 7 to 9 anaerobic digestion sludge; lane 10 to 12 nitrifying sludge; M in all gel images: 10 kb MassRuler DNA ladder.

Fig. 3.

Fig. 3

Agarose gel electrophoresis of crude DNA (H1, I1) and universal PCR (H2, I2) using universal primer set 27f and 1525r. H1 & H2: Procedure H (Tabatabaei). I1 & I2: Procedure I (Tresse). Lane declaration for all crude DNA and universal PCR gel images: lane 1 to 3 activated sludge; lane 4 to 6 Havel River sediment; lane 7 to 9 anaerobic digestion sludge; lane 10 to 12 nitrifying sludge; M in all gel images: 10 kb MassRuler DNA ladder.

Fig. 4.

Fig. 4

Agarose gel electrophoresis of crude DNA (J1) and universal PCR (J2) using universal primer set 27f and 1525r. G1 & G2: Procedure J (Wilson). Lane declaration for all crude DNA and universal PCR gel images: lane 1 to 3 activated sludge; lane 4 to 6 Havel River sediment; lane 7 to 9 anaerobic digestion sludge; lane 10 to 12 nitrifying sludge; M in all gel images: 10 kb MassRuler DNA ladder.

The results for the crude DNA extracts of procedure D and E (method according to [3], [4]) were also almost similar (Fig. 2, F1 & G1). For procedure D, no distinct genomic DNA band was visible on the agarose gel but instead, fragmentation and higher content of undefined impurities (Fig. 2, F1). The pattern for the nitrifying sludge, especially, indicated complete failure of the extraction procedure. The gel image of the crude DNA extraction for procedure E occurred almost similar to procedure D with one exception. The crude DNA extract of the activated sludge showed a slight distinct genomic DNA band, however, the background staining indicated the presence of impurities (Fig. 2, G1). Nevertheless, positive PCR amplification was obtained for the crude DNA extract from activated sludge for procedure E (Fig. 2, G2). Surprisingly, positive amplification of the nitrifying sludge was also obtained for both procedure D and E (Fig. 2, F2).

The results of the crude DNA extracts of procedure H and I (method according to [5], [6]) are presented in Fig. 3. All crude DNA extracts of procedure H indicate a slight distinct genomic DNA band and higher content of impurities through background staining (Fig. 3, H1). Positive PCR amplification was only obtained for the crude DNA extract of the anaerobic digestion sludge. PCR amplification of the crude DNA extracts of the activated sludge, Havel River sediment and nitrifying sludge failed (Fig. 3, H2). The quality of crude DNA extracts of procedure I was different between the four environmental samples (Fig. 3, I1). A distinct genomic DNA band without higher content of visible impurities was obtained for the activated sludge. The degree of increased impurities occurred slightly for the crude DNA extracts of the Havel River sediment, but a distinct genomic DNA band was still good visible on the gel image. The crude DNA extract of the anaerobic digestion sludge showed higher content of DNA fragmentation as well as possible impurities in the background of the gel. Besides a distinct DNA band higher background smearing was also visible for the crude DNA extract of the nitrifying sludge. Positive PCR amplification was only obtained for the crude DNA extract of the activated sludge (Fig. 3, I2).

The results of the crude DNA extracts of procedure J are presented in Fig. 4 (method according to [7]). The gel image indicated distinct genomic DNA bands with lower content of background smearing for the activated sludge, Havel River sediment and the nitrifying sludge. A higher degree of possible DNA fragmentation and/or background impurities were observed for the crude DNA extract of the anaerobic digestion sludge (Fig. 4, J1). Positive PCR amplification was obtained from the activated sludge, Havel River sediment and the nitrifying sludge, while the amplification for the anaerobic digestion sludge failed (Fig. 4, J2).

The cost analysis of the ten DNA extraction procedures and the two commercial DNA extraction kits is presented in detail in Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 12, Table 13. Our cost analysis is based on cost estimation. Therefore a cost range between lowest and highest prices is presented. We assumed that the real extraction price will be in this cost range. The presented results show that every extraction procedure has its specific cost range, which is mainly dependent on the extraction time and therefore also on the cost of the laboratory staff. We calculated the lowest laboratory staff cost ranging between 3.65 € and 5.10 € for procedure J (Table 11), and the highest ranging between 8.68 and 12.15 for procedure A (Table 2). We calculated the lowest cost for the chemicals needed ranging between 0.13 € to 0.31 € for procedure D (Table 5) and the highest cost ranging between 0.47 € to 0.96 € for procedure I (Table 10). The cost for the other consumables such as gloves, tubes and tips were almost similar for all analyzed extraction procedures and extraction kits.

Table 2.

Cost analysis for DNA extraction procedure A (according to Bourrain et al., 1999).

Consumables Volumes Units Concentration Volumes /Weight High costs
Low costs
Low cost High cost
Amount Unit Fix cost (€) Amount Unit Fix cost (€) per prep (€) per prep (€)
Gloves (any size) 1 pair 50 pair 8.20 50 pair 4.50 0.090 0.1640
Tubes 5 2.0 mL 500 pieces 11.9 1000 pieces 21.90 0.1095 0.1190
Tips 12 1000 µL 500 pieces 5.08 1000 pieces 7.70 0.0924 0.1218
Tips 1 200 µL 500 pieces 5.40 1000 pieces 8.19 0.0082 0.0108
Lysozyme buffer 0.75 mL 0.15 M NaCl 6,6 mg 500 g 15.84 1000 g 24.19 0.0002 0.0002
0.1 M Na2EDTA 27.9 mg 100 g 23.50 1000 g 59.70 0.0017 0.0066
15 mg mL-1 Lysozyme 15.0 mg 1.0 g 23.89 10 g 96.04 0.1441 0.3584
SDS solution 0.75 mL 0.1 M NaCl 4.4 mg 500 g 15.84 1000 g 24.19 0.0001 0.0001
0.5 M Tris–HCl 45.4 mg 500 g 93.40 1000 g 128.00 0.0058 0.0085
w/v 10% SDS 0.075 mg 100 g 16.56 1000 g 56.48 0.0000 0.0000
Tris–HCl saturated phenol 1.0 mL 0.1 M Tris–HCl 12.1 mg 500 g 93.40 1000 g 128.00 0.0016 0.0023
Phenol 1.0 g 100 g 18.00 1000 g 64.40 0.0644 0.1800
Phenol:Chloroform:Isoamyl 1.0 mL 25′ Phenol 0.5 g 100 g 18.00 1000 g 64.40 0.0322 0.0900
(25:24:1 v/v) 24′ Chloroform 0.48 mL 500 mL 50.62 2500 mL 100.66 0.0193 0.0486
1′ Isoamyl 0.02 mL 25 mL 13.92 1000 mL 108.00 0.0022 0.0111
Chloroform:Isoamyl 1.0 mL 24′ Chloroform 0.96 mL 500 mL 50.62 2500 mL 100.66 0.0387 0.0972
(24:1 v/v) 1′ Isoamyl 0.04 mL 25 mL 13.92 1000 mL 108.00 0.0043 2.2E-05
Isopropanol 1.0 mL 100% 2.0 mL 1000 mL 30.30 2500 mL 61.70 0.0494 6.1E-02
TE buffer 0.1 mL 10 mM Tris–HCl 0.12 mg 500 g 93.40 1000 g 128.00 1.6E-05 2.3E-05
1 mM EDTA 0.03 mg 100 g 34.08 1000 g 245.23 7.2E-06 1.0E-05
RNaseA treatment 5.0 µL 0.2 µg µL-1 1.0 µg 250 mg 94.40 1000 mg 292.00 0.0003 3.8E-04
Extracted samples 12
Extraction time 250 min
Lab staff (per hour) 35.00 25.00
Lab staff (€/extraction) 8.68 12.15
Chemicals (€/extraction) 0.36 0.86
Gloves, tubes, tips (€/extraction) 0.30 0.42
Final price per extraction including extraction time, lab staff and all consumables (€) 9.34 13.43

Table 3.

Cost analysis for DNA extraction procedure B (according to Gabor et al. [2]; harsh method).

Consumables Volumes Units Concentration Volumes /Weight High costs
Low costs
Low cost High cost
Amount Unit Fix cost (€) Amount Unit Fix cost (€) per Prep (€) per Prep (€)
Gloves (any size) 1 pair 50 pair 8.20 50 pair 4.50 0.0900 0.1640
Tubes 3 2.0 mL 500 pieces 11.90 1000 pieces 21.90 0.0657 0.0714
Tips 10 1000 µL 500 pieces 5.08 1000 pieces 7.70 0.0770 0.1015
Tips 4 200 µL 500 pieces 5.40 1000 pieces 8.19 0.0328 0.0432
Tips 1 10 µL 1000 pieces 27.14 2000 pieces 43.42 0.0217 0.0271
Silica beads 0.1 mm 700 mg 1000 g 24.30 25000 g 202.00 0.0057 0.0170
Lysozyme buffer 1.25 mL 100 mM Tris 15.1 mg 500 g 93.40 1000 g 128.00 0.0019 0.0028
mL 100 mM sodium EDTA 46.5 mg 100 g 23.50 1000 g 59.70 0.0028 0.0109
100 M NaCl 109.6 mg 500 g 15.84 1000 g 24.19 0.0027 0.0035
1% w/v CTAB 12.5 µg 100 g 22.64 1000 g 89.11 0.0011 0.0028
Lysozyme 0.04 mL 50 mg mL−1 2.0 mg 1.0 g 23.89 10 g 96.04 0.0192 0.0478
Proteinase K 0.01 mL 10 mg mL−1 0.1 mg 0.1 g 67.68 0.5 g 259.62 0.0519 0.0677
SDS 0.2 mL w/v 20% 0.04 mg 100 g 16.56 1000 g 56.48 2.3E-06 6.6E-06
Chloroform (1:1 v/v) 1.0 mL 100% 1.0 mL 500 mL 50.62 2500 mL 100.66 0.0403 0.1012
Isopropanol (0.6:1 v/v) 0.6 mL 100% 0.6 mL 1000 mL 30.30 2500 mL 61.70 0.0148 0.0182
Ethanol 0.5 mL 70% 0.375 mL 250 mL 47.56 2500 mL 246.58 0.0345 0.0666
TE buffer 0.1 mL 10 mM Tris–HCl 0.12 mg 500 g 93.40 1000 g 128.00 1.6E-05 2.3E-05
1 mM EDTA 0.03 mg 100 g 34.08 1000 g 245.23 7.2E-06 1.0E-05
Extracted samples 12
Extraction time 235 min
Lab staff (per hour) 35.00 25.00
Lab staff (€/extraction) 8.16 11.42
Chemicals (€/extraction) 0.17 0.34
Gloves, tubes, tips (€/extraction) 0.29 0.41
Final price per extraction including extraction time, lab staff and all consumables (€) 8.62 12.17

Table 4.

Cost analysis for DNA extraction procedure C (according to Gabor et al. [2]; soft method).

Consumables Volumes Units Concentration Volumes /Weight High costs
Low costs
Low cost High Cost
Amount Unit Fix cost (€) Amount Unit Fix cost (€) per Prep (€) per Prep (€)
Gloves (any size) 1 pair 50 pair 8.20 50 pair 4.50 0.090 0.164
Tubes 3 2.0 mL 500 pieces 11.90 1000 pieces 21.90 0.066 0.071
Tips 10 1000 µL 500 pieces 5.08 1000 pieces 7.70 0.077 0.102
Tips 4 200 µL 500 pieces 5.40 1000 pieces 8.19 0.033 0.043
Tips 1 10 µL 1000 pieces 27.14 2000 pieces 43.42 0.022 0.027
Silica beads 0.1 mm ID 700 mg 1000 g 24.30 25000 g 202.00 0.0057 0.0170
Lysozyme buffer 1.25 mL 100 mM Tris 15.1 mg 500 g 93.40 1000 g 128.00 0.0019 0.0028
mL 100 mM sodium EDTA 46.5 mg 100 g 23.50 1000 g 59.70 0.0028 0.0109
100 M NaCl 109.6 mg 500 g 15.84 1000 g 24.19 0.0027 0.0035
1% w/v CTAB 12.5 µg 100 g 22.64 1000 g 89.11 0.0011 0.0028
Lysozyme 0.04 mL 50 mg mL-1 2.0 mg 1.0 g 23.89 10 g 96.04 0.0192 0.0478
Proteinase K 0.01 mL 10 mg mL-1 0.1 mg 0.1 g 67.68 0.5 g 259.62 0.0519 0.0677
SDS 0.2 mL w/v 20% 0.04 mg 100 g 16.56 1000 g 56.48 2.3E-06 6.6E-06
Chloroform (1:1 v/v) 1.0 mL 100% 1.0 mL 500 mL 50.62 2500 mL 100.66 0.0403 0.1012
Isopropanol (0.6:1 v/v) 0.6 mL 100% 0.6 mL 1000 mL 30.30 2500 mL 61.70 0.0148 0.0182
Ethanol 0.5 mL 70% 0.375 mL 250 mL 47.56 2500 mL 246.58 0.0345 0.0666
TE buffer 0.1 mL 10 mM Tris–HCl 0.12 mg 500 g 93.40 1000 g 128.00 1.6E-05 2.3E-05
1 mM EDTA 0.03 mg 100 g 34.08 1000 g 245.23 7.2E-06 1.0E-05
Extracted samples 12
Extraction time 230 min
Lab staff (per hour) 35.00 25.00
Lab staff (€/extraction) 7.99 11.18
Chemicals (€/extraction) 0.17 0.34
Gloves, tubes, tips (€/extraction) 0.29 0.41
Final price per extraction including extraction time, lab staff and all consumables (€) 8.45 11.93

Table 5.

Cost analysis for DNA extraction procedure D (according to Shan et al. [3]).

Consumables Volumes Units Concentration Volumes /Weight High costs
Low costs
Low cost High cost
Amount Unit Fix cost (€) Amount Unit Fix cost (€) per Prep (€) per Prep (€)
Gloves (any size) 1 pair 50 pair 8.20 50 pair 4.50 0.0900 0.1640
Tubes 3 2.0 mL 500 pieces 11.90 1000 pieces 21.90 0.0657 0.0714
Tips 8 1000 µL 500 pieces 5.08 1000 pieces 7.70 0.0616 0.0812
Tips 2 200 µL 500 pieces 5.40 1000 pieces 8.19 0.0164 0.0216
Tips 1 10 µL 1000 pieces 27.14 2000 pieces 43.42 0.0217 0.0271
TENP Puffer 0.4 mL 50 mM Tris 2.42 mg 500 g 93.40 1000 g 128.00 0.0003 0.0005
20 mM EDTA 2.34 mg 100 g 34.08 1000 g 245.23 0.0006 0.0008
100 mM NaCl 2.34 mg 500 g 15.84 1000 g 24.19 0.0001 0.0001
10 mg mL-1 PVP 4.00 mg 100 g 45.30 1000 g 224.00 0.0009 0.0018
SDS 50 µL w/v 20% 10.0 µg 10]0 g 16.56 1000 g 56.48 5.6E-07 1.7E-06
CTAB Puffer 0.5 mL 0,7 M NaCl 20.5 mg 500 g 15.84 1000 g 24.19 0.0005 0.0006
10% CTAB 50.0 µg 100 g 22.64 1000 g 89.11 4.5E-06 1.1E-05
KH2PO4 0.25 mL 240 mM 8.16 mg 250 g 19.66 1000 g 56.66 4.6E-07 0.0006
Phenol:Chloroform:Isoamyl 1.0 mL 100 mM Tris 12.1 mg 500 g 93.40 1000 g 128.00 0.0016 0.0023
(25:24:1 v/v) Phenol 0.50 g 100 g 18.00 1000 g 64.40 0.0322 0.0900
Chloroform 0.48 mL 500 mL 50.62 2500 mL 100.66 0.0193 0.0486
Isoamyl 0.02 mL 25 mL 13.92 1000 mL 108.00 0.0022 0.0111
Chloroform:Isoamyl 1.0 mL Chloroform 0.96 mL 500 mL 50.62 2500 mL 100.66 0.0387 0.0972
(24:1 v/v) Isoamyl 0.04 mL 25 mL 13.92 1000 mL 108.00 0.0043 0.0223
Isopropanol 1.0 mL 100% 1.0 mL 1000 mL 30.30 2500 mL 61.70 0.0247 0.0303
TE buffer 0.1 mL 10 mM Tris–HCl 0.12 mg 500 g 93.40 1000 g 128.00 1,6E-05 2.3E-05
1.0 mM EDTA 0.03 mg 100 g 34.08 1000 g 245.23 7.2E-06 1.0E-05
Extracted samples 12
Extraction time 210 min
Lab staff (per hour) 35.00 25.00
Lab staff (€/extraction) 7.29 10.21
Chemicals (€/extraction) 0.13 0.31
Gloves, tubes, tips (€/extraction) 0.26 0.37
Final price per extraction including extraction time, lab staff and all consumables (€) 7.67 10.88

Table 6.

Cost analysis for DNA extraction procedure E (according to Orsini and Romano-Spica [4]).

Consumables Volumes Units Concentration Volumes /Weight High costs
Low costs
Low cost High cost
Amount Unit Fix cost (€) Amount Unit Fix cost (€) per Prep (€) per Prep (€)
Gloves (any size) 1 pair 50 pair 8.20 50 pair 4.50 0.0900 0.1640
Tubes 2 2.0 mL 500 pieces 11.90 1000 pieces 21.90 0.0438 0.0476
Tips 9 1000 µL 500 pieces 5.08 1000 pieces 7.70 0.0693 0.0914
Tips 3 200 µL 500 pieces 5.40 1000 pieces 8.19 0.0246 0.0324
Tips 0 10 µL 1000 pieces 27.14 2000 pieces 43.42 0,0000 0.0000
Wash solution 1.0 mL 50 mM Tris–HCl 6.1 mg 500 g 93.40 1000 g 128.00 0.0008 0.0011
25 mM EDTA 7.3 mg 100 g 34.08 1000 g 245.23 0.0018 0.0025
0.1% w/v SDS 1.0 µg 100 g 16.56 1000 g 56.48 5.6E-08 1.7E-07
0.1% w/v PVP 1.0 µg 100 g 45.30 1000 g 224.00 2.2E-07 4.5E-07
Lysis buffer 0.1 mL 50 mM Tris–HCl 0.61 mg 500 g 93.40 1000 g 128.00 7.8E-05 1.1E-04
25 mM EDTA 0.73 mg 100 g 34.08 1000 g 245.23 1.8E-04 2.5E-04
3% w/v SDS 30.0 µg 100 g 16.56 1000 g 56.48 1.7E-06 5.0E-06
1.2% w/v PVP 12.0 µg 100 g 45.30 1000 g 224.00 2.7E-06 5.4E-06
Extraction buffer 0.8 mL 10 mM Tris–HCl 9.7 mg 500 g 93.40 1000 g 128.00 0.0012 0.0018
1 mM EDTA 0.23 mg 100 g 34.08 1000 g 245.23 0.0001 0.0001
0.3 M NaOAc 19.7 mg 250 g 22.47 1000 g 56.30 0.0011 0.0018
1.2% PVP 9.6 µg 100 g 45.30 1000 g 224.00 2.2E-06 4.3E-06
Phenol:Chloroform 1.0 mL Phenol 0.5 g 100 g 18.00 1000 g 64.40 0.0322 0.0900
(1:1 v/v) Chloroform 0.5 mL 500 mL 50.62 2500 mL 100.66 0.0201 0.0506
Sodiumacetate 0.08 mL 3 M 19.7 mg 250 g 22.47 1000 g 56.30 0.0011 0.0018
Isopropanol 0.9 mL 100% 0.9 mL 1000 mL 30.30 2500 mL 61.70 0.0222 0.0273
Ethanol 2.0 mL 70% 1.4 mL 250 mL 47.56 2500 mL 246.58 0.1381 0.2663
TE buffer 0.1 mL 10 mM Tris–HCl 0.12 mg 500 g 93.40 1000 g 128.00 1.6E-05 2.3E-05
1.0 mM EDTA 0.03 mg 100 g 34.08 1000 g 245.23 7.2E-06 1.0E-05
Extracted samples 12
Extraction time 150 min
Lab staff (per hour) 35.00 25.00
Lab staff (€/extraction) 5.21 7.29
Chemicals (€/extraction) 0.22 0.44
Gloves, tubes, tips (€/extraction) 0.23 0.34
Final price per extraction including extraction time, lab staff and all consumables (€) 5.65 8.07

Table 7.

Cost analysis for DNA extraction procedure F (according to Singka et al., 2012).

Consumables Volumes Units Concentration Volumes /Weight High costs
Low costs
Low cost High cost
Amount Unit Fix cost (€) Amount Unit Fix cost (€) per Prep (€) per Prep (€)
Gloves (any size) 1 pair 50 pair 8.20 50 pair 4.50 0,.900 0.1640
Tubes 4 1.5 mL 500 pieces 8.20 1000 pieces 14.90 0.0596 0.0656
Tips 12 1000 µl 500 pieces 5.08 1000 pieces 7.70 0.0924 0.1218
Tips 2 200 µL 500 pieces 5.40 1000 pieces 8.19 0.0164 0.0216
Glass beads 0.1 mm 0.5 g 5.0 g 1000 g 24.30 25000 g 202.00 0.0404 0.1215
CTAB extraction buffer 0.5 mL 0.7 M NaCl 10.2 mg 500 g 15.84 1000 g 24.19 0.0002 0.0003
(1:1 v/v) 10% w/v (CTAB in NaCl) 10% w/v CTAB 2,5 µg 100 g 22.64 1000 g 89.11 2.2E-07 5.7E-07
to KH2PO4 240 mM KH2PO4 8.2 mg 250 g 19.66 1000 g 56.66 0.0005 0.0006
Phenol:Chloroform:Isoamyl 1.0 mL 25′ Phenol 0.5 g 100 g 18.00 1000 g 64.40 0.0322 0.0900
(25:24:1 v/v) 24′ Chloroform 0.48 mL 500 mL 50.62 2500 mL 100.66 0.0193 0.0486
1′ Isoamyl 0.02 mL 25 mL 13.92 1000 mL 108.00 0.0022 0.0111
Chloroform:Isoamyl 0.5 mL 24' Chloroform 0.48 mL 500 mL 50.62 2500 mL 100.66 0.0193 0.0486
(24:1 v/v) 1′ Isoamyl 0.02 mL 25 mL 13.92 1000 mL 108.00 0.0022 0.0111
Sodium acetate (0.1:1 v/v) 0.05 mL 3 M 12.3 mg 250 g 22.47 1000 g 56.30 0.0007 0.0011
Isopropanol (0.6: 1 v/v) 0.3 mL 100% 0.3 mL 1000 mL 30.30 2500 mL 61.70 0.0074 0.0091
Ethanol 1.5 mL 70% 1.05 mL 250 mL 47.56 2500 mL 246.58 0.1036 0.1998
TE buffer 0.1 mL 10 mM Tris–HCl 0.12 mg 500 g 93.40 1000 g 128.00 1.6E-05 2.3E-05
1 mM EDTA 0.03 mg 100 g 34.08 1000 g 245.23 7.2E-06 1.0E-05
Extracted samples 12
Extraction time 195 min
Lab staff (per hour) 35.00 25.00
Lab staff (€/extraction) 6.77 9.48
Chemicals (€/extraction) 0.19 0.42
Gloves, tubes, tips (€/extraction) 0.30 0.49
Final price per extraction including extraction time, lab staff and all consumables (€) 7.26 10.39

Table 8.

Cost analysis for DNA extraction procedure G (according to Saxony State Method).

Consumables Volumes Units Concentration Volumes /Weight High costs
Low costs
Low cost High Cost
Amount Unit Fix cost (€) Amount Unit Fix cost (€) per Prep (€) per Prep (€)
Gloves (any size) 1 pair 50 pair 8.20 50 pair 4.50 0.0900 0.1640
Tubes 3 2.0 mL 500 pieces 11.90 1000 pieces 21.90 0.0657 0.0714
1 1.5 mL 500 pieces 8.20 1000 pieces 14.90 0.0149 0.0164
Tips 13 1000 µL 500 pieces 5.08 1000 pieces 7.70 0.1001 0.1320
Tips 1 200 µL 500 pieces 5.40 1000 pieces 8.19 0.0082 0.0108
Tips 1 10 µL 1000 pieces 27.14 2000 pieces 43.42 0.0217 0.0271
Extraction buffer 1.0 mL 2% w/v CTAB 20.0 µg 100 g 22.64 1000 g 89.11 1.8E-06 4.5E-06
0.1 M Tris–HCl 12.1 mg 500 g 93.40 1000 g 128.00 0.0016 0.0023
0.02 M EDTA 5.8 mg 100 g 34.08 1000 g 245.23 0.0014 0.0020
1.4 M NaCl 81.8 mg 500 g 15.84 1000 g 24.19 0.0020 0.0026
RNase A 0.02 mL 20 mg mL-1 0.4 mg 250 mg 94.40 1000 mg 292.00 0.1168 0.1510
Chloroform 0.75 mL 100% 0.75 mL 500 mL 50.62 2500 mL 100.66 0.0302 0.0759
Precipitation solution 1.0 mL 0.5% w/v CTAB 0.5 µg 100 g 22.64 1000 g 89.11 4.5E-08 1.1E-07
40 mM NaCL 2.3 mg 500 g 15.84 1000 g 24.19 0.0001 0.0001
NaCl 0.35 mL 1.2 M NaCl 24.5 mg 500 g 15.84 1000 g 24.19 0.0006 0.0008
Chloroform 0.35 mL 100% 0.35 mL 500 mL 50.62 2500 mL 100.66 0.0141 0.0354
Isopropanol (0.6:1 v/v) 0.15 mL 100% 0.15 mL 250 mL 47.56 2500 mL 246.58 0.0148 0.0285
Ethanol 1.5 mL 70% 1.05 mL 250 mL 47.56 2500 mL 246.58 0.1036 0.1998
TE buffer 0.1 mL 10 mM Tris–HCl 0.12 mg 500 g 93.40 1000 g 128.00 1.6E-05 2.3E-05
1.0 mM EDTA 0.03 mg 100 g 34.08 1000 g 245.23 7.2E-06 1.0E-05
Extracted samples 12
Extraction time 175 min
Lab staff (per hour) 35.00 25.00
Lab staff (€/extraction) 6.08 8.51
Chemicals (€/extraction) 0.29 0.50
Gloves, tubes, tips (€/extraction) 0.30 0.42
Final price per extraction including extraction time, lab staff and all consumables (€) 6.66 9.43

Table 9.

Cost analysis for DNA extraction procedure H (according to Tabatabaei et al. [5]).

Consumables Volumes Units Concentration Volumes /Weight High costs
Low costs
Low cost High cost
Amount Unit Fix cost (€) Amount Unit Fix cost (€) per Prep (€) per Prep (€)
Gloves (any size) 1 pair 50 pair 8.20 50 pair 4.50 0.0900 0.1640
Tubes 3 2.0 mL 500 pieces 11.90 1000 pieces 21.90 0.0657 0.0714
Tips 12 1000 µL 500 pieces 5.08 1000 pieces 7.70 0.0924 0.1218
Tips 1 200 µL 500 pieces 5.40 1000 pieces 8.19 0.0082 0.0108
Tips 0 10 µL 1000 pieces 27.14 2000 pieces 43.42 0.0000 0.0000
EDTA 0.4 mL 0.5 EDTA 58.4 mg 100 g 34.08 1000 g 245.23 0.0143 0.0199
Lysis buffer 0.4 mL 10 mM Tris 0.48 mg 500 g 93.40 1000 g 128.00 0.0001 0.0001
1 mM EDTA 0.12 mg 100 g 34.08 1000 g 245.23 3.E-05 4.E-05
2 mg mL-1 Lysozyme 0.80 mg 1,0 g 23.89 10 g 96.04 0.0077 0.0191
SDS 0.05 mL 10% w/v 0.005 mg 100 g 16.56 1000 g 56.48 2.8E-07 8.3E-07
Phenol:Chloroform 0.8 mL Phenol 0.4 g 100 g 18.00 1000 g 64.40 0.0258 0.0720
(1:1 v/v) Chloroform 0.4 mL 500 mL 50.62 2500 mL 100.66 0.0161 0.0405
Sodium acetate 0.08 mL 3 M 19.7 mg 250 g 22.47 1000 g 56.30 0.0011 0.0018
Isopropanol 0.9 mL 100% 0.9 mL 1000 mL 30.30 2500 mL 61.70 0.0222 0.0273
Ethanol 1.5 mL 70% 1.05 mL 250 mL 47.56 2500 mL 246.58 0.1036 0.1998
TE buffer 0.1 mL 10 mM Tris–HCl 0.12 mg 100 g 34.08 1000 g 245.23 3.0E-05 4.1E-05
1.0 mM EDTA 0.03 mg 500 g 93.40 1000 g 128.00 3.7E-06 5.5E-06
Extracted samples 12
Extraction time 210 min
Lab staff (per hour) 35.00 25,00
Lab staff (€/extraction) 7.29 10.21
Chemicals (€/extraction) 0.19 0.38
Gloves, tubes, tips (€/extraction) 0.26 0.37
Final price per extraction (€) 7.74 10.96

Table 10.

Cost analysis for DNA extraction procedure I (according to Tresse et al. [6]).

Consumables Volumes Units Concentration Volumes /Weight High costs
Low costs
Low cost High cost
Amount Unit Fix cost (€) Amount Unit Fix cost (€) per Prep (€) per Prep (€)
Gloves (any size) 1 pair 50 pair 8.20 50 pair 4.50 0.0900 0.1640
Tubes 3 2.0 mL 500 pieces 11.90 1000 pieces 21.90 0.0657 0.0714
4 1.5 mL 500 pieces 8.20 1000 pieces 14.90 0.0596 0.0656
Tips 14 1000 µL 500 pieces 5.08 1000 pieces 7.70 0.1078 0.1421
Tips 4 200 µL 500 pieces 5.40 1000 pieces 8.19 0.0328 0.0432
Tips 1 10 µL 1000 pieces 27.14 2000 pieces 43.42 0.0217 0.0271
TEN buffer 0.7 mL 100 mM Tris 8.48 mg 500 g 93.40 1000 g 128.00 0.0011 0.0016
100 mM EDTA 20.45 mg 100 g 34.08 1000 g 245.23 0.0050 0.0070
100 mM NaCl 4.09 mg 500 g 15.84 1000 g 24.19 9.9E-05 1.3E-04
5 mg mL-1 Lysozyme 3.5 mg 1.0 g 23.89 10 g 96.04 0.0336 0.0836
SDS 0.035 mL 20% w/v 0.007 mg 100 g 16.56 1000 g 56.48 4.0E-07 1.2E-06
Proteinase K 0.01 mL 20 mg mL-1 0.2 mg 100 mg 67.68 500 mg 259.62 0.1038 0.1354
Silica beads ID 0.1 mm 250 mg 1000 g 24.30 25000 g 202.00 2.0E-03 0.0061
Silica beads ID 0.5 mm 250 mg 1000 g 25.23 20000 g 227.18 0.0028 0.0063
Silica beads 2 beads ID 6.0 mm 69 mg 500 g 34.20 1000 g 12.35 0.0009 0.0047
Ammoniumacetate 0.145 mL 10 M 111.8 mg 250 g 15.30 1000 g 45.29 0.0051 0.0068
RNase A 0.005 mL 1 mg mL-1 0.005 mg 250 mg 94.40 1000 mg 292.00 0.0015 0.0019
Phenol:Chloroform:Isoamyl 1.5 mL 25' Phenol 0.75 g 100 g 18.00 1000 g 64.40 0.0483 0.1350
(25:24:1 v/v) 24' Chloroform 0.72 mL 500 mL 50.62 2500 mL 100.66 0.0290 0.0729
1' Isoamyl 0.03 mL 25 mL 13.92 1000 mL 108.00 0.0032 0.0167
Chloroform:Isoamyl 0.7 mL 24' Chloroform 0.672 mL 500 mL 50.62 2500 mL 100.66 0.0271 0.0680
(24:1 v/v) 1' Isoamyl 0.028 mL 25 mL 13.92 1000 mL 108.00 0.0030 0.0156
Sodiumaceate (1:10 v/v) 0.07 mL 3 M 17.2 mg 250 g 22.47 1000 g 56.30 0.0010 0.0015
Ethanol (2:1 v/v) 1.4 mL 98% 1.37 mL 250 mL 47.56 2500 mL 246.58 0.1353 0.2610
Ethanol 1.0 mL 70% 0.7 mL 250 mL 47.56 2500 mL 246.58 0.0690 0.1332
TE buffer 0.1 mL 10 mM Tris–HCl 0.12 mg 100 g 34.08 1000 g 245.23 3.0E-05 4.1E-05
1.0 mM EDTA 0.03 mg 500 g 93.40 1000 g 128.00 3.7E-06 5.5E-06
Extracted samples 12
Extraction time 170 min
Lab staff (per hour) 35.00 25.00
Lab staff (€/extraction) 5.90 8.26
Chemicals (€/extraction) 0.47 0.96
Gloves, tubes, tips (€/extraction) 0.38 0.51
Final price per extraction including extraction time, lab staff and all consumables (€) 6.75 9.73

Table 11.

Cost analysis for DNA extraction procedure J (according to Wilson [7]).

Consumables Volumes Units Concentration Volumes /Weight High costs
Low costs
Low cost High cost
Amount Unit Fix cost (€) Amount Unit Fix cost (€) per Prep (€) per Prep (€)
Gloves (any size) 1 pair 50 pair 8.20 50 pair 4.50 0.0900 0.1640
Tubes 3 2.0 mL 500 pieces 11.90 1000 pieces 21.90 0.0657 0.0714
Tips 9 1000 µL 500 pieces 5.08 1000 pieces 7.70 0.0693 0.0914
Tips 4 200 µL 500 pieces 5.40 1000 pieces 8.19 0.0328 0.0432
Tips 1 10 µL 1000 pieces 27.14 2000 pieces 43.42 0.0217 0.0271
TE buffer 0.567 mL 10 mM Tris 0.69 mg 100 g 34.08 1000 g 245.23 0.0002 0.0002
10 mM EDTA 1.66 mg 500 g 93.40 1000 g 128.00 0,0002 0.0003
SDS 0.03 mL 10% w/v 0.003 mg 100 g 16.56 1000 g 56.48 1.7E-07 5.0E-07
Proteinase K 0.003 mL 20 mg mL-1 0.06 mg 100 mg 67.68 500 mg 259.62 0.0312 0.0406
NaCl 0.1 mL 5 M 29.22 mg 500 g 15.84 1000 g 24.19 7.1E-04 9.3E-04
CTAB/NaCl 0.08 mL 0,7 M NaCl 3,3 mg 500 g 15.84 1000 g 24.19 0.0001 0.1037
10% w/v CTAB 0.008 mg 100 g 22.64 1000 g 89.11 7.1E-07 1.8E-06
Chloroform:Isoamyl 1.0 mL 24' Chloroform 0.96 mL 500 mL 50.62 2500 mL 100.66 0.0387 0.0972
(24:1 v/v) 1' Isoamyl 0.04 mL 25 mL 13.92 1000 mL 108.00 0.0043 0.0223
Phenol:Chloroform:Isoamyl 0.9 mL 25' Phenol 0.45 g 100 g 18.00 1000 g 64.40 0.0290 0.0810
(25:24:1 v/v) 24' Chloroform 0.432 mL 500 mL 50.62 2500 mL 100.66 0.0174 0.0437
1' Isoamyl 0.018 mL 25 mL 13.92 1000 mL 108.00 0.0019 0.0100
Isopropanol (0.6: 1 v/v) 0.3 mL 100% 0.3 mL 1000 mL 30.30 2500 mL 61.70 0.0074 0.0091
Ethanol 0.5 mL 70% 0.35 mL 250 mL 47.56 2500 mL 246.58 0.0345 0.0666
TE buffer 0.1 mL 10 mM Tris–HCl 0.12 mg 100 g 34.08 1000 g 245.23 3.0E-05 4.1E-05
1.0 mM EDTA 0.03 mg 500 g 93.40 1000 g 128.00 3.7E-06 5.5E-06
Extracted samples 12
Extraction time 105 min
Lab staff (per hour) 35.00 25.00
Lab staff (€/extraction) 3.65 5.10
Chemicals (€/extraction) 0.17 0.48
Gloves, tubes, tips (€/extraction) 0.28 0.40
Final price per extraction including extraction time, lab staff and all consumables (€) 4.09 5.98

Table 12.

Cost analysis for FastDNA SPIN Kit for Soil.

Consumables Volumes Units Concentration Volumes /Weight High costs
Low costs
Low cost High cost
Amount Unit Fix cost (€) Amount Unit Fix cost (€) per Prep (€) per Prep (€)
Gloves (any size) 1 pair 50 pair 8.20 50 pair 4.50 0.090 0.164
Tips 12 1000 µl 500 pieces 5.08 1000 pieces 7.70 0.092 0.122
Tips 4 200 µL 500 pieces 5.40 1000 pieces 8.19 0.033 0.043
Tips 1 10 µl 1000 pieces 27.14 2000 pieces 43.42 0.022 0.027
Test Kit 50 extractions 390.00 100 extractions 820.00 8.20 7.80
Extracted samples 12
Extraction time 45 min
lab staff (per hour) 35.00 25.00 1.56 2.19
Lab staff (€/extraction) 1.56 2.19
Chemicals (€/extraction) 8.20 7.80
Gloves, tubes, tips (€/extraction) 0.24 0.36
Final price per extraction including extraction time, lab staff and all consumables (€) 10.00 10.34

Table 13.

Cost analysis for DNeasy power water kit.

Consumables Volumes Units Concentration Volumes /Weight Amount High costs
Low costs
Low cost High cost
Unit Fix cost (€) Amount Unit Fix cost (€) per Prep (€) per Prep (€)
Gloves (any size) 1 pair 50 pair 8.20 50 pair 4.50 0.090 0.164
Tips 12 1000 µl 500 pieces 5.08 1000 pieces 7.70 0.092 0.122
Tips 4 200 µL 500 pieces 5.40 1000 pieces 8.19 0.033 0.043
Tips 1 10 µl 1000 pieces 27.14 2000 pieces 43.42 0.022 0.027
Test Kit 50 extractions 558.61 100 extractions 1062.9 10.63 11.17
Extracted samples 12
Extraction time 40 min
lab staff (per hour) 35.00 25.00 1.39 1.94
Lab staff (€/extraction) 1.39 1.94
Chemicals (€/extraction) 10.63 11.17
Gloves, tubes, tips (€/extraction) 0.24 0.36
Final price per extraction including extraction time, lab staff and all consumables (€) 12.25 13.47

2. Experimental design, materials and methods

The sample preservation, DNA extraction, PCR performance and gel electrophoresis were described elsewhere [1]. For the cost analysis, a cost range was estimated ranging between minimum and maximum prices for all needed consumables. The number of required tubes and tips per extraction was counted. In all equations that follow, an index was included identifying low or high cost calculations, respectively. For clarification, the letter x represents all low cost calculations and the letter y represents all high cost calculations. The individual cost per chemical needed for every DNA extraction was calculated either with Eqs. (1) or (2), where mextraction is the chemical weight required for a single DNA extraction and mtotal,fix cost is the total weight corresponding to the fix cost. The individual cost for additional consumables such as gloves, tubes and/or tips was calculated either with Eqs. (3) or (4).

Chemicalcostsx[/prep]=mextraction×Fixcostxmtotal,fixcostx (1)
Chemicalcostsy[/prep]=mextraction×Fixcostymtotal,fixcosty (2)
Additionalconcumablecostsx[/prep]=Consumbleusedextraction×FixcostxTotalconsumablefixcostx (3)
Additionalconcumablecostsy[/prep]=Consumbleusedextraction×FixcostyTotalconsumablefixcosty (4)

The cost for the lab staff was calculated either with Eqs. (5) or (6). The calculation is based on a total of 12 extractions per staff and the individual extraction time of the tested extraction procedures.

Labstaffx[/prep]=(Coststaffx/Hour12extractions)×(Extractiontime60min) (5)
Labstaffy[/prep]=(Coststaffx/Hour12extractions)×(Extractiontime60min) (6)

The sum of total costs of chemicals was calculated either with Eqs. (7) or (8). The total costs of all additional consumables needed per extraction was calculated either with Eqs. (9) or (10). The final price per preparation was then calculated either with Eqs. (11) or (12) considering the cost for the lab staff, for all chemicals and additional consumables needed.

Totalchemcialcostsx[/prep]=Chemicalcostsx (7)
Totalchemcialcostsy[/prep]=Chemicalcostsy (8)
Totaladditionalconsumablescostsx[/prep]=Additionalconsumablecostsx (9)
Totaladditionalconsumablescostsy[/prep]=Additionalconsumablecostsy (10)
Finalpricex[/prep]=Labstaffx+Chemicalcostsx+Additionalconsumablecostsx (11)
Finalpricey[/prep]=Labstaffy+Chemicalcostsy+Additionalconsumablecostsy (12)

2.1. Cost analysis

See Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 12, Table 13.

Footnotes

Transparency document

Transparency document associated with this article can be found in the online version at doi:10.1016/j.dib.2017.11.082.

Transparency document. Supplementary material

Supplementary material

mmc1.pdf (350.8KB, pdf)

References

  • 1.Kuhn R., Böllmann J., Krahl K., Bryant I.M., Martienssen M. Comparison of ten different DNA extraction procedures with respect to their suitability for environmental samples. J. Microbiol. Methods. 2017;143:78–86. doi: 10.1016/j.mimet.2017.10.007. [DOI] [PubMed] [Google Scholar]
  • 2.Gabor M.E., de Vries E.J., Janssen D.B. Efficient recovery of environmental DNA for expression cloning by indirect extraction methods. FEMS Microbiol. Ecol. 2003;44:153–163. doi: 10.1016/S0168-6496(02)00462-2. [DOI] [PubMed] [Google Scholar]
  • 3.Shan G., Jin W., Lam E.K., Xing X. Purification of total DNA extracted from activated sludge. J. Environ. Sci. 2008;20:80–87. doi: 10.1016/s1001-0742(08)60012-1. [DOI] [PubMed] [Google Scholar]
  • 4.Orsini M., Romano-Spica V. A microwave-based method for nucleic acid isolation from environmental samples. Lett. Appl. Microbiol. 2001;33:17–20. doi: 10.1046/j.1472-765x.2001.00938.x. [DOI] [PubMed] [Google Scholar]
  • 5.Tabatabaei M., Zakaria M.R., Rahim R.A., Abdullah N., Wright D.G., Shirai Y., Shamsara M., Sakai K., Hassan M.A. Comparative study of methods for extraction and purification of environmental DNA from high-strength wastewater sludge. Afr. J. Biotechnol. 2010;9:4926–4937. [Google Scholar]
  • 6.Tresse O., Lorrain M.J., Roh D. Population dynamics of free-floating and attached bacteria in a styrene-degrading biotrickling filter analyzed by denaturating gradient gel electrophoresis. Appl. Microbiol. Biot. 2002;59:585–590. doi: 10.1007/s00253-002-1039-z. [DOI] [PubMed] [Google Scholar]
  • 7.Wilson K. Preparation of genomic DNA from bacteria. Curr. Proced. Mol. Biol. 2001 doi: 10.1002/0471142727.mb0204s56. 00:I:2.4:2.4.1–2.4.5. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary material

mmc1.pdf (350.8KB, pdf)

Articles from Data in Brief are provided here courtesy of Elsevier

RESOURCES