Skip to main content
Springer logoLink to Springer
. 2017 Dec 19;2017(1):310. doi: 10.1186/s13660-017-1582-x

Generalized (p,q)-Bleimann-Butzer-Hahn operators and some approximation results

M Mursaleen 1,2,, Md Nasiruzzaman 3, Khursheed J Ansari 4, Abdullah Alotaibi 2
PMCID: PMC5736783  PMID: 29290665

Abstract

The aim of this paper is to introduce a new generalization of Bleimann-Butzer-Hahn operators by using (p,q)-integers which is based on a continuously differentiable function μ on [0,)=R+. We establish the Korovkin type approximation results and compute the degree of approximation by using the modulus of continuity. Moreover, we investigate the shape preserving properties of these operators.

Keywords: (p,q)-integers; (p,q)-Bernstein operators; q-Bleimann-Butzer-Hahn operators; (p,q)-Bleimann-Butzer-Hahn operators; modulus of continuity; rate of approximation; Lipschitz type maximal function space

Introduction and preliminaries

The q-generalization of Bernstein polynomials [1] was introduced by Lupaş [2] as follows:

Ln,q(f;x)=1j=1n{(1x)+qj1x}i=0nf([i]q[n]q)[ni]qqi(i1)2xi(1x)ni.

In 1997, Phillips [3] introduced another modification of Bernstein polynomials, obtained the rate of convergence and the Voronovskaja type asymptotic expansion for these polynomials.

The (p,q)-integer was introduced in order to generalize or unify several forms of q-oscillator algebras well known in the early physics literature related to the representation theory of single parameter quantum algebras [4].

In the recent years, the first (p,q)-analogue of Bernstein operators was introduced by Mursaleen et al. (see [5]), and some approximation properties were studied (see [69]). Moreover, the (p,q)-calculus in computer-aided geometric design (CAGD) given by Khalid et al. (see [10]) will help readers to understand the applications. Besides this, we also refer the reader to some recent papers on (p,q)-calculus in approximation theory [1120] and [21].

We recall some definitions and notations of (p,q)-calculus.

The (p,q) integers [n]p,q are defined by

[n]p,q=pn1+qpn2++qn1={pnqnpq(pq1),1qn1q(p=1),n(p=q=1),(au+bv)p,qn:=i=0np(ni)(ni1)2qi(i1)2[ni]p,qanibiunivi,(u+v)p,qn=(u+v)(pu+qv)(p2u+q2v)(pn1u+qn1v),(1u)p,qn=(1u)(pqu)(p2q2u)(pn1qn1u) 1.1

and the (p,q)-binomial coefficients are defined by

[ni]p,q=[n]p,q![i]p,q![ni]p,q!.

By a simple calculation [5], we have the following relation:

qi[ni+1]p,q=[n+1]p,qpni+1[i]p,q.

For details on q-calculus and (p,q)-calculus, one can refer to [2225].

Totik [26] studied the uniform approximation properties of Bleimann-Butzer-Hahn operators [27] when f belongs to the class C(R+) of continuous functions on R+ that have finite limits at infinity.

The Bleimann-Butzer-Hahn operators (BBH) based on q-integers are defined as follows:

Lnq(f;x)=1n,q(x)i=0nf([i]q[ni+1]qqi)qi(i1)2[ni]qxi,

where n,q(x)=i=0n1(1+qsx). For q=1, these operators reduce to the classical BBH operators [27].

For fC[0,1], x[0,1], Morales et al. [28] introduced a new generalization of Bernstein polynomials denoted by Bnμ

Bnμ(f;x)=Bn(fμ1;μ(x))=i=0n[ni]μ(x)i(1μ(x))ni(fμ1)(in),

where μ is a continuously differentiable function of infinite order on [0,1] such that μ(0)=0, μ(1)=1, and μ(x)>0 for x[0,1]. They have also studied some shape preserving and convergence properties on approximation concerning the generalized Bernstein operators Bnμ(f;x).

For 0<q<p1 and f defined on semiaxis R+, we give a generalization of (p,q)-Bleimann-Butzer-Hahn type operators (see [21]) as follows:

Ln,μp,q(f;x)=1n,μp,q(x)i=0n(fμ1)(pni+1[i]p,q[ni+1]p,qqi)p(ni)(ni1)2qi(i1)2[ni]p,qμ(x)i, 1.2

where

n,μp,q(x)=s=0n1(ps+qsμ(x)),

and μ is a continuously differentiable function defined on R+ having the property

μ(0)=0andinfx[0,)μ(x)1. 1.3

We can easily see that

Ln,μp,qf=Ln,p,q(fμ1)μ,

where Ln,p,q is defined in [21] as

Ln,p,q(f;x)=1n,p,q(x)i=0nf(pni+1[i]p,q[ni+1]p,qqi)p(ni)(ni1)2qi(i1)2[ni]p,qxi.

The operators defined by (1.2) are more flexible and sensitive to the rate of convergence than the (p,q)-BBH operators. Our results show that the new operators are sensitive to the rate of convergence to f, depending on the selection of μ. For the particular case μ(x)=x, the previous results for (p,q)-Bleimann-Butzer-Hahn operators are obtained (see [21]).

Lemma 1.1

Let Ln,μp,q be operators defined by (1.2). Then, for a continuously differentiable function μ(x) on R+ defined by (1.3), we have

Ln,μp,q(f;x)={1,for f(t)=1,p[n]p,q[n+1]p,q(μ(x)1+μ(x)),for f(t)=μ(t)1+μ(t),pq2[n]p,q[n1]p,q[n+1]p,q2μ(x)2(1+μ(x))(p+qμ(x))+pn+1[n]p,q[n+1]p,q2(μ(x)1+μ(x)),for f(t)=(μ(t)1+μ(t))2. 1.4

Proof

For the proof of this lemma, we refer to [21]. □

Korovkin type approximation result

Here we propose to obtain a Korovkin type approximation theorem for operators Ln,μp,q.

Let CB(R+) denote the set of all bounded and continuous functions defined on R+. CB(R+) is a normed linear space with

fCB=supu0|f(u)|.

The modulus of continuity ω is a non-negative and non-decreasing function defined on R+ such that it is sub-additive and limδ0ω(δ)=0.

One can easily see that

ω(nδ)nω(δ),nN, 2.1
ω(λδ)ω(1+[|λ|])1+λω(δ),λ>0, 2.2

where [|λ|] denotes the greatest integer which is not greater than λ.

Let Hω denote the space of all real-valued functions f defined on R+ satisfying

|f(u)f(v)|ω(|μ(u)1+μ(u)μ(v)1+μ(v)|) 2.3

for any u,vR+.

Theorem 2.1

([29])

Let Pn:HωCB(R+) be a sequence of positive linear operators such that

limnPn((μ(t)1+μ(t))ν;x)(μ(x)1+μ(x))νCB=0

for ν=0,1,2. Then, for any function fHω,

limnPn(f)fCB=0.

To compute the convergence results for the operators Ln,μp,q defined by (1.2), we take q=qn, p=pn, where 0<qn<pn1 satisfying

limnpn=1,limnqn=1, 2.4
limnpnn=a,limnqnn=b(0<a,b1). 2.5

Theorem 2.2

Let Ln,μp,q be operators defined by (1.2) and take p=pn, q=qn satisfying (2.5). Then, for 0<qn<pn1 and any function fHω, we have

limnLn,μpn,qn(f)fCB=0. 2.6

Proof

Here we use Theorem 2.1. For ν=0,1,2, it is sufficient to verify the following three conditions:

limnLn,μpn,qn((μ(t)1+μ(t))ν;x)(μ(x)1+μ(x))νCB=0.

For ν=0, applying Lemma 1.1, (2.6) is fulfilled. Now, we observe that

Ln,μpn,qn((μ(t)1+μ(t));x)(μ(x)1+μ(x))CB|pn[n]pn,qn[n+1]pn,qn1||(pnqn)(1pnn1[n+1]pn,qn)1|.

Here we have used qn[n]pn,qn=[n+1]pn,qnpnn, [n+1]pn,qn as n, equation (2.6) holds for ν=1. Now, to verify for ν=2, we see that

Ln,μpn,qn((μ(t)1+μ(t))2;x)(μ(x)1+μ(x))2CB=supx0{μ(x)2(1+μ(x))2(pnqn2[n]pn,qn[n1]pn,qn[n+1]pn,qn21+μ(x)pn+qnμ(x)1)+pnn+1[n]pn,qn[n+1]pn,qn2μ(x)1+μ(x)}.

By a simple calculation, we have

[n]pn,qn[n1]pn,qn[n+1]pn,qn2=1qn3{1pnn(2+qnpn)1[n+1]pn,qn+(pnn)2(1+qnpn)1[n+1]pn,qn2},

and

[n]pn,qn[n+1]pn,qn2=1qn(1[n+1]pn,qnpnn1[n+1]pn,qn2).

Thus, we have

Ln,μpn,qn((μ(t)1+μ(t))2;x)(μ(x)1+μ(x))2CBpnqn{1pnn(2+qnpn)1[n+1]pn,qn+(pnn)2(1+qnpn)1[n+1]pn,qn21}+pnnpnqn(1[n+1]pn,qnpnn1[n+1]pn,qn2).

Hence (2.6) holds for ν=2, and the proof is completed by Theorem 2.1. □

Rate of convergence

In this section, we determine the rate of convergence of operators Ln,μp,q.

For fHω, the modulus of continuity is defined by

ω˜(f;δ)=|μ(u)1+μ(u)μ(v)1+μ(v)|δ,u,v0|f(u)f(v)|

which satisfies the following conditions:

  1. ω˜(f;δ)0 (δ0);

  2. |f(u)f(v)|ω˜(f;δ)(|μ(u)1+μ(u)μ(v)1+μ(v)|δ+1).

Theorem 3.1

Let p=pn, q=qn, 0<qn<pn1 satisfying (2.5). Then, for each μ defined by (1.3) on R+ and for any function fHω, we have

|Ln,μpn,qn(f;x)f(x)|2ω˜(f;δnμ(x)),

where

δnμ(x)=μ(x)2(1+μ(x))2(pnqn2[n]pn,qn[n1]pn,qn[n+1]pn,qn21+μ(x)pn+qnμ(x)2pn[n]pn,qn[n+1]pn,qn+1)+pnn+1[n]pn,qn[n+1]pn,qn2μ(x)1+μ(x).

Proof

For Ln,μpn,qn, we have

|Ln,μpn,qn(f;x)f(x)|Ln,μpn,qn(|f(t)f(x)|;x)ω˜(f;δ){1+1δLn,μpn,qn(|μ(t)1+μ(t)μ(x)1+μ(x)|;x)}.

Applying the Cauchy-Schwarz inequality, we get

|Ln,μpn,qn(f;x)f(x)|ω˜(f;δn){1+1δn[(Ln,μpn,qn(μ(t)1+μ(t)μ(x)1+μ(x))2;x)]12(Ln,μpn,qn(1;x))12}ω˜(f;δn){1+1δn[μ(x)2(1+μ(x))2(pnqn2[n]pn,qn[n1]pn,qn[n+1]pn,qn21+μ(x)pn+qnμ(x)2pn[n]pn,qn[n+1]pn,qn+1)+pnn+1[n]pn,qn[n+1]pn,qn2μ(x)1+μ(x)]12}.

This completes the proof. □

Pointwise estimation of the operators Ln,μp,q

The aim of this section is to give an estimate concerning the rate of convergence. Here, we take the Lipschitz type maximal function space defined on FR+ (see [30])

E˜β,F={f˜:sup(1+u)βf˜β(u)C1(1+v)β:u0,and vF},

where is a bounded and continuous function on R+, 0<β1 and C is a positive constant.

Lenze [31] introduced a Lipschitz type maximal function fβ as follows:

fβ(u,v)=u>0uv|f(u)f(v)||uv|β.

Theorem 4.1

Let Ln,μp,q be operators defined by (1.2). Then, for all fE˜β,F, we have

|Ln,μp,q(f;x)f(x)|C((δnμ(x))β+2(inf{|xy|;yF})β),

where δnμ(x) is defined in Theorem  3.1.

Proof

Let be the closure of F. Then there exists x0F such that |xx0|=d(x,F)=inf{|xy|;yF}, where xR+. Thus we can write

|ff(x)||ff(x0)|+|f(x0)f(x)|.

For fE˜β,F, we have

|Ln,μp,q(f;x)f(x)|Ln,μp,q(|ff(x0)|;x)+|f(x0)f(x)|Ln,μp,q(1;x)C(Ln,μp,q(|μ(t)1+μ(t)μ(x0)1+μ(x0)|β;x)+|μ(x)μ(x0)|β(1+μ(x))β(1+μ(x0))βLn,μp,q(1;x)).

Using the inequality (u+v)βuβ+vβ, we obtain

Ln,μp,q(|μ(t)1+μ(t)μ(x0)1+μ(x0)|β;x)Ln,μp,q(|μ(t)1+μ(t)μ(x)1+μ(x)|β;x)+Ln,μp,q(|μ(x)1+μ(x)μ(x0)1+μ(x0)|β;x)Ln,μp,q(|μ(t)1+μ(t)μ(x)1+μ(x)|β;x)+|μ(x)μ(x0)|β(1+μ(x))β(1+μ(x0))βLn,μp,q(1;x).

Applying Hölder’s inequality, we have

Ln,μp,q(|μ(t)1+μ(t)μ(x0)1+μ(x0)|β;x)Ln,μp,q((μ(t)1+μ(t)μ(x)1+μ(x))2;x)β2(Ln,μp,q(1;x))2β2+|μ(x)μ(x0)|β(1+μ(x))β(1+μ(x0))βLn,μp,q(1;x)(δnμ)β+|μ(x)μ(x0)|β(1+μ(x))β(1+μ(x0))β.

This completes the proof. □

Corollary 4.2

For F=R+, we have

|Ln,μp,q(f;x)f(x)|C(δnμ(x))β,

where δnμ is defined in Theorem  3.1.

Other results

Theorem 5.1

If x(0,){pni+1[i]p,q[ni+1]p,qqi|i=0,1,2,,n}, then

Ln,μp,q(f;x)f(pxq)=μ(x)n+1n,μp,q(x)pqn(n1)21[pμ(x)q;p[n]p,qqn;(fμ1)]+μ(x)n,μp,q(x)i=0n1[pμ(x)q;pni+1[i]p,q[ni+1]p,qqi;(fμ1)]×1[ni]p,qp(ni)(ni+1)2+1qi(i3)22[ni]p,qμ(x)i.

Proof

We have

Ln,μp,q(f;x)f(pxq)=1n,μp,q(x)i=0n[(fμ1)(pni+1[i]p,q[ni+1]p,qqi)f(pxq)]p(ni)(ni1)2qi(i1)2[ni]p,qμ(x)i=1n,μp,q(x)i=0n(pμ(x)qpni+1[i]p,q[ni+1]p,qqi)[pμ(x)q;pni+1[i]p,q[ni+1]p,qqi;(fμ1)]×p(ni)(ni1)2qi(i1)2[ni]p,qμ(x)i.

Using [i]p,q[ni+1]p,q[ni]p,q=[ni1]p,q, we have

Ln,μp,q(f;x)f(pxq)=μ(x)n,μp,q(x)i=0n[pμ(x)q;pni+1[i]p,q[ni+1]p,qqi;(fμ1)]×p(ni)(ni1)2+1qi(i1)21[ni]p,qμ(x)i+1n,μp,q(x)i=1n[pμ(x)q;pni+1[i]p,q[ni+1]p,qqi;(fμ1)]×p(ni)(ni1)2(in1)qi(i1)2i[ni1]p,qμ(x)i=μ(x)n,μp,q(x)i=0n[pμ(x)q;pni+1[i]p,q[ni+1]p,qqi;(fμ1)]×p(ni)(ni1)2+1qi(i1)21[ni]p,qμ(x)i+μ(x)n,μp,q(x)i=0n1[pμ(x)q;pni[i+1]p,q[ni]p,qqi+1;(fμ1)]×p(ni1)(ni2)2(in)qi(i+1)2(i+1)[ni]p,qμ(x)i=μ(x)n+1n,μp,q(x)[pμ(x)q;p[n]p,qqn;(fμ1)]pqn(n1)21+μ(x)n,μp,q(x)i=0n1{[pμ(x)q;pni[i+1]p,q[ni]p,qqi+1;(fμ1)][pμ(x)q;pni+1[i]p,q[ni+1]p,qqi;(fμ1)]}p(ni)(ni1)2+1qi(i1)21[ni]p,qμ(x)i.

By a simple calculation, we have

[pμ(x)q;pni[i+1]p,q[ni]p,qqi+1;(fμ1)][pμ(x)q;pni+1[i]p,q[ni+1]p,qqi;(fμ1)]=(pni[i+1]p,q[ni]p,qqi+1pni+1[i]p,q[ni+1]p,qqi)(fμ1)×[pμ(x)q;pni+1[i]p,q[ni+1]p,qqi;pni[i+1]p,q[ni]p,qqi+1;(fμ1)]

and

pni[i+1]p,q[ni]p,qqi+1pni+1[i]p,q[ni+1]p,qqi=[n+1]p,q,

we have

Ln,μp,q(f;x)f(pxq)=μ(x)n+1n,μp,q(x)[pμ(x)q;p[n]p,qqn;(fμ1)]pqn(n1)21+μ(x)n,μp,q(x)i=0n1{[pμ(x)q;pni+1[i]p,q[ni+1]p,qqi;(fμ1)]×pni[n+1]p,q[ni]p,q[ni+1]p,qqi+1}p(ni)(ni1)2+1qi(i1)21[ni]p,qμ(x)i.

This completes the proof. □

Shape preserving properties

Theorem 6.1

Let fE˜β,R+, which is a μ-convex function non-increasing on R+. Then we have

Ln,μp,q(f;x)Ln+1,μp,q(f;x),nN.

Proof

We have

Ln,μp,q(f;x)Ln+1,μp,q(f;x)=1n+1,μp,q(x)i=0n(fμ1)(pni+1[i]p,q[ni+1]p,qqi;)p(ni)(ni1)2qi(i1)2[ni]p,q×μ(x)i(pn+qnμ(x))+1n+1,μp,q(x)i=0n+1(fμ1)(pni+2[i]p,q[ni+2]p,qqi;)p(ni+1)(ni+2)2qi(i1)2[n+1i]p,qμ(x)i=1n+1,μp,q(x)i=0n(fμ1)(pni+1[i]p,q[ni+1]p,qqi;)p(ni)(ni1)2+nqi(i1)2[ni]p,qμ(x)i+1n+1,μp,q(x)i=0n(fμ1)(pni+1[i]p,q[ni+1]p,qqi;)p(ni)(ni1)2qi(i1)2+n[ni]p,qμ(x)i+11n+1,μp,q(x)i=0n+1(fμ1)(pni+2[i]p,q[ni+2]p,qqi;)p(ni+1)(ni+2)2qi(i1)2[n+1i]p,qμ(x)i=μ(x)n+1n+1,μp,q(x)qn(n+1)2[(fμ1)(p[n]p,qqn)(fμ1)(p[n+1]p,qqn+1)]+1n+1,μp,q(x)i=1n(fμ1)(pni+1[i]p,q[ni+1]p,qqi;)p(ni)(ni1)2+nqi(i1)2[ni]p,qμ(x)i+1n+1,μp,q(x)i=0n1(fμ1)(pni+1[i]p,q[ni+1]p,qqi;)p(ni)(ni1)2qi(i1)2+n[ni]p,qμ(x)i+11n+1,μp,q(x)i=1n(fμ1)(pni+2[i]p,q[ni+2]p,qqi;)p(ni+1)(ni+2)2qi(i1)2[n+1i]p,qμ(x)i=μ(x)n+1n+1,μp,q(x)qn(n+1)2[(fμ1)(p[n]p,qqn)(fμ1)(p[n+1]p,qqn+1)]+1n+1,μp,q(x)i=0n1(fμ1)(pni[i+1]p,q[ni]p,qqi+1;)p(ni)(ni1)2+nqi(i+1)2[ni+1]p,qμ(x)i+1+1n+1,μp,q(x)i=0n1(fμ1)(pni+1[i]p,q[ni+1]p,qqi;)p(ni)(ni1)2qi(i1)2+n[ni]p,qμ(x)i+11n+1,μp,q(x)i=0n1(fμ1)(pni+1[i+1]p,q[ni+1]p,qqi+1;)p(ni)(ni+1)2qi(i+1)2[n+1i+1]p,qμ(x)i+1.

By a simple calculation, we have

[n+1i+1]p,q=[n]p,q[n+1]p,q[ni]p,q[i+1]p,q[n1i]p,q,[ni]p,q=[n]p,q[ni]p,q[n1i]p,q,[ni+1]p,q=[n]p,q[i+1]p,q[n1i]p,q,

we get

Ln,μp,q(f;x)Ln+1,μp,q(f;x)=μ(x)n+1n+1,μp,q(x)qn(n+1)2[(fμ1)(p[n]p,qqn)(fμ1)(p[n+1]p,qqn+1)]+1n+1,μp,q(x)i=0n1p(ni)(ni1)2qi(i+1)2[n]p,q[n+1]p,q[ni]p,q[i+1]p,q[n1i]p,qμ(x)i+1×{(fμ1)(pni[i+1]p,q[ni]p,qqi+1;)pn[ni]p,q[n+1]p,q+(fμ1)(pni+1[i]p,q[ni+1]p,qqi;)qni[i+1]p,q[n+1]p,q(fμ1)(pni+1[i+1]p,q[ni+1]p,qqi+1;)pni}.

By the calculation, p[n+1]p,qqn+1p[n]p,qqn=(pq)n+1, hence we have

(fμ1)(p[n]p,qqn)(fμ1)(p[n+1]p,qqn+1)>0.

Since f is μ-convex, by using [32], we obtain

Ln,μp,q(f;x)Ln+1,μp,q(f;x)>0,

where x[0,) and nN.

This completes the proof. □

Generalization of Ln,μp,q

In this section, we give a generalization of the operators Ln,μp,q based on (p,q)-integers similar to the work done in [30, 33].

Consider

Ln,μ,γp,q(f;x)=1n,μp,q(x)i=0n(fμ1)(pni+1[i]p,q+γθn,i)×p(ni)(ni1)2qi(i1)2[ni]p,qμ(x)i(γR),

where θn,i satisfies the following conditions:

pni+1[i]p,q+θn,i=bnand[n]p,qbn1for n.

Note that for μ=t, these operators reduce to [21]. If we choose γ=0, q=1, p=1 and μ=t, then we get the Balázs type generalization of q-BBH operators [30] given in [33].

Theorem 7.1

Let p=pn, q=qn, 0<qn<pn1 satisfying (2.5). Then, for any function fE˜β,R+, we have

limnLn,μ,γpn,qn(f;x)f(x)CB3Cmax{([n]pn,qnbn+γ)β(γ[n]pn,qn)β,|1[n+1]pn,qnbn+γ|β(pn[n]pn,qn[n+1]pn,qn)β,12pn[n]pn,qn[n+1]pn,qn+qn[n]pn,qn[n1]pn,qn[n+1]pn,qn2}.

Proof

We have

|Ln,μ,γpn,qn(f;x)f(x)|1n,μpn,qn(x)i=0n|(fμ1)(pnni+1[i]pn,qn+γθn,i)(fμ1)(pnni+1[i]pn,qnγ+θn,i)|×pn(ni)(ni1)2qni(i1)2[ni]pn,qnμ(x)i+1n,μpn,qn(x)i=0n|(fμ1)(pnni+1[i]pn,qnγ+θn,i)(fμ1)(pnni+1[i]pn,qn[ni+1]pn,qnqni)|×pn(ni)(ni1)2qni(i1)2[ni]pn,qnμ(x)i+|Ln,μ,γpn,qn(f;x)f(x)|.

Since fE˜β,R+ and by using Corollary 4.2, we can write

|Ln,μ,γpn,qn(f;x)f(x)|Cn,μpn,qn(x)i=0n|pnni+1[i]pn,qn+γpnni+1[i]pn,qn+γ+θn,ipnni+1[i]pn,qnγ+pnni+1[i]pn,qn+θn,i|β×pn(ni)(ni1)2qni(i1)2[ni]pn,qnμ(x)i+Cn,μpn,qn(x)i=0n|pnni+1[i]pn,qnpnni+1[i]pn,qn+γ+θn,ipnni+1[i]pn,qnpnni+1[i]pn,qn+[ni+1]pn,qnqni|×pn(ni)(ni1)2qni(i1)2[ni]pn,qnμ(x)i+C(δnμ)β2.

This implies that

|Ln,μ,γpn,qn(f;x)f(x)|C([n]pn,qnbn+γ)β(γ[n]pn,qn)β+Cn,μpn,qn(x)|1[n+1]pn,qnbn+γ|βi=0n(pnni+1[i]pn,qn[n+1]pn,qn)βpn(ni)(ni1)2qni(i1)2[ni]pn,qnμ(x)i+C(δnμ)β2=C([n]pn,qnbn+γ)β(γ[n]pn,qn)β+C|1[n+1]pn,qnbn+γ|βLn,μ,γpn,qn((μ(t)1+μ(t))β;x)+C(δnμ)β2.

Applying Hölder’s inequality, we get

|Ln,μ,γpn,qn(f;x)f(x)|C([n]pn,qnbn+γ)β(γ[n]pn,qn)β+C|1[n+1]pn,qnbn+γ|βLn,μ,γpn,qn(μ(t)1+μ(t);x)β(Ln,μ,γpn,qn(1;x))1β+C(δnμ)β2C([n]pn,qnbn+γ)β(γ[n]pn,qn)β+C|1[n+1]pn,qnbn+γ|β(pn[n]pn,qn[n+1]pn,qnμ(x)1+μ(x))β+C(δnμ)β2.

This completes the proof. □

Conclusion

In this paper we have used the (p,q)-integers to the Bleimann-Butzer-Hahn operators based on a continuously differentiable function μ on R+=[0,). We have obtained some approximation results on the Korovkin type theorem and computed the rate of convergence by using the modulus of continuity as well as Lipschitz type maximal functions. Further, we investigated the shape preserving properties of these operators.

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under grant number R.G.P. 1/13/38.

Authors’ contributions

All authors of the manuscript have read and agreed to its content and are accountable for all aspects of the accuracy and integrity of the manuscript. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Footnotes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contributor Information

M Mursaleen, Email: mursaleenm@gmail.com.

Md Nasiruzzaman, Email: nasir3489@gmail.com.

Khursheed J Ansari, Email: ansari.jkhursheed@gmail.com.

Abdullah Alotaibi, Email: mathker11@hotmail.com.

References

  • 1. Bernstein, SN: Constructive proof of Weierstrass approximation theorem. Commun. Kharkov Math. Soc. (1912)
  • 2.Lupaş A. Seminar on Numerical and Statistical Calculus. Cluj-Napoca: University of Cluj-Napoca; 1987. A q-analogue of the Bernstein operator; pp. 85–92. [Google Scholar]
  • 3.Phillips GM. Bernstein polynomials based on the q-integers. The heritage of P.L. Chebyshev. Ann. Numer. Math. 1997;4:511–518. [Google Scholar]
  • 4.Chakrabarti R, Jagannathan R. A (p;q)-oscillator realization of two parameter quantum algebras. J. Phys. A, Math. Gen. 1991;24:711–718. doi: 10.1088/0305-4470/24/13/002. [DOI] [Google Scholar]
  • 5.Mursaleen M, Ansari KJ, Khan A. On (p,q)-analogue of Bernstein operators. Appl. Math. Comput. 2015;266:874–882. [Google Scholar]
  • 6.Mursaleen M, Ansari KJ, Khan A. Some approximation results by (p,q)-analogue of Bernstein-Stancu operators. Appl. Math. Comput. 2015;264:392–402. [Google Scholar]
  • 7.Mursaleen M, Nasiuzzaman Md, Nurgali A. Some approximation results on Bernstein-Schürer operators defined by (p,q)-integers. J. Inequal. Appl. 2015;2015:249. doi: 10.1186/s13660-015-0767-4. [DOI] [Google Scholar]
  • 8.Mursaleen M, Nasiuzzaman Md, Ashirbayev N, Abzhapbarov A. Higher order generalization of Bernstein type operators defined by (p,q)-integers. J. Comput. Anal. Appl. 2018;25(5):817–829. [Google Scholar]
  • 9.Mursaleen M, Al-Abied A, Nasiruzzaman M. Approximation properties of modified (p,q)-Bernstein Schurer operators. Cogent Math. 2016;3:1236534. doi: 10.1080/23311835.2016.1236534. [DOI] [Google Scholar]
  • 10.Khan K, Lobiyal DK. Bezier curves based on Lupas (p;q)-analogue of Bernstein functions in CAGD. J. Comput. Appl. Math. 2017;317:458–477. doi: 10.1016/j.cam.2016.12.016. [DOI] [Google Scholar]
  • 11.Acar T, Aral A, Mohiuddine SA. On Kantorovich modification of (p,q)-Baskakov operators. J. Inequal. Appl. 2016;2016:98. doi: 10.1186/s13660-016-1045-9. [DOI] [Google Scholar]
  • 12.Acar T, Aral A, Mohiuddine SA. Approximation by bivariate (p,q)-Bernstein-Kantorovich operators. Iran. J. Sci. Technol., Trans. A, Sci. 2016 [Google Scholar]
  • 13.Acar T, Aral A, Mohiuddine SA. On Kantorovich modification of (p,q)-Bernstein operators. Iran. J. Sci. Technol., Trans. A, Sci. 2017 [Google Scholar]
  • 14.Kadak U, Mishra VN, Pandey S. Chlodowsky type generalization of (p,q)-Szász operators involving Brenke type polynomials. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 2017 [Google Scholar]
  • 15.Mishra VN, Pandey S. On (p,q)-Baskakov-Durrmeyer-Stancu operators. Adv. Appl. Clifford Algebras. 2016 [Google Scholar]
  • 16.Mishra VN, Mursaleen M, Pandey S, Alotaibi A. Approximation properties of Chlodowsky variant of (p,q)-Bernstein-Stancu-Schurer operators. J. Inequal. Appl. 2017;2017:176. doi: 10.1186/s13660-017-1451-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Mishra VN, Pandey S. On Chlodowsky variant of (p,q) Kantorovich-Stancu-Schurer operators. Int. J. Anal. Appl. 2016;11(1):28–39. doi: 10.1186/s13660-017-1451-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Mursaleen M, Al-Abied AAH, Alotaibi A. On (p,q)-Szász-Mirakyan operators and their approximation properties. J. Inequal. Appl. 2017;2017:196. doi: 10.1186/s13660-017-1467-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Mursaleen M, Alotaibi A, Ansari KJ. On a Kantorovich variant of (p,q)-Szász-Mirakjan operators. J. Funct. Spaces. 2016;2016:1035253. [Google Scholar]
  • 20.Mursaleen M, Khan F, Khan A. Approximation by (p,q)-Lorentz polynomials on a compact disk. Complex Anal. Oper. Theory. 2016;10(8):1725–1740. doi: 10.1007/s11785-016-0553-4. [DOI] [Google Scholar]
  • 21.Mursaleen M, Nasiruzzaman Md, Khan A, Ansari KJ. Some approximation results on Bleimann-Butzer-Hahn operators defined by (p,q)-integers. Filomat. 2016;30(3):639–648. doi: 10.2298/FIL1603639M. [DOI] [Google Scholar]
  • 22.Hounkonnou MN, Désiré J, Kyemba B. R(p,q)-Calculus: differentiation and integration. SUT J. Math. 2013;49(2):145–167. [Google Scholar]
  • 23. Sadjang, PN: On the fundamental theorem of (p,q)-calculus and some (p,q)-Taylor formulas. arXiv:1309.3934 [math.QA]
  • 24.Sahai V, Yadav S. Representations of two parameter quantum algebras and p,q-special functions. J. Math. Anal. Appl. 2007;335:268–279. doi: 10.1016/j.jmaa.2007.01.072. [DOI] [Google Scholar]
  • 25.Victor K, Pokman C. Quantum Calculus. New York: Springer; 2002. [Google Scholar]
  • 26.Totik V. Uniform approximation by Bernstein-type operators. Ned. Akad. Wet. Indag. Math. 1984;46:87–93. doi: 10.1016/1385-7258(84)90060-X. [DOI] [Google Scholar]
  • 27.Bleimann G, Butzer PL, Hahn L. A Bernstein-type operator approximating continuous functions on the semi-axis. Indag. Math. 1980;42:255–262. doi: 10.1016/1385-7258(80)90027-X. [DOI] [Google Scholar]
  • 28.Cárdenas-Morales D, Garrancho P, Raşa I. Bernstein-type operators which preserve polynomials. Comput. Math. Appl. 2011;62(1):158–163. doi: 10.1016/j.camwa.2011.04.063. [DOI] [Google Scholar]
  • 29.Gadjiev AD, Çakar Ö. On uniform approximation by Bleimann, Butzer and Hahn operators on all positive semi-axis. Trans. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. 1999;19:21–26. [Google Scholar]
  • 30.Aral A, Doğru O. Bleimann Butzer and Hahn operators based on q-integers. J. Inequal. Appl. 2007;2007:79410. doi: 10.1155/2007/79410. [DOI] [Google Scholar]
  • 31.Lenze B. Approximation Theory. 1990. Bernstein-Baskakov-Kantorovich operators and Lipschitz-type maximal functions; pp. 469–496. [Google Scholar]
  • 32.Söylemez D. On q-Bleiman, Butzewr and Hahn-type operators. Abstr. Appl. Anal. 2015;2015:480925. doi: 10.1155/2015/480925. [DOI] [Google Scholar]
  • 33.Doğru O. On Bleimann-Butzer and Hahn type generalization of Balázs operators. Stud. Univ. Babeş–Bolyai, Math. 2002;47(4):37–45. [Google Scholar]

Articles from Journal of Inequalities and Applications are provided here courtesy of Springer

RESOURCES