Skip to main content
Data in Brief logoLink to Data in Brief
. 2018 Jan 3;17:148–156. doi: 10.1016/j.dib.2017.12.061

Data on assessment of groundwater quality for drinking and irrigation in rural area Sarpol-e Zahab city, Kermanshah province, Iran

Hamed Soleimani a, Abbas Abbasnia a, Mahmood Yousefi a, Ali Akbar Mohammadi b, Fazlollah Changani Khorasgani a,
PMCID: PMC5767897  PMID: 29349110

Abstract

In present study 30 groundwater samples were collected from Sarpol-e Zahab area, Kermanshah province of Iran in order to assess the quality of groundwater in subjected area and determining its suitability for drinking and agricultural purposes. Also the variations in the quality levels of groundwater were compared over the years of 2015 and 2016. Statistical analyses including Spearman correlation coefficients and factor analysis display good correlation between physicochemical parameters (EC, TDS and TH) and Na+, Mg2+, Ca2+, Cl and SO42 ionic constituents. Also in order to assess water quality for irrigation we used the United States Department of Agriculture (USDA) classification which is based on SAR for irrigation suitability assessment. In addition, the residual sodium carbonate (RSC), %Na, PI, KR, SSP, MH, EC characteristics were calculated for all samples and used for assessment of irrigation suitability. Based on these indicators, for every two years, the quality of water for agriculture is in good and excellent category. The Piper classification for hydro geochemical facies indicates that the water in the study area is of Ca-HCO3 type. However, the study of water hardness shows that more than 80% of samples are in hard and very hard water class. Therefore, there is a need for decisions to refine and soften the water.

Keywords: Groundwater quality index, Rural area, Sarpol-e Zahab, Iran


Specifications Table

Subject area Chemistry
More specific subject area Describe narrower subject area
Type of data Tables and figures
How data was acquired Experiments have been done in two total categories of system tests and titrimetric tests including temporary and permanent hardness, calcium, magnesium and chloride. Also system tests including pH and electrical conductivity (EC) measured by pH meter device (pHwtw model) and Esi meter (wbw), respectively. The analysis of anions and cations of sulfate was also done by spectrophotometer Hatch (DR 5000 model) in water and wastewater laboratory of Kermanshah. Total hardness was determined by EDTA titrimetric method and TDS was measured gravimetrically.
Data format Raw, Analyzed
Experimental factors All water samples in polyethylene bottles were stored in a dark place at room temperature until the metals analysis
Experimental features The mentioned parameters above, in abstract section, were analyzed according to the standards for water and wastewater treatment handbook.
Data source location Sarpol-e Zahab, Kermanshah province, Iran
Data accessibility Data are included in this article and supplement file excel

Value of the data

  • Determination of the physical and chemical parameter including EC, pH, TDS, TH, Ca, Mg, CO3, HCO3, Na, K, Cl and SO4 in ground water was investigated in rural area, Sarpol-e Zahab city, Iran.

  • Due to limited studies in the study area, the data of this study can help to better understand the quality of groundwater in the area and provide further studies.

  • The result of data analysis shows that water in this area is suitable for agricultural according to calculated indices.

1. Data

The data presented here deal with monitoring of physical and chemical characteristics of groundwater including pH, EC, TDS, HCO3, CO3, SO4, Cl, Ca, Mg, and Na as well as in Sarpol-e Zahab city, Kermanshah, Iran. The study area and the sampling points are shown in Fig. 1. Also a summary of water quality characteristics are presented in Table 1, Table 2. Results of quality assessment of groundwater samples from rural area in city for drinking purpose (BIS standard) are presented in Table 3, Table 4 [1]. Also classification of groundwater samples for irrigation use on the basis of EC, SAR, RSC, KR, SSP, PI, MH, Na%, T.H are presented in Table 5. Finally, the Piper diagram indicates that the Hydrochemical type of water is of Ca-HCO3 type (Fig. 2) (Table 6, Table 7).

Fig. 1.

Fig. 1

The map and location of sampling villages.

Table 1.

Water level and physico-chemical analyses of groundwater samples of study area collected during 2015 year.

Well pH Na Mg Ca Cl CO3 HCO3 SO4 TDS EC T.H
no (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/l) (μmhos/cm) (mg/l)
P1 7.33 5.75 21.78 90 17.75 0 335.5 25.44 430 672 315
P2 7.47 4.6 20.57 78 14.2 0 311.1 13.44 376 587 280
P3 7.48 4.6 16.94 76 10.65 0 292.8 13.44 354 553 260
P4 8.07 5.75 12.1 64 10.65 0 189.1 49.44 292 457 210
P5 7.19 25.07 18.15 90 28.4 0 335.5 36.96 465 715 300
P6 7.38 20.01 14.52 80 24.85 0 305 16.8 395 617 260
P7 8.03 4.6 20.57 58 14.2 0 244 18.24 316 493 230
P8 8.15 6.44 29.04 58 17.75 0 262.3 36.48 365 570 265
P9 7.7 7.36 18.15 90 17.75 0 305 38.4 412 644 300
P10 7.71 2.76 16.94 56 10.65 0 225.7 14.4 272 425 210
P11 7.55 8.97 33.88 92 17.75 0 408.7 27.36 519 798 370
P12 8.28 3.68 16.94 62 10.65 0 244 16.32 306 478 225
P13 7.62 2.76 18.15 54 10.65 0 225.7 14.4 283 442 210
P14 7.81 4.6 16.94 76 10.65 0 280.6 23.04 351 548 260
P15 8.04 3.68 19.36 54 10.65 0 231.8 16.32 295 461 215
P16 8.06 6.44 12.1 58 10.65 0 219.6 12.48 274 428 195
P17 7.71 1.38 15.73 52 7.1 0 213.5 11.52 265 414 195
P18 7.45 5.75 21.78 80 14.2 0 305 30.24 393 614 290
P19 7.68 4.6 16.94 72 10.65 0 280.6 13.44 342 534 250
P20 7.65 4.6 16.94 80 14.2 0 298.9 13.44 367 573 270
P21 7.97 5.75 25.41 76 14.2 0 305 35.04 401 626 295
P22 7.71 4.6 19.36 70 10.65 0 262.3 32.64 346 540 255
P23 7.35 11.73 33.88 100 24.85 0 408.7 42.72 550 846 390
P24 7.46 3.68 16.94 60 10.65 0 244 11.52 302 472 220
P25 7.66 2.76 18.15 50 7.1 0 225.7 9.6 269 420 200
P26 7.28 9.89 25.41 84 21.3 0 347.7 19.68 438 685 315
P27 8.18 2.07 10.89 66 10.65 0 225.7 12.96 284 444 210
P28 7.73 4.6 13.31 90 14.2 0 305 18.24 381 596 280
P29 7.51 3.68 15.73 68 7.1 0 268.4 11.52 319 499 235
P30 8 5.06 26.62 70 14.2 0 317.2 14.4 384 600 285
Min 7.2 1.4 10.9 50.0 7.1 0.0 189.1 9.6 265.0 414.0 195.0
Max 8.3 25.1 33.9 100.0 28.4 0.0 408.7 49.4 550.0 846.0 390.0
Ave 7.7 6.2 19.4 71.8 14.0 0.0 280.8 21.7 358.2 558.4 259.8
SD 0.30 5.00 5.77 13.95 5.35 0.00 54.12 11.02 73.08 111.47 49.30

Table 2.

Water level and physico-chemical analyses of groundwater samples of study area collected during 2016 year.

Well pH Na Mg Ca Cl CO3 HCO3 SO4 TDS EC T.H
no (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/l) (μ mhos/cm) (mg/l)
P1 7.3 14.95 42.35 104 31.95 0 378.2 107.04 614 944 435
P2 7.58 3.68 24.2 60 10.65 0 274.5 16.32 336 525 250
P3 7.63 5.75 12.1 60 10.65 0 219.6 15.84 281 439 200
P4 7.74 2.76 16.94 54 10.65 0 219.6 14.4 276 432 205
P5 7.27 25.07 22.99 80 24.85 0 359.9 17.76 463 712 295
P6 7.54 3.68 24.2 56 10.65 0 262.3 16.32 323 505 240
P7 7.54 4.6 25.41 74 10.65 0 323.3 18.24 388 607 290
P8 7.56 7.36 25.41 74 14.2 0 329.4 14.4 401 627 290
P9 7.83 2.76 15.73 54 10.65 0 213.5 14.4 268 418 200
P10 7.29 7.36 24.2 82 17.75 0 341.6 14.4 420 656 305
P11 7.84 7.36 10.89 60 10.65 0 219.6 14.4 275 430 195
P12 7.74 8.97 20.57 76 10.65 0 305 27.36 383 598 275
P13 7.42 5.75 25.41 74 17.75 0 317.2 15.84 392 612 290
P14 7.63 4.6 22.99 70 10.65 0 298.9 18.24 364 569 270
P15 7.46 5.75 24.2 68 17.75 0 292.8 15.84 372 581 270
P16 7.58 4.6 22.99 80 10.65 0 329.4 18.24 397 620 295
P17 7.56 7.36 24.2 78 14.2 0 335.5 14.4 405 633 295
P18 7.53 8.97 18.15 84 17.75 0 317.2 17.76 398 622 285
P19 7.34 3.68 21.78 60 10.65 0 262.3 16.32 324 506 240
P20 7.87 2.76 24.2 48 10.65 0 237.9 14.4 274 428 220
P21 7.34 4.6 19.36 70 10.65 0 280.6 18.24 344 538 255
P22 7.62 7.36 18.15 48 10.65 0 219.6 14.4 279 436 195
P23 7.59 5.75 15.73 58 10.65 0 231.8 15.84 292 457 210
P24 7.57 14.95 38.72 110 31.95 0 396.5 92.64 616 497 435
P25 7.06 6.44 27.83 76 10.65 0 335.5 26.88 414 647 305
P26 7.52 2.76 20.57 48 10.65 0 219.6 14.4 278 435 205
P27 7.33 4.6 25.41 50 10.65 0 244 23.04 312 487 230
P28 7.23 9.89 36.3 96 17.75 0 451.4 14.88 541 833 390
P29 7.26 8.05 29.04 88 21.3 0 305 59.04 470 723 340
P30 7.21 5.75 29.04 80 10.65 0 353.8 25.44 431 673 320
Min 7.1 2.8 10.9 48.0 10.7 0.0 213.5 14.4 268.0 418.0 195.0
Max 7.9 25.1 42.35 110.0 32.0 0.0 451.4 107.0 616.0 944.0 435.0
Ave 7.5 6.9 23.6 70.7 14.3 0.0 295.9 24.2 377.7 573.0 274.3
SD 0.20 4.60 6.94 16.27 6.15 0.00 60.70 22.30 94.10 126.54 64.62

Table 3.

Calculation of RSC, PI, KR, MH, Na%, SAR and SSP of groundwater for 2015and 2016 years.

Well 2015 Year
2016 Year
ID RSC PI KR MH Na% SAR SSP RSC PI KR MH Na% SAR SSP
P1 − 0.80 39.62 0.04 28.57 3.82 0.14 3.82 − 2.5 33.58 0.07 40.23 6.95 0.31 6.95
P2 − 0.50 42.38 0.04 30.36 3.45 0.12 3.45 − 0.5 44.21 0.03 40.00 3.10 0.10 3.10
P3 − 0.40 44.28 0.04 26.92 3.70 0.12 3.70 − 0.4 50.53 0.06 25.00 5.88 0.18 5.88
P4 − 1.10 45.18 0.06 23.81 5.62 0.17 5.62 − 0.5 47.80 0.03 34.15 2.84 0.08 2.84
P5 − 0.50 48.45 0.18 25.00 15.37 0.63 15.37 0 50.34 0.18 32.20 15.59 0.63 15.59
P6 − 0.20 51.17 0.17 23.08 14.33 0.54 14.33 − 0.5 45.03 0.03 41.67 3.23 0.10 3.23
P7 − 0.60 45.83 0.04 36.96 4.17 0.13 4.17 − 0.5 41.70 0.03 36.21 3.33 0.12 3.33
P8 − 1.00 42.18 0.05 45.28 5.02 0.17 5.02 − 0.4 43.20 0.06 36.21 5.23 0.19 5.23
P9 − 1.00 40.44 0.05 25.00 5.06 0.18 5.06 − 0.5 48.32 0.03 32.50 2.91 0.08 2.91
P10 − 0.50 47.30 0.03 33.33 2.78 0.08 2.78 − 0.5 41.84 0.05 32.79 4.98 0.18 4.98
P11 − 0.70 38.23 0.05 37.84 5.01 0.20 5.01 − 0.3 52.54 0.08 23.08 7.58 0.23 7.58
P12 − 0.50 46.35 0.04 31.11 3.43 0.11 3.43 − 0.5 44.59 0.07 30.91 6.62 0.24 6.62
P13 − 0.50 47.30 0.03 35.71 2.78 0.08 2.78 − 0.6 41.82 0.04 36.21 4.13 0.15 4.13
P14 − 0.60 43.42 0.04 26.92 3.70 0.12 3.70 − 0.5 43.10 0.04 35.19 3.57 0.12 3.57
P15 − 0.50 47.30 0.04 37.21 3.59 0.11 3.59 − 0.6 43.20 0.05 37.04 4.42 0.15 4.42
P16 − 0.30 52.09 0.07 25.64 6.70 0.20 6.70 − 0.5 41.37 0.03 32.20 3.28 0.12 3.28
P17 − 0.40 48.76 0.02 33.33 1.52 0.04 1.52 − 0.4 42.85 0.05 33.90 5.14 0.19 5.14
P18 − 0.80 41.09 0.04 31.03 4.13 0.15 4.13 − 0.5 43.85 0.07 26.32 6.40 0.23 6.40
P19 − 0.40 45.09 0.04 28.00 3.85 0.13 3.85 − 0.5 45.03 0.03 37.50 3.23 0.10 3.23
P20 − 0.50 43.10 0.04 25.93 3.57 0.12 3.57 − 0.5 46.35 0.03 45.45 2.65 0.08 2.65
P21 − 0.90 40.42 0.04 35.59 4.07 0.15 4.07 − 0.5 44.24 0.04 31.37 3.77 0.13 3.77
P22 − 0.80 42.90 0.04 31.37 3.77 0.13 3.77 − 0.3 52.54 0.08 38.46 7.58 0.23 7.58
P23 − 1.10 37.29 0.07 35.90 6.14 0.26 6.14 − 0.4 49.42 0.06 30.95 5.62 0.17 5.62
P24 − 0.40 47.37 0.04 31.82 3.51 0.11 3.51 − 2.2 34.22 0.07 36.78 6.95 0.31 6.95
P25 − 0.30 49.60 0.03 37.50 2.91 0.08 2.91 − 0.6 41.15 0.05 37.70 4.39 0.16 4.39
P26 − 0.60 41.86 0.07 33.33 6.39 0.24 6.39 − 0.5 47.80 0.03 41.46 2.84 0.08 2.84
P27 − 0.50 46.94 0.02 21.43 2.10 0.06 2.10 − 0.6 45.83 0.04 45.65 4.17 0.13 4.17
P28 − 0.60 42.00 0.04 19.64 3.45 0.12 3.45 − 0.4 38.28 0.06 38.46 5.22 0.22 5.22
P29 − 0.30 46.45 0.03 27.66 3.29 0.10 3.29 − 1.8 36.17 0.05 35.29 4.90 0.19 4.90
P30 − 0.50 42.24 0.04 38.60 3.72 0.13 3.72 − 0.6 39.97 0.04 37.50 3.76 0.14 3.76
Min − 1.10 37.29 0.02 19.64 1.52 0.04 1.52 − 2.50 33.58 0.03 23.08 2.65 0.08 2.65
Max − 0.20 52.09 0.18 45.28 15.37 0.63 15.37 0.00 52.54 0.18 45.65 15.59 0.63 15.59
Ave − 0.59 44.56 0.05 30.80 4.70 0.16 4.70 − 0.64 44.03 0.05 35.41 5.01 0.18 5.01
SD 0.24 3.73 0.04 5.96 3.00 0.12 3.00 0.54 4.79 0.03 5.27 2.50 0.11 2.50

Table 4.

Quality of ground water sample samples from rural area in Sarpol-e Zahab city for drinking purpose (BIS standard) [2].

Parameter Desirable limit 2015 Year samples (%)
2016 Year samples (%)
Within limits Exceed limits Within limits Exceed limits
pH 6.5–8.5 100 0 100 0
EC 300 (μmhos/cm) 0 100 0 100
TDS 500 (mg/L) 93.3 6.7 90 10
Total hardness 200 (mg/L) 13.4 86.6 20 80
SO4 200 (mg/L) 100 0 100 0
Cl 250 (mg/L) 100 0 100 0
Ca 75 (mg/L) 53.3 46.7 60 40
Mg 30 (mg/L) 93.3 6.7 90 10
Na 200 (mg/L) 100 0 100 0

Table 5.

Classification of groundwater sample for irrigation use on the basic of EC, SAR, RSC, KR, SSP, PI, MH, Na%, T.H [2].

Parameters Range Water class Samples(%)
2015 Year 2016 Year
EC < 250 Excellent Nil Nil
250–750 Good 93.3 93.3
750–2250 Permissible 6.7 6.7
>2250 Doubtful Nil Nil
SAR 0–10 Excellent 100 100
10–18 Good Nil Nil
18–26 Doubtful Nil Nil
> 26 Unsuitable Nil Nil
RSC < 1.25 Good 100 100
1.25–2.5 Doubtful Nil Nil
> 2.5 Unsuitable Nil Nil
KR < 1 suitable 100 100
1–2 Marginal suitable Nil Nil
> 2 Unsuitable Nil Nil
SSP < 50 Good 100 100
> 50 Unsuitable Nil Nil
PI > 75 Class-I Nil Nil
25–75 Class-II 100 100
< 25 Class-III Nil Nil
MH < 50 Suitable 100 100
> 50 Harmful &Unsuitable Nil Nil
Na% < 20 Excellent 100 100
20–40 Good Nil Nil
40–60 Permissible Nil Nil
60–80 Doubtful Nil Nil
> 80 Unsuitable Nil Nil
T.H < 75 Soft Nil Nil
75–150 Moderately hard Nil Nil
150–300 Hard 86.7 76.7
> 300 Very hard 13.3 23.3

Fig. 2.

Fig. 2

The Piper diagram indicates that the hydrochemical type of water.

Table 6.

Summary of water quality indices in present study.

Indices Formula
Residual sodium carbonate (RSC) RSC=(CO32+HCO3)+(Ca2++Mg2+)
Permeability index (PI) PI=Na+K+HCO3Ca+Mg+Na+K×100
Kelly's ratio (KR) KR=NaCa+Mg
Magnesium hazard(MH) MH=MgCa+Mg×100
Sodium percentage (Na %) Na%=Na+KCa+Mg+Na+K×100
Sodium adsorption ratio (SAR) SAR=Na(Ca+Mg)/2×100
Soluble sodium percentage (SSP) SSP=NaCa+Mg+Na×100

Table 7.

Pearson's correlation coefficient.

pH Na Mg Ca HCO3 CL SO4 TDS EC TH
pH 1
Na − 0.416** 1
Mg − 0.424** 0.30* 1.00
Ca − 0.451** 0.578** 0.544** 1.00
HCO3 − 0.569** 0.551** 0.753** 0.884** 1
CL − 0.384** 0.820** 0.572** 0.749** 0.672** 1
SO4 − 0.148 0.425** 0.591** 0.581** 0.389** 0.678** 1
TDS − 0.516** 0.641** 0.799** 0.924** 0.938** 0.829** 0.671** 1
EC − 0.551** 0.573** 0.695** 0.835** 0.895** 0.690** 0.462** 0.890** 1
TH − 0.499** 0.523** 0.836** 0.915** 0.940** 0.764** 0.663** 0.988** 0.880** 1
**

Correlation is significant at the 0.01 level (2-tailed).

*

Correlation is significant at the 0.05 level (2-tailed).

2. Experimental design, materials and methods

2.1. Description of study area

Sarpol-e Zahab city in Kermanshah province are located in west of Iran between the latitudes 34.4514 ° N and longitudes 45.8612 °E, encompassing an area of about 935.2 km2. Also the SarPol-e Zahab city has a cold and dry climate and the average altitude of the city is 550 m above sea level. It is worth noting that the average rainfall is 111 mm, with the minimum and maximum temperature of 1/1 ° C and 11.3 ° C, respectively.

2.2. Materials and methods

In order to assess the physico-chemical parameters, a total of 30 groundwater samples were collected from Sarpol-e Zahab city between years the of 2015 and 2016 (Fig. 1). Sampling was conducted with one‑liter polyethylene bottles which were immersed in nitric acid for 24 h then washed with 10% HCL and finally washed with distilled water. Before the samples were taken, sampling containers had been rinsed at least three times with water. Experiments have been done in two total categories of system tests and titrimetric tests including temporary and permanent hardness, calcium, magnesium and chloride. Also system tests including PH and electrical conductivity (EC) measured by PH meter device (pHwtw model) and Esi meter (wbw), respectively. The analysis of anions and cations of sulfate was also done by spectrophotometer Hatch (DR 5000 model) in water and wastewater laboratory of Kermanshah. Total hardness was determined by EDTA titrimetric method and TDS was measured gravimetrically [2], [3], [4], [5], [6], [7], [8], [9], [10].

Statistical analyses including Spearman correlation coefficients and factor analysis display good correlation between physicochemical parameters (EC, TDS and TH) and Na+, Mg2+, Ca2+, Cl as well as SO42 ionic constituents of groundwater with SPSS (IBM Corp. Released 2016. IBM SPSS Statistics for Windows, Version 24.0. Armonk, NY: IBM Corp).

Finally, in order to understand chemical character of the groundwater and relationships between the dissolved ionic constituents, the hydrochemical data has been plotted on Piper diagram (Piper 1944) using AqQA software (Fig. 2).

Acknowledgements

The authors want to thank authorities of Tehran University of Medical Sciences for their comprehensives support for this study.

Footnotes

Transparency document

Transparency document associated with this article can be found in the online version at 10.1016/j.dib.2017.12.061.

Transparency document. Supplementary material

Transparency document

mmc1.docx (11.5KB, docx)

References

  • 1.APHA, Standard Methods for the Examination of Water and Waste Water (APHA), 1995. [DOI] [PMC free article] [PubMed]
  • 2.Yousefi M., Najafi Saleh H., Mohammad A.A., Mahvi A.H., Ghadrpoori M., Suleimani H. Data on water quality index for the groundwater in rural area Neyshabur County, Razavi province, Iran. Data Brief. 2017;15:901–907. doi: 10.1016/j.dib.2017.10.052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Asghari F.B., Mohammadi A.A., Aboosaedi Z., Yaseri M., Yousefi M. Data on fluoride concentration levels in cold and warm season in rural area of Shout (West Azerbaijan, Iran) Data Brief. 2017;15:528–531. doi: 10.1016/j.dib.2017.10.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Nabizadeh Nodehi R., Mesdaghinia A., Nasseri S., Hadi M., Soleimani H., Bahmani P. Analysis of water corrosion tendency in water supply system using qualitative indices and calcium carbonate precipitation potential index. Iran. J. Health Environ. 2017;9:457–470. [Google Scholar]
  • 5.Amouei A.I., Mahvi A.H., Mohammadi A.A., Asgharnia H.A., Fallah S.H., Khafajeh A.A. Physical and chemical quality assessment of potable groundwater in rural areas of Khaf, Iran. World Appl. Sci. J. 2012;18:693. [PubMed] [Google Scholar]
  • 6.Mohammadi A.A., Najafi Saleh H., Mahv A.H., Alimohammadi M., Nabizadeh R., Yousefi M. Data on corrosion and scaling potential of drinking water resources using stability indices in Jolfa, East Azerbaijan, Iran. Data Breif. 2018 doi: 10.1016/j.dib.2017.11.099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Mohammadi A.A., Yousefi M., Mahvi A.H. Fluoride concentration level in rural area in Poldasht city and daily fluoride intake based on drinking water consumption with temperature. Data Brief. 2017;13:312–315. doi: 10.1016/j.dib.2017.05.045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Mohammadi A.A., Yaghmaeian K., Faraji H., Nabizadeh R., Dehghani M.H., Khaili J.K., Mahvi A.H. Temporal and spatial variation of chemical parameter concentration in drinking water resources of Bandar-e Gaz City using geographic information system. Desalin. Water Treat. 2017;68:170–176. [Google Scholar]
  • 9.Abbasnia A., Alimohammadi M., Mahvi A.H., Nabizadeh R., Yousefi M., Mohammadi A.A., Pasalari H., Mirzabeigi M. Assessment of groundwater quality and evaluation of scaling and corrosiveness potential of drinking water samples in villages of Chabahr city, Sistan and Baluchistan province in Iran. Data Brief. 2018;16:182–192. doi: 10.1016/j.dib.2017.11.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Mirzabeygi M., Yousefi N., Abbasnia A., Youzi H., Alikhani M., Mahvi A.H. Evaluation of groundwater quality and assessment of scaling potential and corrosiveness of water supply networks, Iran. J. Water Supply: Res. Technol.-Aqua. 2017:jws2. [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Transparency document

mmc1.docx (11.5KB, docx)

Articles from Data in Brief are provided here courtesy of Elsevier

RESOURCES