Skip to main content
NIHPA Author Manuscripts logoLink to NIHPA Author Manuscripts
. Author manuscript; available in PMC: 2018 Jan 11.
Published in final edited form as: Adv Exp Med Biol. 2017;1043:227–256. doi: 10.1007/978-3-319-70178-3_12

Estrogens in the Regulation of Liver Lipid Metabolism

Brian T Palmisano 1,2, Lin Zhu 2, John M Stafford 1,2,3,*
PMCID: PMC5763482  NIHMSID: NIHMS929986  PMID: 29224098

Abstract

Before menopause, women are protected from atherosclerotic heart disease associated with obesity relative to men. Sex hormones have been proposed as a mechanism that differentiates this risk. In this review, we discuss the literature around how the endogenous sex hormones and hormone treatment approaches after menopause regulate fatty acid, triglyceride and cholesterol metabolism to influence cardiovascular risk.

The important regulatory functions of estrogen signaling pathways with regard to lipid metabolism have been in part obscured by clinical trials with hormone treatment of women after menopause, due to different formulations, routes of delivery, and pairings with progestins. Oral hormone treatment with several estrogen preparations increase VLDL triglyceride production. Progestins oppose this effect by stimulating VLDL clearance in both humans and animals. Transdermal estradiol preparations do not increase VLDL production or serum triglycerides.

Many aspects of sex-differences in atherosclerotic heart disease risk are influenced by the distributed actions of estrogens in muscle, adipose and liver. In humans, 17β estradiol (E2) is the predominant circulating estrogen, and signals through Estrogen Receptor alpha (ERα), Estrogen Receptor beta (ER β) and G-protein coupled Estrogen Receptor (GPER). Over 1000 human liver genes display a sex-bias in their expression, and the top biological pathways are in lipid metabolism and genes related to cardiovascular disease. Many of these genes display variation depending on estrus cycling in the mouse. Future directions will likely rely on targeting estrogens to specific tissues, or specific aspects of the signaling pathways in order to recapitulate the protective physiology of pre-menopause therapeutically after menopause.

Introduction

Before menopause, women are protected from atherosclerotic heart disease associated with obesity relative to men. Women have a nearly decade-long delay in first myocardial infarction compared to men (Freedman et al. 2004; Lloyd-Jones et al. 2009). Furthermore, at any given age, women have about half the risk of cardiovascular disease relative to men (Roger et al. 2011; Wilmot et al. 2015). Sex hormones have been proposed as a mechanism that differentiates the differential risk of cardiovascular disease in men versus women. In women, the ovaries produce estrogens and progesterone, which are the predominant female sex hormones. Therefore, naturally cycling estrogen has been proposed to be protective against atherosclerotic cardiovascular disease. This view is supported by the increase in cardiovascular disease risk in women seen after menopause, which involves a natural decline in ovarian hormone production. Estrogens have effects in many organ systems that contribute to cardiovascular risk vs. protection, including regulation of liver lipid metabolism and serum lipoprotein levels. The liver is an important site where fatty acid, triglyceride and cholesterol metabolism are coordinated to meet metabolic needs in normal physiology, and this coordinated metabolism goes awry with obesity. In this chapter, we review the complex effects of estrogens on regulation of plasma lipids and liver lipid metabolism in humans and animal models.

Many aspects of sex-differences in atherosclerotic heart disease risk are influenced by the distributed actions of estrogens in muscle, adipose and liver. In response to obesity both men and women have increased free fatty acid (FA) release into blood. In response to increased FA delivery to the liver with obesity, circulating FA are packaged into triglyceride (TG) rich Very Low Density Lipoprotein (VLDL) particles by the liver. Obesity is associated with increased production of VLDL-TG particles by the liver to a greater degree in men than in women (Reaven and Bernstein 1978; Mittendorfer et al. 2003). This is, in part, due to enhanced FA clearance by muscle (Frias et al. 2001; Clegg et al. 2017; Ribas et al. 2016), resulting in less FA delivery to the liver to drive VLDL-TG production. It is also known that in response to FA delivery to the liver that women secrete VLDL particles that are more TG rich (Magkos et al. 2007b), which would help the liver export liver TG and prevent liver fat accumulation with obesity. Production of more TG-rich VLDL is matched with accelerated VLDL-TG clearance rates in women (Matthan et al. 2008), which collectively contribute to lower plasma VLDL-TG levels with obesity in women. Estrogens exert regulatory control in nearly every step of these control points of lipid metabolism.

Mechanisms of Estrogen Signaling in the Liver

In humans, 17β estradiol (E2) is the predominant circulating estrogen and is made by the ovaries and circulates as an endocrine hormone transported in plasma by sex-hormone binding globulin, where it passively diffuses across the cell membrane into target tissues. Tissues may also make estrogens locally from androgenic precursors where it acts in a paracrine manner. This is established in breast cancer cells and in the male reproductive tract, but is less clear in tissues such as liver (Pasqualini et al. 1996; Qian et al. 2001). The uterus is the classic estrogen-responsive target tissue since estrogen increases proliferation of the uterine lining. Thus, uterine mass can serve as a proxy for total body estrogen levels in animal studies. Many other tissues are responsive to estrogen action in vivo. In a transgenic mouse model designed to detect estrogen signaling, the liver was actually the most responsive to E2 (Ciana et al. 2003).

Estrogens can mediate their biologic effects in the liver through a number of mechanisms. The classic mechanism of E2 action involves E2 binding to the steroid nuclear hormone receptors, Estrogen Receptor alpha (ERα) or Estrogen Receptor beta (ERβ). ERα and ERβ have the classic features of steroid hormone receptors – an Activation Function 1 (AF1) domain, a ligand binding domain, a DNA binding domain and an Activation Function 2 (AF2) domain (Osborne and Schiff 2005). When unbound to ligand, ERα and ERβ are retained in the cytosol by association to Heat Shock Protein 90 (Hsp90) complexes. Estrogens binding to either ERα or ERβ causes a conformational change that promotes dissociation from Hsp90, dimerization and translocation into the nucleus. Once in the nucleus, ERα and ERβ bind to genomic locations based on sequence recognition of the DNA binding domain (Osborne and Schiff 2005). These genomic sequences are commonly referred to as Estrogen Response Elements (EREs), and are often characterized by an inverted repeat separated by three nucleotides (5’ AGGTCAnnnTGACCT 3’). These ERE’s are commonly found in the promotor or enhancer regions of liver genes whose transcription is regulated by estrogens. Over 1000 human liver genes display a sex-bias in their expression (Zhang et al. 2011). The top biological pathways are in lipid metabolism and genes related to CHD (Zhang et al. 2011). Genetic analysis of 100 mouse strains revealed important diet and sex interactions in the development of insulin resistance. Some of the most prominent genes discovered were involved in TG metabolism and FA oxidation and were sexually dimorphic (Parks et al. 2015). Additionally, chromatin immunoprecipitation assay revealed 43 of the lipid genes are transcriptionally regulated by ERα (Gao et al. 2008). In the mouse, scores of liver genes involved in TG and cholesterol metabolism vary with the four-day estrous cycle of the mouse in an ERα-dependent manner (Villa et al. 2012), demonstrating a tight coordination of liver lipid metabolism with reproductive needs.

In addition to binding to genomic locations with by recognition of EREs, ERα and ERβ can bind to genomic locations indirectly, via protein-protein binding with other transcription factors (Osborne and Schiff 2005). For instance, ERα interacts with the c-rel subunit of NFκB, preventing NFκB from promoting IL-6 expression (Galien and Garcia 1997). ERα can either coactivate or corepress fos/jun mediated transcription depending on the presence of ligand (Paech et al. 1997). In the liver ERα serves as a co-regulator to repress IL-1 beta gene transcription (Galien and Garcia 1997). Thus, ERα and ERβ can promote or inhibit gene transcription depending on the transcriptional machinery available at a particular genomic location.

An additional aspect of ERα regulation of liver lipid metabolism occurs by modifying signaling, and is transcriptionally independent (Park et al. 2011). Estrogens can also alter cell signaling via binding to receptors localized to the plasma membrane. ERα and ERβ have been shown to localize to the plasma membrane (Bjornstrom and Sjoberg 2005; Marino et al. 2006; Levin 2009). Membrane localization is achieved through palmitoylation of a serine residue and association with caveolin-1 (Cav-1) (Levin 2009). Membrane ERα and ERβ signal through the ERK 1/2 and the PI3K pathways (Bjornstrom and Sjoberg 2005; Levin 2009; Marino et al. 2006). After removal of ovarian hormones by ovariectomy, the benefits of the ERα agonist propyl-pyrazole-triol (PPT) with regard to liver lipid metabolism can largely be restored by membrane-localized ERα (Pedram et al. 2013).

In addition to membrane localized ERα and ERβ, estrogens can signal through another cell surface receptor, G-protein coupled Estrogen Receptor (GPER, also called Gpr30) which is expressed in multiple tissues including liver (Sharma et al. 2017; Nilsson et al. 2011; Owman et al. 1996). E2 binding to GPER initiates two signaling cascades – one results in increases in cyclic AMP (cAMP), the other results in increases in intracellular Ca2+ (Nilsson et al. 2011). Some of the signaling mediated by GPER also involves activation of Epidermal Growth Factor Receptor (EGFR) (Nilsson et al. 2011). Although GPER is most well characterized for its ability to regulate cell signaling, GPER-activated cell signaling may also regulate gene expression since E2 treatment has been shown to alter gene expression in ERα/ERβ double knockout mice (Lindberg et al. 2002). Whole-body deletion of GPER accelerates atherosclerosis and increases LDL cholesterol levels in mice fed an atherogenic diet (Meyer et al. 2014). It is unclear though whether the LDL cholesterol increases seen in GPER null mice are due to hepatic effects, or due to indirect changes due to loss of GPER in other tissues. Thus, the current literature supports a robust role of estrogen signaling through ERα to impact glucose and TG metabolism, both membrane and transcriptional effects. The relative contributions of estrogen signaling through ERα, ERβ or GPER with regard to liver gene expression and cardiovascular risk still warrants further investigation.

Hormone Treatment and the Risk of Cardiovascular Disease in Postmenopausal Women

The important regulatory functions of estrogen signaling pathways with regard to lipid metabolism have been in part obscured by the conflicting results of clinical trials with hormone treatment of women after menopause. These controversies arise in part from the different formulations of estrogen used for treatment of women after menopause, different routes of administration, and different pairings with progestins. The estrogen hypothesis suggests that the higher level of estrogen in women before menopause protects against cardiovascular disease. In support of this, postmenopausal women have increased risk of cardiovascular disease compared to premenopausal women (Colditz et al. 1987; Hu et al. 1999; Kannel et al. 1976; van der Schouw et al. 1996). A number of prospective studies conducted in the 1970’s through the 1990’s suggested that hormone treatment, typically with conjugated estrogens, improved risk of cardiovascular disease (Burch et al. 1974; Bush et al. 1983; Criqui et al. 1988; Croft and Hannaford 1989; Grady et al. 1992; Grodstein and Stampfer 1995; Hammond et al. 1979; Henderson et al. 1991; Hernandez Avila et al. 1990; Petitti et al. 1987; Stampfer et al. 1985; Sullivan et al. 1990; Wilson et al. 1985; Wolf et al. 1991). Prospective studies, while informative, are subject to various sources of bias. One potential source of bias in prospective studies of estrogen treatment has been labeled the “healthy woman” bias (Aguilar-Salinas et al. 2002), a form of selection bias. This source of bias is due to active seeking of medical care. According to this model, women more willing to be on hormone treatment are also more likely to monitor their health and take other medications to treat other diseases, thus enriching for a population that is healthier overall.

To more definitively determine the effect of hormone treatment on risk of cardiovascular disease, a number of randomized controlled trials aimed to experimentally determine whether hormone therapy could prevent cardiovascular disease in postmenopausal women. Two of the largest randomized controlled trials, conducted in 1990’s, were the Women’s Health Initiative (WHI) and the Heart and Estrogen/Progestin Replacement Study (HERS) (Hulley et al. 1998; Manson et al. 2003). Hormone treatment consisted of conjugated estrogens and progestin if the women had an intact uterus, or conjugated estrogens alone if the women had a prior hysterectomy. The WHI trial enrolled over 16,000 postmenopausal women and monitored cardiovascular disease outcomes over an average of 5.6 years. The HERS trial enrolled over 2,700 women and monitored cardiovascular disease outcomes over an average of 6.8 years (Grady et al. 2002). Despite the improvement in cholesterol and diabetes risk factors, hormone treatment did not improve cardiovascular disease in the HERS trial. In the WHI trial, hormone treatment actually worsened cardiovascular disease risk. The increased cardiovascular risk associated with hormone treatment in the WHI was the worst in women who had been assigned to hormone treatment over 10 years after the onset of menopause. This led to the development of the “timing hypothesis,” which suggests that hormone treatment is most beneficial if initiated soon after menopause, and potentially harmful if initiated late (>10 yr) in menopause.

The Early versus Late Intervention Trial with Estradiol (ELITE) study was designed to test the timing hypothesis (Hodis et al. 2016). The ELITE study enrolled over 600 postmenopausal women and randomized them to treatment with placebo or oral estradiol plus vaginal progesterone for 10 days per cycle. Women in the ELITE trial were stratified into two groups – one group of women were considered in early menopause if menopause occurred in the last 6 years and the other group of women were considered in late menopause if menopause occurred at least 10 years prior to enrollment in the study. Women were followed 5 years and carotid intima medial thickness (CIMT) and coronary artery calcium (CAC) score were used as indices of atherosclerosis. Estradiol treatment reduced the progression of CIMT in the early menopause group, but failed to delay atherosclerosis in the late menopause group. This result supports timing hypothesis of estrogen treatment. Coronary atherosclerosis was approximated using CAC score, but this measure was added late to the ELITE trial. Oral estradiol did not alter coronary atherosclerosis in either the early or late menopause group. It is unclear whether the failure to detect a difference in coronary atherosclerosis was due to insufficient power or the ineffectiveness of oral estradiol to reduce coronary atherosclerosis. A post-hoc analysis of recently postmenopausal women (age 50-59) in the WHI supported that treatment with conjugated estrogens reduced coronary atherosclerosis as measured by coronary calcium imaging (Manson et al. 2007). Interestingly, hormone treatment increased plasma TGs in ELITE, in agreement with the WHI and HERS trial. This may suggest that increases in TGs with hormone treatment may mitigate other improvements in plasma lipids with regard to risk of coronary heart disease. Further work will be needed to confirm whether treatment with estrogen formulations improve cardiovascular outcomes in addition to the improvements in CIMT in women beginning treatment soon after menopause, and how this is balanced by a potential worsening of dyslipidemia with different hormone treatment approaches.

In addition to cardiovascular outcomes, two smaller, related randomized controlled trials found somewhat divergent results regarding hormone treatment on measures of coronary atherosclerosis. In the Women’s Estrogen–Progestin Lipid-Lowering Hormone Atherosclerosis Regression Trial (WELL-HART), 226 postmenopausal women with an average age of 63.5 with known coronary disease were randomized to receive placebo, micronized E2, or micronized E2 and progesterone (Hodis et al. 2003). In the WELL-HART study, neither micronized E2 nor micronized E2 and progesterone prevented progression of coronary atherosclerosis. In the Estrogen in the Prevention of Atherosclerosis Trial (EPAT), 222 healthy postmenopausal women with an average age of 62.2 without preexisting coronary disease were randomized to receive micronized E2 or placebo (Hodis et al. 2001). Contrary to the WELL-HART study, micronized E2 treatment reduced the rate of subclinical atherosclerosis of the carotid artery in the EPAT study. The differences in the WELL-HART and EPAT studies raise several possibilities regarding hormone treatment and cardiovascular disease. Firstly, estrogen alone may be required to prevent cardiovascular disease. Secondly, hormone treatment may be effective in prevention of atherosclerosis, but may be ineffective at reversing established atherosclerosis in postmenopausal women. Thirdly, estrogen therapy may perhaps have more potent effects on preventing or reversing carotid artery atherosclerosis than on atherosclerosis in coronary arteries since the EPAT and ELITE trials both showed that estrogen therapy reduced progression of carotid atherosclerosis.

The cause of the TG-rich dyslipidemia with hormone treatment of postmenopausal women has been controversial. Normal cyclic variations in estrogen levels through the menstrual cycle do not impact VLDL-TG or VLDL-apoB kinetics or concentrations (Magkos et al. 2006). Neither cycling hormones or hormone treatment with E2 alone or in combination alter FA concentration or fluxes to the liver to a greater degree than day-to-day variation (Jensen et al. 1994; Magkos et al. 2007a). By contrast, estrogens seem to have a significant impact on liver VLDL production that depends on the route of delivery. Oral delivery of micronized estradiol increased VLDL production rates by 80%, which was greater than conjugated estrogen, whereas transdermal estradiol had no effect on VLDL production rates in this study (Walsh et al. 1991). Another study with oral ethinyl estradiol increased VLDL apoB production over 100% (Schaefer et al. 1983a), which is a similar result found to earlier studies with conjugated equine estrogens (Glueck et al. 1975). That estrogens are the major driver of hypertriglyceridemia with oral hormone treatment of postmenopausal women is further supported in that progestins oppose the effect of estrogens, by stimulating VLDL clearance in both humans and animals ((Kissebah et al. 1973; Kim and Kalkhoff 1975) and reviewed in (Magkos and Mittendorfer 2009)).

Relative to oral estrogens, transdermal estradiol has less potent effects on lowering LDL cholesterol and increasing HDL cholesterol (Baksu et al. 2007; Chen et al. 2001; Sanada et al. 2004; Strandberg et al. 2003; Zegura et al. 2006). Additionally, transdermal estradiol does not seem to increase plasma TGs when compared to oral estrogen formulations (Baksu et al. 2007; Chen et al. 2001; O’Sullivan et al. 1998; Sanada et al. 2004; Strandberg et al. 2003; Zegura et al. 2006). In fact, most studies demonstrate that transdermal estradiol actually reduces plasma TGs (Baksu et al. 2007; Chen et al. 2001; Zegura et al. 2006), but this was not consistently demonstrated in all trials. In a small study examining VLDL-TG kinetics, transdermal estradiol was shown to reduce plasma TG by increasing the rate of VLDL-TG clearance without affecting VLDL-TG production (Smith et al. 2014). Since transdermal estradiol seems to have less potent effects on plasma lipid metabolism compared to oral estrogen formulations, the liver is likely responsible for most of estrogen’s effects on increasing VLDL-TGs in the blood after menopause.

Lack of estrogen signaling promotes liver TG accumulation and leads to hepatic insulin resistance

The converse implication of estrogen-mediated reductions in FA-delivery to the liver and estrogen-mediated increases in VLDL-TG export is that deficiency of estrogen, with antagonist, after menopause, or in experimental models leads to liver fat accumulation. Tamoxifen (TMX) is an anti-estrogen drug used for the treatment of hormone-sensitive breast cancer. One side effect of TMX is the development of nonalcoholic fatty liver disease and steatohepatitis (Nishino et al. 2003; Murata et al. 2000; Oien et al. 1999). As women transition to menopause, the risk of non-alcoholic fatty liver disease increases (Ryu et al. 2015; Yang et al. 2014). Aging is a natural risk factor for NAFLD, which may confound the impact of menopause on risk of NAFLD. However, some younger women have their ovaries surgically removed for medical reasons. In women undergoing surgical menopause, the risk of NAFLD is increased nearly two-fold (Matsuo et al. 2016). Furthermore, in postmenopausal women, hormone treatment reduced plasma levels of liver enzymes, a marker of liver damage in NAFLD (McKenzie et al. 2006). Thus, absence of ovarian hormones leads to an increased risk of NAFLD that is at least partially reversible with estrogen treatment in postmenopausal women.

The impact of reductions in estrogen signaling on liver lipid metabolism have been studied extensively in rodent models. Ovariectomy, or surgical removal of ovaries, in rodents leads to an accumulation of liver triglyceride content (Barrera et al. 2014; Cote et al. 2012; de Oliveira et al. 2016; Paquette et al. 2007; Rogers et al. 2009), similar to that seen in postmenopausal women. Additionally, a chemical model of menopause created by administration of 4-vinylcyclohexene diepoxide (VCD), which depletes primordial follicles, creates insulin resistance, fatty liver and dyslipidemia (Romero-Aleshire et al. 2009). In addition to estrogen deficiency causing steatosis in rodent models, estrogen replacement reduces steatosis (Barrera et al. 2014; Bryzgalova et al. 2008; Villa et al. 2012; Camporez et al. 2013; Chambliss et al. 2016; Palmisano et al. 2016; Wang et al. 2015; Zhu et al. 2013; Kim et al. 2014).

Estrogens and the Physiologic Regulation of Liver Lipid Metabolism through ER-alpha

The physiologic reason that estrogen regulates to liver TG metabolism may be connected to an evolutionarily conserved need to coordinate nutritional status with reproduction. Insects, birds, and fish all have increased transport of TG from the liver to facilitate egg development through estrogen-like pathways (Davis 1997). To define tissue-specific contributions of estrogen signaling several groups have created hepatocyte-specific ERα-knock out mice to define the effects of estrogen signaling specifically through liver ERα. Della Torre and colleagues demonstrated a requirement for liver ERα in mediating amino acid regulation of the reproductive cycle (Della Torre et al. 2011). Using a mouse model with ERα-deficiency in hepatocytes, we demonstrated that the ability of estrogens to reduce liver steatosis is lost in with deletion of liver ERα, suggesting that estrogens are acting directly in liver to reduce TG content through ERα (Palmisano et al. 2016; Zhu et al. 2013; Villa et al. 2012). As expected, loss of liver ERα results in increased expression of lipid synthesis genes (Bryzgalova et al. 2006), loss of estrogen regulation of target genes (Palmisano et al. 2016; Zhu et al. 2013), and impaired estrogen regulation of other lipid metabolic target genes (Della Torre et al. 2016). One proposed mechanism for ERα regulation of lipid synthesis targets involves estrogen-ERα regulation of the nuclear receptor Small Heterodimer Partner (SHP), a target gene of ERα (Palmisano et al. 2016; Wang et al. 2015). Additionally, estrogen-ERα regulation of liver lipid metabolism has been proposed to act via microRNA mir-125b (Zhang et al. 2015). Additional work is needed to establish the clinical relevance of these proposed targets in humans and to develop therapies that can recapitulate the lipid lowering effect of estrogen in the liver to reduce the clinical burden of NAFLD.

In female mice, estradiol treatment at the time of ovariectomy blocks the effects of hyperinsulinemia with regard to lipid metabolism, leading to a suppression of de novo lipogenesis and maintenance of hepatic VLDL production (Zhu et al. 2013). The net effect of E2 treatment was to reduce liver TG and diacylglycerol content and to improve insulin action with regard to glucose metabolism. In female mice lacking the liver ERα, E2 following ovariectomy limits adiposity, but fails to improve insulin sensitivity, fails to limit liver DAG, and fails to prevent insulin suppression of VLDL production. E2 administration at the time of ovariectomy and high-fat diet-feeding significantly decreases liver TG and DAG content compared to ovariectomy and sham mice by limiting 14C-glycerol deposition into liver triglycerides and diacylglycerol, combined with maintaining the efficiency of triglyceride export from the liver in the setting of hyperinsulinemia (Camporez et al. 2013; Zhu et al. 2013).

The effects of liver estrogen signaling to improve liver insulin sensitivity, suppress lipogenesis and promote VLDL output from liver were independent of estrogen’s ability to regulate body weight as E2-treated hepatocyte knock out mice after ovariectomy were lean due to intact estrogen signaling in CNS and other tissues, yet E2 treatment failed to regulate liver metabolism (Zhu et al. 2013). Additionally, paired-feeding in mouse studies shows direct effects of E2 protecting from fatty liver that are independent on hits effects in the CNS to reduce food intake (Bryzgalova et al. 2008).

Estrogen signaling limits liver fat accumulation by reducing de novo lipogenesis in the liver

The mechanisms by which estrogen signaling protects against hepatic steatosis includes reductions in de novo lipogenesis, as reported by different laboratories. Using a combination of chromatin immunoprecipitation and tiled microarrays (ChIP-on-chip) approach, Gao et al identified binding regions of ERα to DNA in intact chromatin in the liver (Gao et al. 2008). This analysis revealed 19 gene ontology (GO) categories including lipid biosynthesis (GO 0008610) and fatty acid metabolism (GO 0006520) are significantly enriched for genes that had ERα recruited to their promoter after 2 hours of estradiol treatment (Gao et al. 2008). Conventional ChIP followed by qPCR shows binding to ERα to promoter regions of lipogenesis genes including STAT3 and SHP are consistently increased after treatment with estradiol or ERα agonist (Gao et al. 2008). This report is consistent with their previous observation that E2 treatment promotes ERα binding to STAT3 promoter and STAT3-Tyr phosphorylation, which subsequently suppresses Fasn, Scd1, Acaa1, and Gpam expression in the liver in ob/ob mice (Gao et al. 2006). Estradiol treatment in female mice with intact ovary suppresses FASN and SCD-1 in the liver (Bryzgalova et al. 2008). The authors also reported that E2 treatment decreases HGP by suppressing G-6-P expression (Bryzgalova et al. 2008).

E2 treatment suppresses liver lipogenesis by maintaining ACC phosphorylation as has been reported in studies from our laboratory and others (Cole et al. 2010; Zhang et al. 2013; Zhu et al. 2013; Zhu et al. 2014). This mechanism likely contributes to the correction of pathway-selective insulin resistance in the liver by E2 treatment. This is due to the observation that insulin suppresses ACC phosphorylation during hyperinsulinemic clamp to promote lipogenesis, which action is diminished after E2 treatment (Zhu et al. 2013; Zhu et al. 2014). ACC phosphorylation is regulated by AMPKα phosphorylation in the liver (Tuazon et al. 2015). Estradiol induces signal transduction through ERα, which localizes to both the plasma membrane and nucleus. A study by Pedram et al. shows that activation of liver estrogen signaling by ERα agonist PPT promotes AMPK phosphorylation in WT mice and transgenic mice expressing only the ligand-binding domain of ERα exclusively at the plasma membrane but not in ERα knockout mice. This study shows that gene expression changes mediated by membrane-localized ERα result in important metabolic effects independent of nuclear ERα (Pedram et al. 2013). In this study, phosphorylation of AMPK by activation of ERα is associated with phosphorylation of ACC. In addition, activation of membrane ERα also counteracts insulin’s action to promote the mRNA of lipogenesis gene Srebf1 (Pedram et al. 2013). Additionally, oral CE and the SERM, BZA also promote AMPK phosphorylation via ERα in liver after ovariectomy (Kim et al. 2014). In this study by Kim et al. oral CE and BZA reduce hepatic FAS expression and FAS activity and are associated with a decrease in liver TG accumulation in female after OVX. This appears to be mediated in part by inducing CEACAM1 expression and phosphorylation, which triggers CEACAM1 binding to and downregulation of FAS activity in liver (Kim et al. 2014).

E2 treatment also likely promotes FA oxidation in liver. Levels of mRNA for CPT-1, a protein to transport fatty acid into mitochondrial for β-oxidation are induced with E2 treatment. Increased oxygen consumption and liver ATP production associated with changes in UCP2 expression in the liver were reported in E2 treatment after ovariectomy, indicating increased fatty acid oxidation in the liver in those mice (Camporez et al. 2013). Additionally, E2 and CE increase production of FGF21 by the liver which may also increase hepatic FA oxidation (Kim et al. 2014).

Lipotoxicity due to the accumulation of lipid in hepatocytes leads to hepatic insulin resistance with regard to glucose metabolism. Insulin’s action to suppress hepatic glucose production (HGP) during hyperinsulinemic-euglycemic clamp is blunted after ovariectomy female mice compared to sham controls after a short-term of high-fat diet-feeding, although liver TG and DAG are not significantly increased with this duration of diet (Camporez et al. 2013). The blunted insulin action is associated with decreased insulin signaling, indicated by phosphorylation of AKT, in the liver (Camporez et al. 2013). Without challenged by high-fat feeding, HGP is blunted by 20% in global ERα KO mice compared to WT controls, which is also associated with diminished insulin signaling response during hyperinsulinemic-euglycemic clamp (Ribas et al. 2010). In unconscious mice with no differences in glucose disposal, decreased glucose infusion rate (GIR) during clamp is attributed to increased HGP in ERα-deficient mice compared to WT controls (Bryzgalova et al. 2006). Furthermore, we found that ovariectomy with high-fat diet-feeding results in liver TG and DAG accumulation, decreased GIR and increased HGP, and diminished hepatic insulin signaling during hyperinsulinemia (Zhu et al. 2013).

Estrogen Regulation of Factors Indirectly Affecting Liver Lipid Metabolism

While estrogens have been proposed to directly regulate a number of pathways involved in cardiovascular disease directly, especially in the liver, estrogen activity in a number of other tissues may contribute indirectly to plasma lipid responses to estrogens and liver lipid metabolism by estrogens. One of the original hypotheses purported to explain male female differences in cardiovascular disease relates to body fat distribution differences between men and women. With obesity, women have more subcutaneous fat, whereas men have more visceral fat. Additionally, body fat distribution changes in women from a more subcutaneous distribution to a more visceral distribution of fat with menopause (Svendsen et al. 1995). Since body fat distribution, as measured by waist-to-hip ratio, predicts risk of cardiovascular disease (Canoy et al. 2007; Yusuf et al. 2005), women may have lower risk of cardiovascular disease due to a more favorable body fat distribution. The hypothesis that body fat distribution contributes to risk of cardiovascular disease was put forth by Vague in 1947 (Vague 1947). Experimental evidence to prove this hypothesis would take many decades, but two large prospective studies confirmed that body fat distribution did indeed predict risk of future cardiovascular disease (Canoy et al. 2007; Yusuf et al. 2005). Exercise and weight loss can reduce waist to hip ratio and reduce risk of cardiovascular disease, but long-term weight loss in obese patients remains a clinical challenge due to weight regain. Pharmacologic agents that modify body fat distribution are not currently available. Furthermore, a pooled meta-analysis found that waist-to-hip ratio contributed to cardiovascular risk similarly between men and women (de Koning et al. 2007). Therefore, it is important to understand other factors that may explain how women have lower risk of cardiovascular disease relative to men.

Some of estrogen’s protective effects in the liver are likely indirectly due to estrogen signaling adipose tissue to limit the release of serum FA in response to insulin, and in skeletal muscle to promote FA oxidation, thereby limiting FA delivery to the liver. In fasting, about 75% of the lipid that ends up in VLDL is from FA delivered to the liver by lipolysis, and only ~4% from lipogenesis. With feeding, 43% still come from adipose, and 25% are from diet, either from chylomicrons or spillover from the plasma FA pool (Barrows and Parks 2006; Barrows et al. 2005). Thus, FA flux to the liver is a much more important driver of fatty liver and dyslipidemia than insulin-driven de-novo lipogensis (reviewed in (Otero et al. 2014)). In this regard, it is important that female humans and rodents are protected against FA-mediated insulin resistance in muscle and whole body in response to increased delivery of FA experimentally (Frias et al. 2001; Hevener et al. 2002). Female mice with muscle-specific ERα knockout have insulin resistance and muscle lipid accumulation due to abnormal mitochondrial function (Ribas et al. 2016).

In response to increased FA flux the liver oxidizes or re-esterifies FA. Some of this FA results in diacylglycerol accumulation, which activate PKC’s and cause impaired glucose metabolism (Jornayvaz et al. 2011). The FA that is made into TG is matched with increased VLDL-TG secretion during fasting. Beyond physiologically normal liver fat (~5%) however VLDL export is maximized, and liver fat accumulation ensues (Fabbrini et al. 2009). Thus, the dyslipidemia and glucose abnormalities of obesity result in part from impaired coordination of adipose, muscle and liver with regard to the flux of FA, and estrogen signaling pathways exert regulatory control on several of these key steps as reviewed above.

Mouse-human differences in estrogen-regulated liver lipid metabolism and implications for disease

Studies with hormone treatment after menopause suggest that estrogen treatment reduces plasma glucose and insulin levels. Theses reduced insulin and glucose levels ultimately were associated with lower incidence of impaired glucose tolerance and type-2 diabetes (Bonds et al. 2006; Espeland et al. 1998; Ferrara et al. 2001; Rossi et al. 2004; Zhang et al. 2002). Thus, estrogen lowers risk of type-2 diabetes, a negative risk factor for coronary heart disease. Despite improvements in a number of risk factors, hormone treatment in postmenopausal women had certain negative effects on risk of cardiovascular disease. Hormone treatment increased plasma TGs in the WHI, HERS and ELITE trials along with a number of prospective studies (Hodis et al. 2003; Hsia et al. 2006; Hulley et al. 1998; Barrett-Connor et al. 1997; Trial 1995; Wiegratz et al. 1998; Walsh et al. 1991; Schaefer et al. 1983b). Several studies have demonstrated that this increase in plasma TGs is due to increased VLDL production with estrogen treatment approaches (Walsh et al. 1991; Schaefer et al. 1983a; Glueck et al. 1975). The progestin component of hormone treatment accelerates TG clearance and thus likely does not contribute to hypertriglyceridemia (Kissebah et al. 1973). Additionally, only oral CE increases serum TG, likely because of high first-pass metabolism, which is minimized by transdermal E2/Mechanisms responsible for this increase in VLDL-TG production with oral CE have been hampered since mouse models do not recapitulate the increase in plasma TGs in response to E2 treatment (Bourassa et al. 1996; Camporez et al. 2013; Marsh et al. 1999; Zhu et al. 2013).

Cholesteryl Ester Transfer Protein (CETP) is a 74kD glycoprotein that is expressed in liver and adipose, then is secreted into the circulation where it shuttles TG and cholesteryl esters (CE) between lipoproteins. With obesity, TGs are elevated in VLDL. CETP shuttles these TGs into HDL particles, which destabilizes binding of the HDL scaffold protein ApoA1, leading to increased HDL clearance and low HDL cholesterol levels. Although CETP has been mostly studied in association with HDL cholesterol levels, the expression pattern of CETP suggests an important role of CETP the metabolic adaptation to obesity. CETP is highly expressed in liver and adipose, tissues that mediate glucose and TG metabolism (Jiang et al. 1991). CETP activity varies as much as 6-8-fold in human studies (Tato et al. 1995; de Vries et al. 2005). Cholesterol feeding, insulin and ovarian hormones, all lead to significant changes in CETP activity (Arii et al. 1997; Marotti et al. 1993; Johansson et al. 2012). Our recent work demonstrated that CETP is required for mice to increase plasma TGs in response to E2 treatment after ovariectomy (Palmisano et al. 2016). CETP is a secreted plasma protein that shuttles TG and cholesteryl ester between plasma lipoproteins. Mice naturally lack CETP. Transgenic expression of CETP in mice results a similar hypertriglyceridemic effect of estrogen in female mice (Palmisano et al. 2016). We demonstrated that CETP expression creates estrogen gain-of-function for several pathways involved in liver lipid metabolism. For instance, E2 treatment increases in the activity of Protein Disulfide Isomerase (PDI), a protein involved in the lipidation of VLDL only in CETP mice. Additionally, we found that estrogen-mediated increases in VLDL-TG production were eliminated with hepatocyte-specific deletion of the nuclear receptor Small Heterodimer Partner (SHP) but not ERα (Palmisano et al. 2016). Since increased plasma TGs are associated with increased risk of cardiovascular disease, the increase in plasma TGs caused by estrogen may mitigate some of the beneficial aspects of estrogen treatment on cardiovascular disease risk. A better understanding of the CETP-SHP-PDI pathway regulating estrogen-mediated increases in VLDL production may lead to therapeutic strategies that alleviate the hypertriglyceridemic effect of estrogen treatment approaches.

Selective Estrogen Delivery Approaches and Liver Lipid Metabolism

Experimental models have demonstrated therapeutic value of targeting estrogen toward specific tissues, or toward specific aspects of estrogen signaling pathways. An estrogen dendrimer conjugate (EDC) comprised of estradiol (E2) molecules linked to a poly(amido)amine dendrimer selectively activates nonnuclear ER, and in mice. This EDC compound does not have activity to promote uterus growth and does not promote breast cancer growth, but does blunt liver fat accumulation with obesity, suggesting that the non-nuclear effects of estrogen are critical with regard to regulation of hepatic fat content (Chambliss et al. 2016; Chambliss et al. 2010). Interesting targeting non-nuclear estrogen with EDC did not prevent atherosclerosis in apoE null mice, which estradiol did (Chambliss et al. 2016).

Treatment of female mice after ovariectomy with bazedoxifene (BZA) alone, or in combination with low dose estradiol or conjugated estrogen each prevent weight gain with high-fat feeding after ovariectomy (Kim et al. 2014). The BZA also prevents fatty liver accumulation after ovariectomy, but not to as great a degree as conjugated estrogens (Barrera et al. 2014; Kim et al. 2014). Interestingly compared to conjugated estrogens and E2, BZA is a much more potent inducer of several pathways which may mediate estrogen’s protective effects with regard to liver fat metabolism, FGF15 and SHP (Kim et al. 2014).

Additionally, targeting estradiol to metabolic tissues by conjugating GLP-1 to estradiol prevents weight gain and glucose metabolism in obese mice. These actions are not mediated by the GLP-1 component alone. Like the EDC compound, GLP-1 conjugated estradiol does not promote growth of the uterus or MCF-7 breast cancer cells (Finan et al. 2012).

Estrogen Regulation of Liver Cholesterol Uptake and Reverse Cholesterol Transport

Estrogen is proposed to protect against atherosclerosis via its role in reverse cholesterol transport. Reverse cholesterol transport (RCT) is the process of cholesterol removal from peripheral tissues and delivered into the feces, either by direct excretion into bile or conversion to bile acids and subsequent secretion into bile (reviewed elsewhere (Rosenson et al. 2012)). Estrogen’s role in the initial steps of the RCT pathway is controversial in humans. Two studies by the same group support that plasma from women has greater cholesterol efflux capacity (Badeau et al. 2009) or similar cholesterol efflux capacity relative to men (Badeau et al. 2013). In premenopausal women, the concentration of estrogen in plasma is not associated with cholesterol efflux capacity (Badeau et al. 2013). In premenopausal women, polycystic ovary syndrome (PCOS), which is a state of low estrogen, is associated with reduced cholesterol efflux capacity (Roe et al. 2014). The estrogen deficiency of menopause, however, increases the cholesterol efflux capacity of HDL relative to premenopausal women, likely because of increased VLDL-TG levels after menopause (El Khoudary et al. 2016). In postmenopausal women, hormone replacement therapy effectively increases cholesterol efflux capacity of (Ulloa et al. 2002). Thus, estrogen has been shown to have some effects on cholesterol efflux capacity, but there is not a consistent relationship between estrogen enhancing or impairing this initial step in RCT based on the literature in humans.

Estrogen signaling pathways have a more firmly established role promoting the later aspects of RCT through action in the liver. Liver estrogen signaling through ERα has been shown to regulate hepatic cholesterol uptake and the efflux capacity of HDL from macrophages during the proestrus period when estrogen levels are high (Della Torre et al. 2016). The role of sex and estrogen on later stages in RCT is not well studied in humans, since no available methodologies exist yet to quantify RCT in humans. Our recent work demonstrates that female mice have increased total-body RCT compared to males fed a western diet (Zhu, submitted). We also found that liver deletion of ERα impaired total body RCT in female mice, suggesting that liver ERα is required for females to enhance total body RCT (Zhu, submitted). E2 and PPT treatment of mice both promotes liver secretion of cholesterol into bile and is prevented by concurrent treatment with an ERα antagonist (Wang et al. 2004).

Regulation of Hepatic Cholesterol Biosynthesis by Estrogens

A functional estrogen-responsive element has been identified within the promoter of the HMG-CoA reductase gene, one of the first steps of liver cholesterol synthesis. In peripheral tissues such as breast ductal epithelium and uterine endometrium, E2 promotes HMG-CoA reductase gene promoter activity and transcription to increase cholesterol biosynthesis for cell proliferation (Di Croce et al. 1999). However, E2 treatment reduces free cholesterol content in hepatocytes (Semenkovich and Ostlund 1987). Animal studies show that HMG-CoA reductase protein levels are lower in female or E2-treated male rats than in adult untreated males, which is regulated through nuclear SREBP2 activity (De Marinis et al. 2008). In line with this observation, Pedram et. al., reported that the ERα agonist PPT suppresses HMG-CoA reductase expression and hepatic cholesterol content accompanied by decreased expression of srebf2 (Pedram et al. 2013).

Regulation of Hepatic Cholesterol Uptake by Estrogens

To maintain efficient HDL-mediated cellular cholesterol efflux from foam cells, cholesterol and cholesteryl esters in HDL particles are either removed by the liver through the scavenger receptor class B member I (SR-BI) pathway, or transferred via cholesteryl ester transfer protein (CETP) to apoB-containing particles in the blood and subsequently cleared through LDLR or remnant receptor pathways. Estradiol promotes liver secretion of cholesterol into bile, and this is prevented by concurrent treatment with an ERα antagonist (Wang et al. 2004). In ovariectomized rats, estrogen deficiency downregulates expression of a number of enzymes involved in bile acid synthesis (Liao et al. 2015). In mice, natural variation in estrogen cycling is associated with changes in expression of bile acid synthesis gene expression (Della Torre et al. 2016). Additionally, estrogen enhances synthesis of bile acids, which is also preventable with concurrent treatment with an ERα antagonist (Wang et al. 2006). Furthermore, E2 fails to promote bile secretion in mice lacking ERα (Wang et al. 2004), suggesting that estrogen acts through ERα to promote bile secretion. The mechanism of estrogen-mediated increases in bile acid synthesis gene expression seems to require liver ERα (Della Torre et al. 2016; Yamamoto et al. 2006).

LDLR

Impaired regulation of several steps in RCT can associate with increased CHD risk (Rader and Tall 2012), and hepatic LDLR and SR-BI play critical roles in RCT. The activity of low density lipoprotein LDL receptors in the liver constitutes a major mechanism by which dietary and hormonal agents may regulate plasma cholesterol levels (Rudling et al. 1992). Ethinyl estradiol treatment promotes clearance of β-VLDL and LDL in human subjects with type III hyperlipidemia (Kushwaha et al. 1977). An in vitro study showed that estradiol increases cell surface LDLR activity in human hepatoma cells but not in human fibroblasts (Kushwaha et al. 1977). LDL bound to LDLR is stimulated by ethinyl estradiol in a dose- and time-dependent manner, and this binding is decreased by a pre-treatment of LDL in the media (Kushwaha et al. 1977). In rats, pharmaceutical doses of estrogens stimulate hepatic LDLR mRNA and protein levels, which are accompanied by a markedly increased clearance of plasma LDL concomitant with a decrease in plasma cholesterol (Ma et al. 1986; Cooper et al. 1987; Windler et al. 1980; Di Croce et al. 1996).

Although the LDLR promoter does not contain a classical estrogen-responsive element, observations that LDLR mRNA is stimulated by estrogen in vivo and in human hepatoma cells suggest an alternative mechanism of estrogen-regulated expression of this gene. Using human hepatoma cells that transiently express functional ERα and LDLR promoter constructs, Li et al demonstrated that E2 promotes LDLR promoter activity mediated by the Sp1 binding to the promoter (Li et al. 2001). Consistently, we observed that LDLR protein levels from liver tissue were decreased in hepatic ERα knockout female and male mice (unpublished data). Both tyrosine kinase (TK) and protein kinase C (PKC) signaling pathways are activated by E2 in vivo and in hepatoma cells (Marino et al. 1998; Marino et al. 2001). A LDLR promoter construct was transfected in human hepatoma cells over-expressing ERα, and the promoter activity was analyzed in the absence and presence of TK and PKC inhibitors (Distefano et al. 2002). This study demonstrated that basal transcription of LDLR gene depends on PKC activity and TK activity is required for the induction of LDLR gene expression by E2 (Distefano et al. 2002).

Indirect effects of estrogens on hepatic LDLR expression have also been reported. Estrogen may promote LDLR through the action of growth hormone, which as supported by the observation that E2 fails to stimulate hepatic LDLR expression and to decrease plasma cholesterol when given to hypophysectomized rats (Steinberg et al. 1967; Rudling et al. 1992). Reduction of free cholesterol content in human hepatoma cells by estradiol treatment has been shown to be an important mechanism for maintaining LDLR activity by lowering intracellular cholesterol (Semenkovich and Ostlund 1987). LDLR protein levels are increased by E2 in a dose-dependent manner in human hepatic HuH7 cells, however, LDLR mRNA does not increase unless E2 doses are high, suggesting a posttranslational regulation of LDLR by estrogen (Starr et al. 2015). Additionally, estrogen also likely promotes LDLR-mediated cholesterol uptake through modifying PCSK9 activity because E2 treatment fails to increase LDLR in PCSK9 knockout HuH7 cells (Starr et al. 2015).

SR-BI

Stimulation of HDL-cholesterol uptake in the liver promotes reverse cholesterol transport and reduces atherosclerosis in mice (Arai et al. 1999; Zhang et al. 2005; Rader et al. 2009). Several groups have found that estrogens up-regulates mRNA expression of SR-BI, the HDL receptor, and promotes HDL-cholesterol uptake in peripheral tissues (Lopez and McLean 2006; Fukata et al. 2014). Therefore, estrogen regulation of HDL-uptake by the liver maybe contribute to the sex difference in cardiovascular risk. Stimulation of this pathway may be a potential therapeutic target for preventing cardiovascular disease.

Estrogens Protect Against Fatty Liver and Hepatic Insulin Resistance in Males

Males also express estrogen receptors in many tissues, and aromatase catalyzes the conversion of androgens to estrogens. In humans, loss of function mutations in ERα or aromatase genes associates with glucose intolerance, hyperglycemia, and hyperinsulinemia (Maffei et al. 2004; Rochira et al. 2007; Smith et al. 1994). Aromatization of testosterone to estradiol is responsible for the increase in libido and prevention of visceral adiposity associated with testosterone treatment in men (Finkelstein et al. 2013). Hepatic steatosis has been reported in ERα-deficiency male mice but not ERβ-deficiency male mice (Ohlsson et al. 2000). The aromatase knockout (ArKO) mice exhibit a striking accumulation of lipid droplets in the liver accompanied by increased expression of lipogenic genes such as FASN and SCD-1 (Jones et al. 2000; Jones et al. 2001; Chow et al. 2011). Estradiol treatment or agonist specific to ERα in ArKO male mice suppresses FASN gene expression and reverses liver fat accumulation (Chow et al. 2011; Jones et al. 2000). Anti-estrogen treatment of TMX in male mice induces TG accumulation in the liver by activation of fatty acid synthesis (Cole et al. 2010). In line with this, the incorporation of 3H-oleate into TG in hepatocytes was increased after TMX treatment (Cole et al. 2010). In male rats, high-fat diet-induced the fatty liver which is improved by E2 treatment, and associated with the downregulation of lipogenesis by ACC phosphorylation with E2 (Zhang et al. 2013). In line with the observation for hepatocyte treated with TMX, E2 treatment decreased the incorporation of 14C labeling from the lipid-containing phase when de novo lipogenesis in hepatocytes was determined using a 14C-labeled acetate method (Zhang et al. 2013) The authors also reported similar changes in gene expression in men with liver steatosis (Zhang et al. 2013).

In male mice, deletion of hepatic ERα promotes liver TG and DAG content after high-fat diet-feeding, which corresponds with dysregulation of insulin-stimulated ACC phosphorylation and DGAT1/2 protein expression (Zhu et al. 2013; Zhu et al. 2014). Our studies with E2 treatment of mice after OVX demonstrated that estrogen signaling through hepatic ERα helps prevent insulin resistance associated with high-fat diet-feeding in males. Thus, augmenting hepatic estrogen signaling through ERα may lessen the impact of obesity on diabetes and cardiovascular risk in both sexes.

Conclusions and Future Directions

Efforts to understand how women are protected from cardiovascular disease relative to men have led to the discovery that estrogens regulate a number of steps in liver lipid metabolism. Treatment of postmenopausal women with various estrogen formulations does not wholly restore the protection from cardiovascular disease seen in premenopausal women. Estrogen therapy and hormone treatment approaches can protect against fatty liver, insulin resistance and diabetes, but do not conclusively protect from cardiovascular disease. The hypertriglyceridemic effect of exogenous oral estrogen therapy may mitigate some of the other cardioprotective benefits of estrogens. A deeper understanding of the mechanisms of estrogen signaling pathways will likely yield specific targets governing estrogen’s effect on lipid metabolism. Future directions will likely rely on targeting estrogens to specific tissues, or specific aspects of the signaling pathways in order to recapitulate the protective physiology of pre-menopause therapeutically after menopause. Furthermore, estrogen signaling pathways in the liver are protective against insulin resistance in males, thus the pathways identified in studying sex-differences have potential therapeutic significance in both men and women with regard to obesity associated cardiovascular risk.

Acknowledgments

Funding Sources: The Department of Veterans Affairs (BX002223) and NIH (R01DK109102) provided support to JMS. BP is supported by the Vanderbilt Medical Scientist Training Program (T32GM07347) and (F30DK104514).

Bibliography

  1. Aguilar-Salinas CA, Garcia-Garcia E, Gomez-Perez FJ, Rull JA. The healthy women bias and hormone replacement therapy in women with type 2 diabetes. Diabetes Care. 2002;25(1):246–247. doi: 10.2337/diacare.25.1.246. [DOI] [PubMed] [Google Scholar]
  2. Arai T, Wang N, Bezouevski M, Welch C, Tall AR. Decreased atherosclerosis in heterozygous low density lipoprotein receptor-deficient mice expressing the scavenger receptor BI transgene. J Biol Chem. 1999;274(4):2366–2371. doi: 10.1074/jbc.274.4.2366. [DOI] [PubMed] [Google Scholar]
  3. Arii K, Suehiro T, Yamamoto M, Ito H, Hashimoto K. Suppression of plasma cholesteryl ester transfer protein activity in acute hyperinsulinemia and effect of plasma nonesterified fatty acid. Metabolism. 1997;46(10):1166–1170. doi: 10.1016/s0026-0495(97)90211-0. [DOI] [PubMed] [Google Scholar]
  4. Badeau RM, Metso J, Kovanen PT, Lee-Rueckert M, Tikkanen MJ, Jauhiainen M. The impact of gender and serum estradiol levels on HDL-mediated reverse cholesterol transport. Eur J Clin Invest. 2013;43(4):317–323. doi: 10.1111/eci.12044. [DOI] [PubMed] [Google Scholar]
  5. Badeau RM, Metso J, Wahala K, Tikkanen MJ, Jauhiainen M. Human macrophage cholesterol efflux potential is enhanced by HDL-associated 17beta-estradiol fatty acyl esters. J Steroid Biochem Mol Biol. 2009;116(1-2):44–49. doi: 10.1016/j.jsbmb.2009.04.008. [DOI] [PubMed] [Google Scholar]
  6. Baksu B, Davas I, Agar E, Akyol A, Uluocak A. Do different delivery systems of estrogen therapy influence serum lipids differently in surgically menopausal women? J Obstet Gynaecol Res. 2007;33(3):346–352. doi: 10.1111/j.1447-0756.2007.00534.x. [DOI] [PubMed] [Google Scholar]
  7. Barrera J, Chambliss KL, Ahmed M, Tanigaki K, Thompson B, McDonald JG, Mineo C, Shaul PW. Bazedoxifene and conjugated estrogen prevent diet-induced obesity, hepatic steatosis, and type 2 diabetes in mice without impacting the reproductive tract. Am J Physiol Endocrinol Metab. 2014;307(3):E345–354. doi: 10.1152/ajpendo.00653.2013. [DOI] [PubMed] [Google Scholar]
  8. Barrett-Connor E, Slone S, Greendale G, Kritz-Silverstein D, Espeland M, Johnson SR, Waclawiw M, Fineberg SE. The Postmenopausal Estrogen/Progestin Interventions Study: primary outcomes in adherent women. Maturitas. 1997;27(3):261–274. doi: 10.1016/s0378-5122(97)00041-8. [DOI] [PubMed] [Google Scholar]
  9. Barrows BR, Parks EJ. Contributions of different fatty acid sources to very low-density lipoprotein-triacylglycerol in the fasted and fed states. J Clin Endocrinol Metab. 2006;91(4):1446–1452. doi: 10.1210/jc.2005-1709. [DOI] [PubMed] [Google Scholar]
  10. Barrows BR, Timlin MT, Parks EJ. Spillover of dietary fatty acids and use of serum nonesterified fatty acids for the synthesis of VLDL-triacylglycerol under two different feeding regimens. Diabetes. 2005;54(9):2668–2673. doi: 10.2337/diabetes.54.9.2668. [DOI] [PubMed] [Google Scholar]
  11. Bjornstrom L, Sjoberg M. Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes. Mol Endocrinol. 2005;19(4):833–842. doi: 10.1210/me.2004-0486. [DOI] [PubMed] [Google Scholar]
  12. Bonds DE, Lasser N, Qi L, Brzyski R, Caan B, Heiss G, Limacher MC, Liu JH, Mason E, Oberman A, O’Sullivan MJ, Phillips LS, Prineas RJ, Tinker L. The effect of conjugated equine oestrogen on diabetes incidence: the Women’s Health Initiative randomised trial. Diabetologia. 2006;49(3):459–468. doi: 10.1007/s00125-005-0096-0. [DOI] [PubMed] [Google Scholar]
  13. Bourassa PA, Milos PM, Gaynor BJ, Breslow JL, Aiello RJ. Estrogen reduces atherosclerotic lesion development in apolipoprotein E-deficient mice. Proc Natl Acad Sci U S A. 1996;93(19):10022–10027. doi: 10.1073/pnas.93.19.10022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Bryzgalova G, Gao H, Ahren B, Zierath JR, Galuska D, Steiler TL, Dahlman-Wright K, Nilsson S, Gustafsson JA, Efendic S, Khan A. Evidence that oestrogen receptor-alpha plays an important role in the regulation of glucose homeostasis in mice: insulin sensitivity in the liver. Diabetologia. 2006;49(3):588–597. doi: 10.1007/s00125-005-0105-3. [DOI] [PubMed] [Google Scholar]
  15. Bryzgalova G, Lundholm L, Portwood N, Gustafsson JA, Khan A, Efendic S, Dahlman-Wright K. Mechanisms of antidiabetogenic and body weight-lowering effects of estrogen in high-fat diet-fed mice. Am J Physiol Endocrinol Metab. 2008;295(4):E904–912. doi: 10.1152/ajpendo.90248.2008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Burch JC, Byrd BF, Jr, Vaughn WK. The effects of long-term estrogen on hysterectomized women. Am J Obstet Gynecol. 1974;118(6):778–782. doi: 10.1016/0002-9378(74)90487-6. [DOI] [PubMed] [Google Scholar]
  17. Bush TL, Cowan LD, Barrett-Connor E, Criqui MH, Karon JM, Wallace RB, Tyroler HA, Rifkind BM. Estrogen use and all-cause mortality. Preliminary results from the Lipid Research Clinics Program Follow-Up Study. JAMA. 1983;249(7):903–906. doi: 10.1001/jama.249.7.903. [DOI] [PubMed] [Google Scholar]
  18. Camporez JP, Jornayvaz FR, Lee HY, Kanda S, Guigni BA, Kahn M, Samuel VT, Carvalho CR, Petersen KF, Jurczak MJ, Shulman GI. Cellular mechanism by which estradiol protects female ovariectomized mice from high-fat diet-induced hepatic and muscle insulin resistance. Endocrinology. 2013;154(3):1021–1028. doi: 10.1210/en.2012-1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Canoy D, Boekholdt SM, Wareham N, Luben R, Welch A, Bingham S, Buchan I, Day N, Khaw KT. Body fat distribution and risk of coronary heart disease in men and women in the European Prospective Investigation Into Cancer and Nutrition in Norfolk cohort: a population-based prospective study. Circulation. 2007;116(25):2933–2943. doi: 10.1161/CIRCULATIONAHA.106.673756. [DOI] [PubMed] [Google Scholar]
  20. Chambliss KL, Barrera J, Umetani M, Umetani J, Kim SH, Madak-Erdogan Z, Huang L, Katzenellenbogen BS, Katzenellenbogen JA, Mineo C, Shaul PW. Nonnuclear Estrogen Receptor Activation Improves Hepatic Steatosis in Female Mice. Endocrinology. 2016;157(10):3731–3741. doi: 10.1210/en.2015-1629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Chambliss KL, Wu Q, Oltmann S, Konaniah ES, Umetani M, Korach KS, Thomas GD, Mineo C, Yuhanna IS, Kim SH, Madak-Erdogan Z, Maggi A, Dineen SP, Roland CL, Hui DY, Brekken RA, Katzenellenbogen JA, Katzenellenbogen BS, Shaul PW. Non-nuclear estrogen receptor alpha signaling promotes cardiovascular protection but not uterine or breast cancer growth in mice. J Clin Invest. 2010;120(7):2319–2330. doi: 10.1172/JCI38291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Chen FP, Lee N, Soong YK, Huang KE. Comparison of transdermal and oral estrogen-progestin replacement therapy: effects on cardiovascular risk factors. Menopause. 2001;8(5):347–352. doi: 10.1097/00042192-200109000-00009. [DOI] [PubMed] [Google Scholar]
  23. Chow JD, Jones ME, Prelle K, Simpson ER, Boon WC. A selective estrogen receptor alpha agonist ameliorates hepatic steatosis in the male aromatase knockout mouse. J Endocrinol. 2011;210(3):323–334. doi: 10.1530/JOE-10-0462. [DOI] [PubMed] [Google Scholar]
  24. Ciana P, Raviscioni M, Mussi P, Vegeto E, Que I, Parker MG, Lowik C, Maggi A. In vivo imaging of transcriptionally active estrogen receptors. Nat Med. 2003;9(1):82–86. doi: 10.1038/nm809. [DOI] [PubMed] [Google Scholar]
  25. Clegg D, Hevener AL, Moreau KL, Morselli E, Criollo A, Van Pelt RE, Vieira-Potter VJ. Sex Hormones and Cardiometabolic Health: Role of Estrogen and Estrogen Receptors. Endocrinology. 2017;158(5):1095–1105. doi: 10.1210/en.2016-1677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Colditz GA, Willett WC, Stampfer MJ, Rosner B, Speizer FE, Hennekens CH. Menopause and the risk of coronary heart disease in women. N Engl J Med. 1987;316(18):1105–1110. doi: 10.1056/NEJM198704303161801. [DOI] [PubMed] [Google Scholar]
  27. Cole LK, Jacobs RL, Vance DE. Tamoxifen induces triacylglycerol accumulation in the mouse liver by activation of fatty acid synthesis. Hepatology. 2010;52(4):1258–1265. doi: 10.1002/hep.23813. [DOI] [PubMed] [Google Scholar]
  28. Cooper AD, Nutik R, Chen J. Characterization of the estrogen-induced lipoprotein receptor of rat liver. J Lipid Res. 1987;28(1):59–68. [PubMed] [Google Scholar]
  29. Cote I, Yasari S, Pighon A, Barsalani R, Rabasa-Lhoret R, Prud’homme D, Lavoie JM. Liver fat accumulation may be dissociated from adiposity gain in ovariectomized rats. Climacteric. 2012;15(6):594–601. doi: 10.3109/13697137.2011.637650. [DOI] [PubMed] [Google Scholar]
  30. Criqui MH, Suarez L, Barrett-Connor E, McPhillips J, Wingard DL, Garland C. Postmenopausal estrogen use and mortality. Results from a prospective study in a defined, homogeneous community. Am J Epidemiol. 1988;128(3):606–614. doi: 10.1093/oxfordjournals.aje.a115008. [DOI] [PubMed] [Google Scholar]
  31. Croft P, Hannaford P. Risk factors for acute myocardial infarction in women. BMJ. 1989;298(6674):674. doi: 10.1136/bmj.298.6674.674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Davis RA. Evolution of processes and regulators of lipoprotein synthesis: from birds to mammals. J Nutr. 1997;127(5 Suppl):795S–800S. doi: 10.1093/jn/127.5.795S. [DOI] [PubMed] [Google Scholar]
  33. de Koning L, Merchant AT, Pogue J, Anand SS. Waist circumference and waist-to-hip ratio as predictors of cardiovascular events: meta-regression analysis of prospective studies. Eur Heart J. 2007;28(7):850–856. doi: 10.1093/eurheartj/ehm026. [DOI] [PubMed] [Google Scholar]
  34. De Marinis E, Martini C, Trentalance A, Pallottini V. Sex differences in hepatic regulation of cholesterol homeostasis. J Endocrinol. 2008;198(3):635–643. doi: 10.1677/JOE-08-0242. [DOI] [PubMed] [Google Scholar]
  35. de Oliveira MC, Gilglioni EH, de Boer BA, Runge JH, de Waart DR, Salgueiro CL, Ishii-Iwamoto EL, Oude Elferink RP, Gaemers IC. Bile acid receptor agonists INT747 and INT777 decrease oestrogen deficiency-related postmenopausal obesity and hepatic steatosis in mice. Biochim Biophys Acta. 2016;1862(11):2054–2062. doi: 10.1016/j.bbadis.2016.07.012. [DOI] [PubMed] [Google Scholar]
  36. de Vries R, Perton FG, Dallinga-Thie GM, van Roon AM, Wolffenbuttel BH, van Tol A, Dullaart RP. Plasma cholesteryl ester transfer is a determinant of intima-media thickness in type 2 diabetic and nondiabetic subjects: role of CETP and triglycerides. Diabetes. 2005;54(12):3554–3559. doi: 10.2337/diabetes.54.12.3554. [DOI] [PubMed] [Google Scholar]
  37. Della Torre S, Mitro N, Fontana R, Gomaraschi M, Favari E, Recordati C, Lolli F, Quagliarini F, Meda C, Ohlsson C, Crestani M, Uhlenhaut NH, Calabresi L, Maggi A. An Essential Role for Liver ERalpha in Coupling Hepatic Metabolism to the Reproductive Cycle. Cell Rep. 2016;15(2):360–371. doi: 10.1016/j.celrep.2016.03.019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Della Torre S, Rando G, Meda C, Stell A, Chambon P, Krust A, Ibarra C, Magni P, Ciana P, Maggi A. Amino acid-dependent activation of liver estrogen receptor alpha integrates metabolic and reproductive functions via IGF-1. Cell Metab. 2011;13(2):205–214. doi: 10.1016/j.cmet.2011.01.002. [DOI] [PubMed] [Google Scholar]
  39. Di Croce L, Bruscalupi G, Trentalance A. Independent behavior of rat liver LDL receptor and HMGCoA reductase under estrogen treatment. Biochem Biophys Res Commun. 1996;224(2):345–350. doi: 10.1006/bbrc.1996.1031. [DOI] [PubMed] [Google Scholar]
  40. Di Croce L, Vicent GP, Pecci A, Bruscalupi G, Trentalance A, Beato M. The promoter of the rat 3-hydroxy-3-methylglutaryl coenzyme A reductase gene contains a tissue-specific estrogen-responsive region. Mol Endocrinol. 1999;13(8):1225–1236. doi: 10.1210/mend.13.8.0333. [DOI] [PubMed] [Google Scholar]
  41. Distefano E, Marino M, Gillette JA, Hanstein B, Pallottini V, Bruning J, Krone W, Trentalance A. Role of tyrosine kinase signaling in estrogen-induced LDL receptor gene expression in HepG2 cells. Biochim Biophys Acta. 2002;1580(2-3):145–149. doi: 10.1016/s1388-1981(01)00197-4. [DOI] [PubMed] [Google Scholar]
  42. El Khoudary SR, Hutchins PM, Matthews KA, Brooks MM, Orchard TJ, Ronsein GE, Heinecke JW. Cholesterol Efflux Capacity and Subclasses of HDL Particles in Healthy Women Transitioning Through Menopause. J Clin Endocrinol Metab. 2016;101(9):3419–3428. doi: 10.1210/jc.2016-2144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Espeland MA, Hogan PE, Fineberg SE, Howard G, Schrott H, Waclawiw MA, Bush TL. Effect of postmenopausal hormone therapy on glucose and insulin concentrations. PEPI Investigators. Postmenopausal Estrogen/Progestin Interventions. Diabetes Care. 1998;21(10):1589–1595. doi: 10.2337/diacare.21.10.1589. [DOI] [PubMed] [Google Scholar]
  44. Fabbrini E, Magkos F, Mohammed BS, Pietka T, Abumrad NA, Patterson BW, Okunade A, Klein S. Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proc Natl Acad Sci U S A. 2009;106(36):15430–15435. doi: 10.1073/pnas.0904944106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Ferrara A, Karter AJ, Ackerson LM, Liu JY, Selby JV Northern California Kaiser Permanente Diabetes R. Hormone replacement therapy is associated with better glycemic control in women with type 2 diabetes: The Northern California Kaiser Permanente Diabetes Registry. Diabetes Care. 2001;24(7):1144–1150. doi: 10.2337/diacare.24.7.1144. [DOI] [PubMed] [Google Scholar]
  46. Finan B, Yang B, Ottaway N, Stemmer K, Muller TD, Yi CX, Habegger K, Schriever SC, Garcia-Caceres C, Kabra DG, Hembree J, Holland J, Raver C, Seeley RJ, Hans W, Irmler M, Beckers J, de Angelis MH, Tiano JP, Mauvais-Jarvis F, Perez-Tilve D, Pfluger P, Zhang L, Gelfanov V, DiMarchi RD, Tschop MH. Targeted estrogen delivery reverses the metabolic syndrome. Nat Med. 2012;18(12):1847–1856. doi: 10.1038/nm.3009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Finkelstein JS, Lee H, Burnett-Bowie SA, Pallais JC, Yu EW, Borges LF, Jones BF, Barry CV, Wulczyn KE, Thomas BJ, Leder BZ. Gonadal steroids and body composition, strength, and sexual function in men. N Engl J Med. 2013;369(11):1011–1022. doi: 10.1056/NEJMoa1206168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Freedman DS, Otvos JD, Jeyarajah EJ, Shalaurova I, Cupples LA, Parise H, D’Agostino RB, Wilson PW, Schaefer EJ. Sex and age differences in lipoprotein subclasses measured by nuclear magnetic resonance spectroscopy: the Framingham Study. Clin Chem. 2004;50(7):1189–1200. doi: 10.1373/clinchem.2004.032763. [DOI] [PubMed] [Google Scholar]
  49. Frias JP, Macaraeg GB, Ofrecio J, Yu JG, Olefsky JM, Kruszynska YT. Decreased susceptibility to fatty acid-induced peripheral tissue insulin resistance in women. Diabetes. 2001;50(6):1344–1350. doi: 10.2337/diabetes.50.6.1344. [DOI] [PubMed] [Google Scholar]
  50. Fukata Y, Yu X, Imachi H, Nishiuchi T, Lyu J, Seo K, Takeuchi A, Iwama H, Masugata H, Hoshikawa H, Hosomi N, Iwasaki Y, Murao K. 17beta-Estradiol regulates scavenger receptor class BI gene expression via protein kinase C in vascular endothelial cells. Endocrine. 2014;46(3):644–650. doi: 10.1007/s12020-013-0134-5. [DOI] [PubMed] [Google Scholar]
  51. Galien R, Garcia T. Estrogen receptor impairs interleukin-6 expression by preventing protein binding on the NF-κB site. Nucleic Acids Research. 1997;25(12):2424–2429. doi: 10.1093/nar/25.12.2424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Gao H, Bryzgalova G, Hedman E, Khan A, Efendic S, Gustafsson JA, Dahlman-Wright K. Long-term administration of estradiol decreases expression of hepatic lipogenic genes and improves insulin sensitivity in ob/ob mice: a possible mechanism is through direct regulation of signal transducer and activator of transcription 3. Mol Endocrinol. 2006;20(6):1287–1299. doi: 10.1210/me.2006-0012. [DOI] [PubMed] [Google Scholar]
  53. Gao H, Falt S, Sandelin A, Gustafsson JA, Dahlman-Wright K. Genome-wide identification of estrogen receptor alpha-binding sites in mouse liver. Mol Endocrinol. 2008;22(1):10–22. doi: 10.1210/me.2007-0121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Glueck CJ, Fallat RW, Scheel D. Effects of estrogenic compounds on triglyceride kinetics. Metabolism. 1975;24(4):537–545. doi: 10.1016/0026-0495(75)90078-5. [DOI] [PubMed] [Google Scholar]
  55. Grady D, Herrington D, Bittner V, Blumenthal R, Davidson M, Hlatky M, Hsia J, Hulley S, Herd A, Khan S, Newby LK, Waters D, Vittinghoff E, Wenger N Group HR. Cardiovascular disease outcomes during 6.8 years of hormone therapy: Heart and Estrogen/progestin Replacement Study follow-up (HERS II) JAMA : the journal of the American Medical Association. 2002;288(1):49–57. doi: 10.1001/jama.288.1.49. [DOI] [PubMed] [Google Scholar]
  56. Grady D, Rubin SM, Petitti DB, Fox CS, Black D, Ettinger B, Ernster VL, Cummings SR. Hormone therapy to prevent disease and prolong life in postmenopausal women. Ann Intern Med. 1992;117(12):1016–1037. doi: 10.7326/0003-4819-117-12-1016. [DOI] [PubMed] [Google Scholar]
  57. Grodstein F, Stampfer M. The epidemiology of coronary heart disease and estrogen replacement in postmenopausal women. Prog Cardiovasc Dis. 1995;38(3):199–210. doi: 10.1016/s0033-0620(95)80012-3. [DOI] [PubMed] [Google Scholar]
  58. Hammond CB, Jelovsek FR, Lee KL, Creasman WT, Parker RT. Effects of long-term estrogen replacement therapy. I. Metabolic effects. Am J Obstet Gynecol. 1979;133(5):525–536. doi: 10.1016/0002-9378(79)90288-6. [DOI] [PubMed] [Google Scholar]
  59. Henderson BE, Paganini-Hill A, Ross RK. Decreased mortality in users of estrogen replacement therapy. Arch Intern Med. 1991;151(1):75–78. [PubMed] [Google Scholar]
  60. Hernandez Avila M, Walker AM, Jick H. Use of replacement estrogens and the risk of myocardial infarction. Epidemiology. 1990;1(2):128–133. doi: 10.1097/00001648-199003000-00008. [DOI] [PubMed] [Google Scholar]
  61. Hevener A, Reichart D, Janez A, Olefsky J. Female rats do not exhibit free fatty acid-induced insulin resistance. Diabetes. 2002;51(6):1907–1912. doi: 10.2337/diabetes.51.6.1907. [DOI] [PubMed] [Google Scholar]
  62. Hodis HN, Mack WJ, Azen SP, Lobo RA, Shoupe D, Mahrer PR, Faxon DP, Cashin-Hemphill L, Sanmarco ME, French WJ, Shook TL, Gaarder TD, Mehra AO, Rabbani R, Sevanian A, Shil AB, Torres M, Vogelbach KH, Selzer RH Women’s Estrogen-Progestin Lipid-Lowering Hormone Atherosclerosis Regression Trial Research G. Hormone therapy and the progression of coronary-artery atherosclerosis in postmenopausal women. N Engl J Med. 2003;349(6):535–545. doi: 10.1056/NEJMoa030830. [DOI] [PubMed] [Google Scholar]
  63. Hodis HN, Mack WJ, Henderson VW, Shoupe D, Budoff MJ, Hwang-Levine J, Li Y, Feng M, Dustin L, Kono N, Stanczyk FZ, Selzer RH, Azen SP Group ER. Vascular Effects of Early versus Late Postmenopausal Treatment with Estradiol. N Engl J Med. 2016;374(13):1221–1231. doi: 10.1056/NEJMoa1505241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Hodis HN, Mack WJ, Lobo RA, Shoupe D, Sevanian A, Mahrer PR, Selzer RH, Liu Cr CR, Liu Ch CH, Azen SP Estrogen in the Prevention of Atherosclerosis Trial Research G. Estrogen in the prevention of atherosclerosis. A randomized, double-blind, placebo-controlled trial. Ann Intern Med. 2001;135(11):939–953. doi: 10.7326/0003-4819-135-11-200112040-00005. [DOI] [PubMed] [Google Scholar]
  65. Hsia J, Langer RD, Manson JE, Kuller L, Johnson KC, Hendrix SL, Pettinger M, Heckbert SR, Greep N, Crawford S, Eaton CB, Kostis JB, Caralis P, Prentice R Investigato WHI. Conjugated equine estrogens and coronary heart disease - The women’s health initiative. Archives of Internal Medicine. 2006;166(3):357–365. doi: 10.1001/Archinte.166.3.357. [DOI] [PubMed] [Google Scholar]
  66. Hu FB, Grodstein F, Hennekens CH, Colditz GA, Johnson M, Manson JE, Rosner B, Stampfer MJ. Age at natural menopause and risk of cardiovascular disease. Arch Intern Med. 1999;159(10):1061–1066. doi: 10.1001/archinte.159.10.1061. [DOI] [PubMed] [Google Scholar]
  67. Hulley S, Grady D, Bush T, Furberg C, Herrington D, Riggs B, Vittinghoff E. Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. Heart and Estrogen/progestin Replacement Study (HERS) Research Group. JAMA. 1998;280(7):605–613. doi: 10.1001/jama.280.7.605. [DOI] [PubMed] [Google Scholar]
  68. Jensen MD, Martin ML, Cryer PE, Roust LR. Effects of estrogen on free fatty acid metabolism in humans. Am J Physiol. 1994;266(6 Pt 1):E914–920. doi: 10.1152/ajpendo.1994.266.6.E914. [DOI] [PubMed] [Google Scholar]
  69. Jiang XC, Moulin P, Quinet E, Goldberg IJ, Yacoub LK, Agellon LB, Compton D, Schnitzer-Polokoff R, Tall AR. Mammalian adipose tissue and muscle are major sources of lipid transfer protein mRNA. J Biol Chem. 1991;266(7):4631–4639. [PubMed] [Google Scholar]
  70. Johansson LE, Danielsson AP, Parikh H, Klintenberg M, Norstrom F, Groop L, Ridderstrale M. Differential gene expression in adipose tissue from obese human subjects during weight loss and weight maintenance. Am J Clin Nutr. 2012;96(1):196–207. doi: 10.3945/ajcn.111.020578. [DOI] [PubMed] [Google Scholar]
  71. Jones ME, Thorburn AW, Britt KL, Hewitt KN, Misso ML, Wreford NG, Proietto J, Oz OK, Leury BJ, Robertson KM, Yao S, Simpson ER. Aromatase-deficient (ArKO) mice accumulate excess adipose tissue. J Steroid Biochem Mol Biol. 2001;79(1-5):3–9. doi: 10.1016/s0960-0760(01)00136-4. [DOI] [PubMed] [Google Scholar]
  72. Jones ME, Thorburn AW, Britt KL, Hewitt KN, Wreford NG, Proietto J, Oz OK, Leury BJ, Robertson KM, Yao S, Simpson ER. Aromatase-deficient (ArKO) mice have a phenotype of increased adiposity. Proc Natl Acad Sci U S A. 2000;97(23):12735–12740. doi: 10.1073/pnas.97.23.12735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Jornayvaz FR, Birkenfeld AL, Jurczak MJ, Kanda S, Guigni BA, Jiang DC, Zhang D, Lee HY, Samuel VT, Shulman GI. Hepatic insulin resistance in mice with hepatic overexpression of diacylglycerol acyltransferase 2. Proc Natl Acad Sci U S A. 2011;108(14):5748–5752. doi: 10.1073/pnas.1103451108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Kannel WB, Hjortland MC, McNamara PM, Gordon T. Menopause and risk of cardiovascular disease: the Framingham study. Ann Intern Med. 1976;85(4):447–452. doi: 10.7326/0003-4819-85-4-447. [DOI] [PubMed] [Google Scholar]
  75. Kim HJ, Kalkhoff RK. Sex steroid influence on triglyceride metabolism. J Clin Invest. 1975;56(4):888–896. doi: 10.1172/JCI108168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Kim JH, Meyers MS, Khuder SS, Abdallah SL, Muturi HT, Russo L, Tate CR, Hevener AL, Najjar SM, Leloup C, Mauvais-Jarvis F. Tissue-selective estrogen complexes with bazedoxifene prevent metabolic dysfunction in female mice. Mol Metab. 2014;3(2):177–190. doi: 10.1016/j.molmet.2013.12.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Kissebah AH, Harrigan P, Wynn V. Mechanism of hypertriglyceridaemia associated with contraceptive steroids. Horm Metab Res. 1973;5(3):184–190. doi: 10.1055/s-0028-1093969. [DOI] [PubMed] [Google Scholar]
  78. Kushwaha RS, Hazzard WR, Gagne C, Chait A, Albers JJ. Type III hyperlipoproteinemia: paradoxical hypolipidemic response to estrogen. Ann Intern Med. 1977;87(5):517–525. doi: 10.7326/0003-4819-87-5-517. [DOI] [PubMed] [Google Scholar]
  79. Levin ER. Plasma membrane estrogen receptors. Trends Endocrinol Metab. 2009;20(10):477–482. doi: 10.1016/j.tem.2009.06.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Li C, Briggs MR, Ahlborn TE, Kraemer FB, Liu J. Requirement of Sp1 and estrogen receptor alpha interaction in 17beta-estradiol-mediated transcriptional activation of the low density lipoprotein receptor gene expression. Endocrinology. 2001;142(4):1546–1553. doi: 10.1210/endo.142.4.8096. [DOI] [PubMed] [Google Scholar]
  81. Liao CC, Chiu YS, Chiu WC, Tung YT, Chuang HL, Wu JH, Huang CC. Proteomics Analysis to Identify and Characterize the Molecular Signatures of Hepatic Steatosis in Ovariectomized Rats as a Model of Postmenopausal Status. Nutrients. 2015;7(10):8752–8766. doi: 10.3390/nu7105434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Lindberg MK, Weihua Z, Andersson N, Moverare S, Gao H, Vidal O, Erlandsson M, Windahl S, Andersson G, Lubahn DB, Carlsten H, Dahlman-Wright K, Gustafsson JA, Ohlsson C. Estrogen receptor specificity for the effects of estrogen in ovariectomized mice. J Endocrinol. 2002;174(2):167–178. doi: 10.1677/joe.0.1740167. [DOI] [PubMed] [Google Scholar]
  83. Lloyd-Jones D, Adams R, Carnethon M, De Simone G, Ferguson TB, Flegal K, Ford E, Furie K, Go A, Greenlund K, Haase N, Hailpern S, Ho M, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A, McDermott M, Meigs J, Mozaffarian D, Nichol G, O’Donnell C, Roger V, Rosamond W, Sacco R, Sorlie P, Stafford R, Steinberger J, Thom T, Wasserthiel-Smoller S, Wong N, Wylie-Rosett J, Hong Y American Heart Association Statistics C, Stroke Statistics S. Heart disease and stroke statistics--2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2009;119(3):e21–181. doi: 10.1161/CIRCULATIONAHA.108.191261. [DOI] [PubMed] [Google Scholar]
  84. Lopez D, McLean MP. Estrogen regulation of the scavenger receptor class B gene: Anti-atherogenic or steroidogenic, is there a priority? Mol Cell Endocrinol. 2006;247(1-2):22–33. doi: 10.1016/j.mce.2005.10.005. [DOI] [PubMed] [Google Scholar]
  85. Ma PT, Yamamoto T, Goldstein JL, Brown MS. Increased mRNA for low density lipoprotein receptor in livers of rabbits treated with 17 alpha-ethinyl estradiol. Proc Natl Acad Sci U S A. 1986;83(3):792–796. doi: 10.1073/pnas.83.3.792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Maffei L, Murata Y, Rochira V, Tubert G, Aranda C, Vazquez M, Clyne CD, Davis S, Simpson ER, Carani C. Dysmetabolic syndrome in a man with a novel mutation of the aromatase gene: effects of testosterone, alendronate, and estradiol treatment. J Clin Endocrinol Metab. 2004;89(1):61–70. doi: 10.1210/jc.2003-030313. [DOI] [PubMed] [Google Scholar]
  87. Magkos F, Mittendorfer B. Gender differences in lipid metabolism and the effect of obesity. Obstet Gynecol Clin North Am. 2009;36(2):245–265, vii. doi: 10.1016/j.ogc.2009.03.001. [DOI] [PubMed] [Google Scholar]
  88. Magkos F, Patterson BW, Mittendorfer B. No effect of menstrual cycle phase on basal very-low-density lipoprotein triglyceride and apolipoprotein B-100 kinetics. Am J Physiol Endocrinol Metab. 2006;291(6):E1243–1249. doi: 10.1152/ajpendo.00246.2006. [DOI] [PubMed] [Google Scholar]
  89. Magkos F, Patterson BW, Mittendorfer B. Reproducibility of stable isotope-labeled tracer measures of VLDL-triglyceride and VLDL-apolipoprotein B-100 kinetics. J Lipid Res. 2007a;48(5):1204–1211. doi: 10.1194/jlr.D600048-JLR200. [DOI] [PubMed] [Google Scholar]
  90. Magkos F, Patterson BW, Mohammed BS, Klein S, Mittendorfer B. Women produce fewer but triglyceride-richer very low-density lipoproteins than men. J Clin Endocrinol Metab. 2007b;92(4):1311–1318. doi: 10.1210/jc.2006-2215. [DOI] [PubMed] [Google Scholar]
  91. Manson JE, Allison MA, Rossouw JE, Carr JJ, Langer RD, Hsia J, Kuller LH, Cochrane BB, Hunt JR, Ludlam SE, Pettinger MB, Gass M, Margolis KL, Nathan L, Ockene JK, Prentice RL, Robbins J, Stefanick ML Whi, Investigators W-C. Estrogen therapy and coronary-artery calcification. N Engl J Med. 2007;356(25):2591–2602. doi: 10.1056/NEJMoa071513. [DOI] [PubMed] [Google Scholar]
  92. Manson JE, Hsia J, Johnson KC, Rossouw JE, Assaf AR, Lasser NL, Trevisan M, Black HR, Heckbert SR, Detrano R, Strickland OL, Wong ND, Crouse JR, Stein E, Cushman M Women’s Health Initiative I. Estrogen plus progestin and the risk of coronary heart disease. N Engl J Med. 2003;349(6):523–534. doi: 10.1056/NEJMoa030808. [DOI] [PubMed] [Google Scholar]
  93. Marino M, Distefano E, Pallottini V, Caporali S, Bruscalupi G, Trentalance A. Activation of IP(3)-protein kinase C-alpha signal transduction pathway precedes the changes of plasma cholesterol, hepatic lipid metabolism and induction of low-density lipoprotein receptor expression in 17-beta-oestradiol-treated rats. Exp Physiol. 2001;86(1):39–45. doi: 10.1113/eph8602069. [DOI] [PubMed] [Google Scholar]
  94. Marino M, Galluzzo P, Ascenzi P. Estrogen signaling multiple pathways to impact gene transcription. Curr Genomics. 2006;7(8):497–508. doi: 10.2174/138920206779315737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Marino M, Pallottini V, Trentalance A. Estrogens cause rapid activation of IP3-PKC-alpha signal transduction pathway in HEPG2 cells. Biochem Biophys Res Commun. 1998;245(1):254–258. doi: 10.1006/bbrc.1998.8413. [DOI] [PubMed] [Google Scholar]
  96. Marotti KR, Castle CK, Boyle TP, Lin AH, Murray RW, Melchior GW. Severe atherosclerosis in transgenic mice expressing simian cholesteryl ester transfer protein. Nature. 1993;364(6432):73–75. doi: 10.1038/364073a0. [DOI] [PubMed] [Google Scholar]
  97. Marsh MM, Walker VR, Curtiss LK, Banka CL. Protection against atherosclerosis by estrogen is independent of plasma cholesterol levels in LDL receptor-deficient mice. J Lipid Res. 1999;40(5):893–900. [PubMed] [Google Scholar]
  98. Matsuo K, Gualtieri MR, Cahoon SS, Jung CE, Paulson RJ, Shoupe D, Muderspach LI, Wakatsuki A, Wright JD, Roman LD. Surgical menopause and increased risk of nonalcoholic fatty liver disease in endometrial cancer. Menopause. 2016;23(2):189–196. doi: 10.1097/GME.0000000000000500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Matthan NR, Jalbert SM, Barrett PH, Dolnikowski GG, Schaefer EJ, Lichtenstein AH. Gender-specific differences in the kinetics of nonfasting TRL, IDL, and LDL apolipoprotein B-100 in men and premenopausal women. Arterioscler Thromb Vasc Biol. 2008;28(10):1838–1843. doi: 10.1161/ATVBAHA.108.163931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. McKenzie J, Fisher BM, Jaap AJ, Stanley A, Paterson K, Sattar N. Effects of HRT on liver enzyme levels in women with type 2 diabetes: a randomized placebo-controlled trial. Clin Endocrinol (Oxf) 2006;65(1):40–44. doi: 10.1111/j.1365-2265.2006.02543.x. [DOI] [PubMed] [Google Scholar]
  101. Meyer MR, Fredette NC, Howard TA, Hu C, Ramesh C, Daniel C, Amann K, Arterburn JB, Barton M, Prossnitz ER. G Protein-coupled Estrogen Receptor Protects from Atherosclerosis. Scientific Reports. 2014;4:7564. doi: 10.1038/srep07564. https://www.nature.com/articles/srep07564#supplementary-information. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Mittendorfer B, Patterson BW, Klein S. Effect of sex and obesity on basal VLDL-triacylglycerol kinetics. Am J Clin Nutr. 2003;77(3):573–579. doi: 10.1093/ajcn/77.3.573. [DOI] [PubMed] [Google Scholar]
  103. Murata Y, Ogawa Y, Saibara T, Nishioka A, Fujiwara Y, Fukumoto M, Inomata T, Enzan H, Onishi S, Yoshida S. Unrecognized hepatic steatosis and non-alcoholic steatohepatitis in adjuvant tamoxifen for breast cancer patients. Oncol Rep. 2000;7(6):1299–1304. doi: 10.3892/or.7.6.1299. [DOI] [PubMed] [Google Scholar]
  104. Nilsson BO, Olde B, Leeb-Lundberg LM. G protein-coupled oestrogen receptor 1 (GPER1)/GPR30: a new player in cardiovascular and metabolic oestrogenic signalling. Br J Pharmacol. 2011;163(6):1131–1139. doi: 10.1111/j.1476-5381.2011.01235.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Nishino M, Hayakawa K, Nakamura Y, Morimoto T, Mukaihara S. Effects of tamoxifen on hepatic fat content and the development of hepatic steatosis in patients with breast cancer: high frequency of involvement and rapid reversal after completion of tamoxifen therapy. AJR Am J Roentgenol. 2003;180(1):129–134. doi: 10.2214/ajr.180.1.1800129. [DOI] [PubMed] [Google Scholar]
  106. O’Sullivan AJ, Crampton LJ, Freund J, Ho KK. The route of estrogen replacement therapy confers divergent effects on substrate oxidation and body composition in postmenopausal women. J Clin Invest. 1998;102(5):1035–1040. doi: 10.1172/JCI2773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Ohlsson C, Hellberg N, Parini P, Vidal O, Bohlooly YM, Rudling M, Lindberg MK, Warner M, Angelin B, Gustafsson JA. Obesity and disturbed lipoprotein profile in estrogen receptor-alpha-deficient male mice. Biochem Biophys Res Commun. 2000;278(3):640–645. doi: 10.1006/bbrc.2000.3827. [DOI] [PubMed] [Google Scholar]
  108. Oien KA, Moffat D, Curry GW, Dickson J, Habeshaw T, Mills PR, MacSween RN. Cirrhosis with steatohepatitis after adjuvant tamoxifen. Lancet. 1999;353(9146):36–37. doi: 10.1016/S0140-6736(05)74872-8. [DOI] [PubMed] [Google Scholar]
  109. Osborne CK, Schiff R. Estrogen-receptor biology: continuing progress and therapeutic implications. J Clin Oncol. 2005;23(8):1616–1622. doi: 10.1200/JCO.2005.10.036. [DOI] [PubMed] [Google Scholar]
  110. Otero YF, Stafford JM, McGuinness OP. Pathway-selective insulin resistance and metabolic disease: the importance of nutrient flux. J Biol Chem. 2014;289(30):20462–20469. doi: 10.1074/jbc.R114.576355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Owman C, Blay P, Nilsson C, Lolait SJ. Cloning of Human cDNA Encoding a Novel Heptahelix Receptor Expressed in Burkitt’s Lymphoma and Widely Distributed in Brain and Peripheral Tissues. Biochemical and Biophysical Research Communications. 1996;228(2):285–292. doi: 10.1006/bbrc.1996.1654. http://dx.doi.org/10.1006/bbrc.1996.1654. [DOI] [PubMed] [Google Scholar]
  112. Paech K, Webb P, Kuiper GGJM, Nilsson S, Gustafsson J-Å, Kushner PJ, Scanlan TS. Differential Ligand Activation of Estrogen Receptors ERα and ERβ at AP1 Sites. Science. 1997;277(5331):1508. doi: 10.1126/science.277.5331.1508. [DOI] [PubMed] [Google Scholar]
  113. Palmisano BT, Le TD, Zhu L, Lee YK, Stafford JM. Cholesteryl ester transfer protein alters liver and plasma triglyceride metabolism through two liver networks in female mice. J Lipid Res. 2016;57(8):1541–1551. doi: 10.1194/jlr.M069013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Paquette A, Shinoda M, Rabasa Lhoret R, Prud’homme D, Lavoie JM. Time course of liver lipid infiltration in ovariectomized rats: impact of a high-fat diet. Maturitas. 2007;58(2):182–190. doi: 10.1016/j.maturitas.2007.08.002. [DOI] [PubMed] [Google Scholar]
  115. Park CJ, Zhao Z, Glidewell-Kenney C, Lazic M, Chambon P, Krust A, Weiss J, Clegg DJ, Dunaif A, Jameson JL, Levine JE. Genetic rescue of nonclassical ERalpha signaling normalizes energy balance in obese Eralpha-null mutant mice. J Clin Invest. 2011;121(2):604–612. doi: 10.1172/JCI41702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Parks BW, Sallam T, Mehrabian M, Psychogios N, Hui ST, Norheim F, Castellani LW, Rau CD, Pan C, Phun J, Zhou Z, Yang WP, Neuhaus I, Gargalovic PS, Kirchgessner TG, Graham M, Lee R, Tontonoz P, Gerszten RE, Hevener AL, Lusis AJ. Genetic architecture of insulin resistance in the mouse. Cell Metab. 2015;21(2):334–346. doi: 10.1016/j.cmet.2015.01.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Pasqualini JR, Chetrite G, Blacker C, Feinstein MC, Delalonde L, Talbi M, Maloche C. Concentrations of estrone, estradiol, and estrone sulfate and evaluation of sulfatase and aromatase activities in pre- and postmenopausal breast cancer patients. J Clin Endocrinol Metab. 1996;81(4):1460–1464. doi: 10.1210/jcem.81.4.8636351. [DOI] [PubMed] [Google Scholar]
  118. Pedram A, Razandi M, O’Mahony F, Harvey H, Harvey BJ, Levin ER. Estrogen reduces lipid content in the liver exclusively from membrane receptor signaling. ra36. Sci Signal. 2013;6(276) doi: 10.1126/scisignal.2004013. [DOI] [PubMed] [Google Scholar]
  119. Petitti DB, Perlman JA, Sidney S. Noncontraceptive estrogens and mortality: long-term follow-up of women in the Walnut Creek Study. Obstet Gynecol. 1987;70(3 Pt 1):289–293. [PubMed] [Google Scholar]
  120. Qian YM, Sun XJ, Tong MH, Li XP, Richa J, Song WC. Targeted Disruption of the Mouse Estrogen Sulfotransferase Gene Reveals a Role of Estrogen Metabolism in Intracrine and Paracrine Estrogen Regulation. Endocrinology. 2001;142(12):5342–5350. doi: 10.1210/endo.142.12.8540. [DOI] [PubMed] [Google Scholar]
  121. Rader DJ, Alexander ET, Weibel GL, Billheimer J, Rothblat GH. The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis. J Lipid Res. 2009;50(Suppl):S189–194. doi: 10.1194/jlr.R800088-JLR200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Rader DJ, Tall AR. The not-so-simple HDL story: Is it time to revise the HDL cholesterol hypothesis? Nat Med. 2012;18(9):1344–1346. doi: 10.1038/nm.2937. [DOI] [PubMed] [Google Scholar]
  123. Reaven GM, Bernstein RM. Effect of obesity on the relationship between very low density lipoprotein production rate and plasma triglyceride concentration in normal and hypertriglyceridemic subjects. Metabolism. 1978;27(9):1047–1054. doi: 10.1016/0026-0495(78)90150-6. [DOI] [PubMed] [Google Scholar]
  124. Ribas V, Drew BG, Zhou Z, Phun J, Kalajian NY, Soleymani T, Daraei P, Widjaja K, Wanagat J, de Aguiar Vallim TQ, Fluitt AH, Bensinger S, Le T, Radu C, Whitelegge JP, Beaven SW, Tontonoz P, Lusis AJ, Parks BW, Vergnes L, Reue K, Singh H, Bopassa JC, Toro L, Stefani E, Watt MJ, Schenk S, Akerstrom T, Kelly M, Pedersen BK, Hewitt SC, Korach KS, Hevener AL. Skeletal muscle action of estrogen receptor α is critical for the maintenance of mitochondrial function and metabolic homeostasis in females. Science Translational Medicine. 2016;8(334):334ra–354. doi: 10.1126/scitranslmed.aad3815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Ribas V, Nguyen MT, Henstridge DC, Nguyen AK, Beaven SW, Watt MJ, Hevener AL. Impaired oxidative metabolism and inflammation are associated with insulin resistance in ERalpha-deficient mice. Am J Physiol Endocrinol Metab. 2010;298(2):E304–319. doi: 10.1152/ajpendo.00504.2009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Rochira V, Madeo B, Zirilli L, Caffagni G, Maffei L, Carani C. Oestradiol replacement treatment and glucose homeostasis in two men with congenital aromatase deficiency: evidence for a role of oestradiol and sex steroids imbalance on insulin sensitivity in men. Diabet Med. 2007;24(12):1491–1495. doi: 10.1111/j.1464-5491.2007.02304.x. [DOI] [PubMed] [Google Scholar]
  127. Roe A, Hillman J, Butts S, Smith M, Rader D, Playford M, Mehta NN, Dokras A. Decreased cholesterol efflux capacity and atherogenic lipid profile in young women with PCOS. J Clin Endocrinol Metab. 2014;99(5):E841–847. doi: 10.1210/jc.2013-3918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, Carnethon MR, Dai S, de Simone G, Ford ES, Fox CS, Fullerton HJ, Gillespie C, Greenlund KJ, Hailpern SM, Heit JA, Ho PM, Howard VJ, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Makuc DM, Marcus GM, Marelli A, Matchar DB, McDermott MM, Meigs JB, Moy CS, Mozaffarian D, Mussolino ME, Nichol G, Paynter NP, Rosamond WD, Sorlie PD, Stafford RS, Turan TN, Turner MB, Wong ND, Wylie-Rosett J. Heart disease and stroke statistics--2011 update: a report from the American Heart Association. Circulation. 2011;123(4):e18–e209. doi: 10.1161/CIR.0b013e3182009701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Rogers NH, Perfield JW, 2nd, Strissel KJ, Obin MS, Greenberg AS. Reduced energy expenditure and increased inflammation are early events in the development of ovariectomy-induced obesity. Endocrinology. 2009;150(5):2161–2168. doi: 10.1210/en.2008-1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Romero-Aleshire MJ, Diamond-Stanic MK, Hasty AH, Hoyer PB, Brooks HL. Loss of ovarian function in the VCD mouse-model of menopause leads to insulin resistance and a rapid progression into the metabolic syndrome. Am J Physiol Regul Integr Comp Physiol. 2009;297(3):R587–592. doi: 10.1152/ajpregu.90762.2008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Rosenson RS, Brewer HB, Jr, Davidson WS, Fayad ZA, Fuster V, Goldstein J, Hellerstein M, Jiang XC, Phillips MC, Rader DJ, Remaley AT, Rothblat GH, Tall AR, Yvan-Charvet L. Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. Circulation. 2012;125(15):1905–1919. doi: 10.1161/CIRCULATIONAHA.111.066589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  132. Rossi R, Origliani G, Modena MG. Transdermal 17-beta-estradiol and risk of developing type 2 diabetes in a population of healthy, nonobese postmenopausal women. Diabetes Care. 2004;27(3):645–649. doi: 10.2337/diacare.27.3.645. [DOI] [PubMed] [Google Scholar]
  133. Rudling M, Norstedt G, Olivecrona H, Reihner E, Gustafsson JA, Angelin B. Importance of growth hormone for the induction of hepatic low density lipoprotein receptors. Proc Natl Acad Sci U S A. 1992;89(15):6983–6987. doi: 10.1073/pnas.89.15.6983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Ryu S, Suh BS, Chang Y, Kwon MJ, Yun KE, Jung HS, Kim CW, Kim BK, Kim YJ, Choi Y, Ahn J, Cho YK, Kim KH, Ahn Y, Park HY, Chung EC, Shin H, Cho J. Menopausal stages and non-alcoholic fatty liver disease in middle-aged women. Eur J Obstet Gynecol Reprod Biol. 2015;190:65–70. doi: 10.1016/j.ejogrb.2015.04.017. [DOI] [PubMed] [Google Scholar]
  135. Sanada M, Tsuda M, Kodama I, Sakashita T, Nakagawa H, Ohama K. Substitution of transdermal estradiol during oral estrogen-progestin therapy in postmenopausal women: effects on hypertriglyceridemia. Menopause. 2004;11(3):331–336. doi: 10.1097/01.gme.0000094211.15096.b4. [DOI] [PubMed] [Google Scholar]
  136. Schaefer EJ, Foster DM, Zech LA, Lindgren FT, Brewer HB, Jr, Levy RI. The effects of estrogen administration on plasma lipoprotein metabolism in premenopausal females. J Clin Endocrinol Metab. 1983a;572:262–267. doi: 10.1210/jcem-57-2-262. [DOI] [PubMed] [Google Scholar]
  137. Schaefer EJ, Foster DM, Zech LA, Lindgren FT, Brewer HB, Levy RI. The Effects of Estrogen Administration on Plasma-Lipoprotein Metabolism in Premenopausal Females. J Clin Endocr Metab. 1983b;57(2):262–267. doi: 10.1210/jcem-57-2-262. [DOI] [PubMed] [Google Scholar]
  138. Semenkovich CF, Ostlund RE., Jr Estrogens induce low-density lipoprotein receptor activity and decrease intracellular cholesterol in human hepatoma cell line Hep G2. Biochemistry. 1987;26(16):4987–4992. doi: 10.1021/bi00390a016. [DOI] [PubMed] [Google Scholar]
  139. Sharma G, Mauvais-Jarvis F, Prossnitz ER. Roles of G protein-coupled estrogen receptor GPER in metabolic regulation. J Steroid Biochem Mol Biol. 2017 doi: 10.1016/j.jsbmb.2017.02.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Smith EP, Boyd J, Frank GR, Takahashi H, Cohen RM, Specker B, Williams TC, Lubahn DB, Korach KS. Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N Engl J Med. 1994;331(16):1056–1061. doi: 10.1056/NEJM199410203311604. [DOI] [PubMed] [Google Scholar]
  141. Smith GI, Reeds DN, Okunade AL, Patterson BW, Mittendorfer B. Systemic delivery of estradiol, but not testosterone or progesterone, alters very low density lipoprotein-triglyceride kinetics in postmenopausal women. J Clin Endocrinol Metab. 2014;99(7):E1306–1310. doi: 10.1210/jc.2013-4470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Stampfer MJ, Willett WC, Colditz GA, Rosner B, Speizer FE, Hennekens CH. A prospective study of postmenopausal estrogen therapy and coronary heart disease. N Engl J Med. 1985;313(17):1044–1049. doi: 10.1056/NEJM198510243131703. [DOI] [PubMed] [Google Scholar]
  143. Starr AE, Lemieux V, Noad J, Moore JI, Dewpura T, Raymond A, Chretien M, Figeys D, Mayne J. beta-Estradiol results in a proprotein convertase subtilisin/kexin type 9-dependent increase in low-density lipoprotein receptor levels in human hepatic HuH7 cells. FEBS J. 2015;282(14):2682–2696. doi: 10.1111/febs.13309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Steinberg M, Tolksdorf S, Gordon AS. Relation of the adrenal and pituitary to the hypocholesterolemic effect of estrogen in rats. Endocrinology. 1967;81(2):340–344. doi: 10.1210/endo-81-2-340. [DOI] [PubMed] [Google Scholar]
  145. Strandberg TE, Ylikorkala O, Tikkanen MJ. Differing effects of oral and transdermal hormone replacement therapy on cardiovascular risk factors in healthy postmenopausal women. Am J Cardiol. 2003;92(2):212–214. doi: 10.1016/s0002-9149(03)00542-3. [DOI] [PubMed] [Google Scholar]
  146. Sullivan JM, Vander Zwaag R, Hughes JP, Maddock V, Kroetz FW, Ramanathan KB, Mirvis DM. Estrogen replacement and coronary artery disease. Effect on survival in postmenopausal women. Arch Intern Med. 1990;150(12):2557–2562. [PubMed] [Google Scholar]
  147. Svendsen OL, Hassager C, Christiansen C. Age- and menopause-associated variations in body composition and fat distribution in healthy women as measured by dual-energy X-ray absorptiometry. Metabolism. 1995;44(3):369–373. doi: 10.1016/0026-0495(95)90168-x. [DOI] [PubMed] [Google Scholar]
  148. Tato F, Vega GL, Grundy SM. Bimodal distribution of cholesteryl ester transfer protein activities in normotriglyceridemic men with low HDL cholesterol concentrations. Arterioscler Thromb Vasc Biol. 1995;15(4):446–451. doi: 10.1161/01.atv.15.4.446. [DOI] [PubMed] [Google Scholar]
  149. Trial TWGftP. Effects of estrogen or estrogen/progestin regimens on heart disease risk factors in postmenopausal women. The Postmenopausal Estrogen/Progestin Interventions (PEPI) Trial. The Writing Group for the PEPI Trial. JAMA. 1995;273(3):199–208. [PubMed] [Google Scholar]
  150. Tuazon MA, McConnell TR, Wilson GJ, Anthony TG, Henderson GC. Intensity-dependent and sex-specific alterations in hepatic triglyceride metabolism in mice following acute exercise. J Appl Physiol (1985) 2015;118(1):61–70. doi: 10.1152/japplphysiol.00440.2014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  151. Ulloa N, Arteaga E, Bustos P, Duran-Sandoval D, Schulze K, Castro G, Jauhiainen M, Fruchart JC, Calvo C. Sequential estrogen-progestin replacement therapy in healthy postmenopausal women: effects on cholesterol efflux capacity and key proteins regulating high-density lipoprotein levels. Metabolism. 2002;51(11):1410–1417. doi: 10.1053/meta.2002.35580. [DOI] [PubMed] [Google Scholar]
  152. Vague J. La différenciation sexuelle; facteur déterminant des formes de l’obésité. Presse Med. 1947;55(30):339. [PubMed] [Google Scholar]
  153. van der Schouw YT, van der Graaf Y, Steyerberg EW, Eijkemans JC, Banga JD. Age at menopause as a risk factor for cardiovascular mortality. Lancet. 1996;347(9003):714–718. doi: 10.1016/s0140-6736(96)90075-6. [DOI] [PubMed] [Google Scholar]
  154. Villa A, Della Torre S, Stell A, Cook J, Brown M, Maggi A. Tetradian oscillation of estrogen receptor alpha is necessary to prevent liver lipid deposition. Proc Natl Acad Sci U S A. 2012;109(29):11806–11811. doi: 10.1073/pnas.1205797109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  155. Walsh BW, Schiff I, Rosner B, Greenberg L, Ravnikar V, Sacks FM. Effects of postmenopausal estrogen replacement on the concentrations and metabolism of plasma lipoproteins. N Engl J Med. 1991;325(17):1196–1204. doi: 10.1056/NEJM199110243251702. [DOI] [PubMed] [Google Scholar]
  156. Wang HH, Afdhal NH, Wang DQ. Estrogen receptor alpha, but not beta, plays a major role in 17beta-estradiol-induced murine cholesterol gallstones. Gastroenterology. 2004;127(1):239–249. doi: 10.1053/j.gastro.2004.03.059. [DOI] [PubMed] [Google Scholar]
  157. Wang HH, Afdhal NH, Wang DQH. Overexpression of estrogen receptor a increases hepatic cholesterogenesis, leading to biliary hypersecretion in mice. J Lipid Res. 2006;47(4):778–786. doi: 10.1194/Jlr.M500454-Jlr200. [DOI] [PubMed] [Google Scholar]
  158. Wang X, Lu Y, Wang E, Zhang Z, Xiong X, Zhang H, Lu J, Zheng S, Yang J, Xia X, Yang S, Li X. Hepatic estrogen receptor alpha improves hepatosteatosis through upregulation of small heterodimer partner. J Hepatol. 2015;63(1):183–190. doi: 10.1016/j.jhep.2015.02.029. [DOI] [PubMed] [Google Scholar]
  159. Wiegratz I, Jung-Hoffmann C, Gross W, Kuhl H. Effect of two oral contraceptives containing ethinyl estradiol and gestodene or norgestimate on different lipid and lipoprotein parameters. Contraception. 1998;58(2):83–91. doi: 10.1016/S0010-7824(98)00074-2. [DOI] [PubMed] [Google Scholar]
  160. Wilmot KA, O’Flaherty M, Capewell S, Ford ES, Vaccarino V. Coronary Heart Disease Mortality Declines in the United States From 1979 Through 2011 CLINICAL PERSPECTIVE. Circulation. 2015;132(11):997. doi: 10.1161/CIRCULATIONAHA.115.015293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Wilson PW, Garrison RJ, Castelli WP. Postmenopausal estrogen use, cigarette smoking, and cardiovascular morbidity in women over 50. The Framingham Study. N Engl J Med. 1985;313(17):1038–1043. doi: 10.1056/NEJM198510243131702. [DOI] [PubMed] [Google Scholar]
  162. Windler EE, Kovanen PT, Chao YS, Brown MS, Havel RJ, Goldstein JL. The estradiol-stimulated lipoprotein receptor of rat liver. A binding site that membrane mediates the uptake of rat lipoproteins containing apoproteins B and E. J Biol Chem. 1980;255(21):10464–10471. [PubMed] [Google Scholar]
  163. Wolf PH, Madans JH, Finucane FF, Higgins M, Kleinman JC. Reduction of cardiovascular disease-related mortality among postmenopausal women who use hormones: evidence from a national cohort. Am J Obstet Gynecol. 1991;164(2):489–494. doi: 10.1016/s0002-9378(11)80006-2. [DOI] [PubMed] [Google Scholar]
  164. Yamamoto Y, Moore R, Hess HA, Guo GL, Gonzalez FJ, Korach KS, Maronpot RR, Negishi M. Estrogen receptor alpha mediates 17alpha-ethynylestradiol causing hepatotoxicity. J Biol Chem. 2006;281(24):16625–16631. doi: 10.1074/jbc.M602723200. [DOI] [PubMed] [Google Scholar]
  165. Yang JD, Abdelmalek MF, Pang H, Guy CD, Smith AD, Diehl AM, Suzuki A. Gender and menopause impact severity of fibrosis among patients with nonalcoholic steatohepatitis. Hepatology. 2014;59(4):1406–1414. doi: 10.1002/hep.26761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  166. Yusuf S, Hawken S, Ounpuu S, Bautista L, Franzosi MG, Commerford P, Lang CC, Rumboldt Z, Onen CL, Lisheng L, Tanomsup S, Wangai P, Jr, Razak F, Sharma AM, Anand SS Investigators IS. Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: a case-control study. Lancet. 2005;366(9497):1640–1649. doi: 10.1016/S0140-6736(05)67663-5. [DOI] [PubMed] [Google Scholar]
  167. Zegura B, Guzic-Salobir B, Sebestjen M, Keber I. The effect of various menopausal hormone therapies on markers of inflammation, coagulation, fibrinolysis, lipids, and lipoproteins in healthy postmenopausal women. Menopause. 2006;13(4):643–650. doi: 10.1097/01.gme.0000198485.70703.7a. [DOI] [PubMed] [Google Scholar]
  168. Zhang H, Liu Y, Wang L, Li Z, Zhang H, Wu J, Rahman N, Guo Y, Li D, Li N, Huhtaniemi I, Tsang SY, Gao GF, Li X. Differential effects of estrogen/androgen on the prevention of nonalcoholic fatty liver disease in the male rat. J Lipid Res. 2013;54(2):345–357. doi: 10.1194/jlr.M028969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  169. Zhang Y, Da Silva JR, Reilly M, Billheimer JT, Rothblat GH, Rader DJ. Hepatic expression of scavenger receptor class B type I (SR-BI) is a positive regulator of macrophage reverse cholesterol transport in vivo. J Clin Invest. 2005;115(10):2870–2874. doi: 10.1172/JCI25327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  170. Zhang Y, Howard BV, Cowan LD, Yeh J, Schaefer CF, Wild RA, Wang W, Lee ET. The effect of estrogen use on levels of glucose and insulin and the risk of type 2 diabetes in american Indian postmenopausal women : the strong heart study. Diabetes Care. 2002;25(3):500–504. doi: 10.2337/diacare.25.3.500. [DOI] [PubMed] [Google Scholar]
  171. Zhang Y, Klein K, Sugathan A, Nassery N, Dombkowski A, Zanger UM, Waxman DJ. Transcriptional profiling of human liver identifies sex-biased genes associated with polygenic dyslipidemia and coronary artery disease. PLoS One. 2011;6(8):e23506. doi: 10.1371/journal.pone.0023506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  172. Zhang ZC, Liu Y, Xiao LL, Li SF, Jiang JH, Zhao Y, Qian SW, Tang QQ, Li X. Upregulation of miR-125b by estrogen protects against non-alcoholic fatty liver in female mice. J Hepatol. 2015;63(6):1466–1475. doi: 10.1016/j.jhep.2015.07.037. [DOI] [PubMed] [Google Scholar]
  173. Zhu L, Brown WC, Cai Q, Krust A, Chambon P, McGuinness OP, Stafford JM. Estrogen treatment after ovariectomy protects against fatty liver and may improve pathway-selective insulin resistance. Diabetes. 2013;62(2):424–434. doi: 10.2337/db11-1718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  174. Zhu L, Martinez MN, Emfinger CH, Palmisano BT, Stafford JM. Estrogen signaling prevents diet-induced hepatic insulin resistance in male mice with obesity. Am J Physiol Endocrinol Metab. 2014;306(10):E1188–1197. doi: 10.1152/ajpendo.00579.2013. [DOI] [PMC free article] [PubMed] [Google Scholar]

RESOURCES