Skip to main content
Current Neuropharmacology logoLink to Current Neuropharmacology
. 2017 Jul;15(5):779–788. doi: 10.2174/1570159X01666160930121647

Recombinant Antibody Fragments for Neurodegenerative Diseases

Karen Manoutcharian 1, Roxanna Perez-Garmendia 1, Goar Gevorkian 1,*
PMCID: PMC5771054  PMID: 27697033

Abstract

Background:

Recombinant antibody fragments are promising alternatives to full-length immunoglobulins and offer important advantages compared with conventional monoclonal antibodies: extreme specificity, higher affinity, superior stability and solubility, reduced immuno-genicity as well as easy and inexpensive large-scale production.

Objective:

In this article we will review and discuss recombinant antibodies that are being evaluated for neurodegenerative diseases in pre-clinical models and in clinical studies and will summarize new strategies that are being developed to optimize their stability, specificity and potency for advancing their use.

Methods:

Articles describing recombinant antibody fragments used for neurological diseases were selected (PubMed) and evaluated for their significance.

Results:

Different antibody formats such as single-chain fragment variable (scFv), single-domain antibody fragments (VHHs or sdAbs), bispecific antibodies (bsAbs), intrabodies and nanobodies, are currently being studied in pre-clinical models of cancer as well as infectious and autoimmune diseases and many of them are being tested as therapeutics in clinical trials. Immunotherapy approaches have shown therapeutic efficacy in several animal models of Alzheimer´s disease (AD), Parkinson disease (PD), dementia with Lewy bodies (DLB), frontotemporal dementia (FTD), Huntington disease (HD), transmissible spongiform encephalopathies (TSEs) and multiple sclerosis (MS). It has been demonstrated that recombinant antibody fragments may neutralize toxic extra- and intracellular misfolded proteins involved in the pathogenesis of AD, PD, DLB, FTD, HD or TSEs and may target toxic immune cells participating in the pathogenesis of MS.

Conclusion:

Recombinant antibody fragments represent a promising tool for the development of antibody-based immunotherapeutics for neurodegenerative diseases.

Keywords: Recombinant antibody fragments, nanobody, intrabody, prion protein, alzheimer´s disease, parkinson disease, Huntington disease

Introduction

Since the discovery of the therapeutic potential of the serum from animals exposed to attenuated forms of the pathogen more than a century ago, enormous progress in our understanding as well as in our ability to design protective antibodies (Abs) has been made. Many Abs are currently used for the treatment of different types of cancer, multiple sclerosis, rheumatoid arthritis or asthma [1-5]. Recombinant Ab fragments are promising alternatives to full-length immunoglobulins and offer important advantages compared with conventional monoclonal Abs: extreme specificity, higher affinity, superior stability and solubility, reduced immunogenicity as well as easy and inexpensive large-scale production [6-16]. Different antibody formats such as single-chain fragment variable (scFv), single-domain antibody fragments (VHHs or sdAbs), bispecific antibodies (bsAbs), intrabodies and nanobodies, are currently being studied in pre-clinical models of cancer as well as infectious and autoimmune diseases and many of them are being tested as therapeutics in clinical trials [4, 16-22].

Immunotherapy approaches, both active immunization and passive transfer of protective Abs, have shown therapeutic efficacy in several animal models of Alzheimer´s disease (AD), Parkinson disease (PD), dementia with Lewy bodies (DLB), frontotemporal dementia (FTD), Huntington disease (HD), transmissible spongiform encephalopathies (TSEs) and multiple sclerosis (MS) [23-32]. Recombinant antibody fragments containing only variable regions or complementarity determining regions (CDRs) of the antibody heavy and/or light chains represent a promising tool for the development of antibody-based immunotherapeutics for neurodegenerative diseases. It has been demonstrated that these fragments may neutralize toxic extra- and intracellular misfolded proteins involved in the pathogenesis of AD, PD, DLB, FTD, HD or TSEs and may target toxic immune cells participating in the pathogenesis of MS [24, 25, 27, 33-38].

Below, we will review and discuss recombinant Abs that are being evaluated for neurodegenerative diseases in pre-clinical models and in clinical studies (Table 1) and will summarize new strategies that are being developed to optimize their stability, specificity and potency for advancing their use.

Table 1.

Summary of preclinical studies using recombinant antibody fragments in animal models of neurodegenerative disorders.

Recombinant Ab Fragment Target/Disease Key Findings Refs.
Phage-displayed scFv-508F(Fv) Aβ, Alzheimer´s disease Enters the CNS [50]
Phage-displayed VHH-C1.27 Aβ, Alzheimer´s disease Efficiently clears amyloid deposits in Tg2576 mice [53]
Purified or rAAV-expressed scFv59 Aβ, Alzheimer´s disease Reduces amyloid deposits in Tg2576 and APPswe/PS1dE9 mice [56, 62, 67]
rAVV-expressed scFvs Aβ, Alzheimer´s disease Attenuates amyloid pathology and cognitive impairment in CRND8 and APPswe/PS1dE9 mice [61, 66]
rAVV-expressed scFvs Aβ, Alzheimer´s disease Decreases amyloid and tau pathology and
improves cognitive function in 3xTg-AD mice
[63, 64]
Purified scFv-h3D6 Aβ, Alzheimer´s disease Attenuates amyloid pathology and cognitive impairment and protects DCN neurons from death in 3xTg-AD mice [75, 76]
VH with grafted Aβ18-21 or 34-42 peptide in CDR3 (gammabody) Aβ, Obesity,
Alzheimer´s disease
Reverses cognitive deficits in an animal model of obesity [84]
VL1-VL2 catabody Aβ, Alzheimer´s disease Reduces Aβ burden in 5xFAD mice [91]
Purified scFv fused to LDL receptor-binding domain of ApoB Oligomeric α-synuclein, Parkinson disease Reduces the accumulation of α-synuclein in neurons and ameliorates behavioral deficits in mice [113]
rAAV-expressed scFv-C4 intrabody Mutant htt, Huntington disease Delays the accumulation of mutant htt in B6.HDR6/1 Tg mice [120]
rAAV-expressed scFv-EM-48 Mutant htt, Huntington disease Suppresses mutant htt accumulation and ameliorates neuronal dysfunction in R6/2 and N171-82Q Tg mice [126]
rAAV-expressed Happ1 intrabody Proline-rich domain of htt, Huntington disease Ameliorates the neuropathology and cognitive deficits and prolongs the lifespan in four HD Tg mouse strains [125]
rAVV-expressed scFvs PrPSc, Prion diseases Decreases PrPSc burden in the CNS and improves clinical signs in scrapie-infected mice [141, 142]
RA2 micloglial cell line expressing scFv-3S9 PrP, Prion diseases Prolongs survival time of scrapie-infected mice [143]
Purified or rAVV-expressed scFv S18 and scFv N3 LRP/LP,
Prion diseases
Reduces peripheral PrPSc propagation but does not prolong survival time of scrapie-infected mice [144, 145]

Alzheimer´s Disease

The accumulation of extracellular and intracellular amyloid-beta (Aβ) peptide aggregates and neurofibrillary tangles, consisting of hyperphosphorylated microtubule-associated protein tau, in the human brain has been hypothesized to play a central role in the neuropathology of AD [39-41]. The first clinical trial of active immunization with Aβ peptide has been halted because of the development of symptoms of aseptic meningoencephalitis in 6% of immunized patients, and efforts towards the generation of antibody-based reagents for passive immunotherapy were multiplied [42-45]. However, it has been demonstrated that passive immunization using full-length immunoglobulin molecules led to adverse side effects such as vasogenic edema, microhemorrhages and meningoencephalitis in APP Tg mice [46-48]. Therefore, efforts have been made to generate recombinant antibody fragments for targeting Aβ and tau aggregates without serious adverse events.

First anti-Aβ scFv antibody, designated 508F(Fv), was constructed based on variable regions of heavy and light chain genes of a protective monoclonal IgM 508 antibody. This recombinant antibody retained the specificity and protective properties of the parental antibody and, in addition, showed an increased stability and higher affinity [49]. Moreover, authors demonstrated that scFvs, displayed on the surface of filamentous phage, enter the CNS [50]. Another recombinant Fab antibody, developed by cloning the heavy and light chain variable domains of the parent monoclonal antibody, was shown to share similar properties with the parental monoclonal antibody and to bind plaques in AD brain samples [51]. We have constructed the first immune scFv and VHH antibody libraries displayed on M13 phage using spleen cells from mice immunized with human Aβ and selected Aβ-specific antibody fragments with protective potential binding to different regions of the peptide [52, 53].

Subsequently, a naïve human scFv library was used to select Aβ-specific antibody fragments, and it has been demonstrated that these fragments were capable of inhibiting Aβ aggregation and preventing Aβ-induced toxicity both in vitro and in vivo [53-59]. Furthermore, we have demonstrated that a synthetic peptide, based on the CDR3 sequence of the variable region of the heavy chain of the clone with the highest specificity, inhibited Aβ-induced toxicity in primary rat hippocampal neurons [55].

An interesting novel gene-based passive vaccination strategy for delivery of anti-Aβ scFvs was proposed almost simultaneously by two groups [60, 61]. An adeno-associated virus (AAV) constructs encoding various scFvs were injected into the brain of APP Tg mice and were shown to induce intraneuronal expression of corresponding scFvs without causing neurotoxicity [60, 61]. Importantly, a decreased Aβ deposition in the brain was observed although cerebral hemorrhages were also found in the latter study [60-62]. Moreover, intracerebral administration of Aβ-specific scFv with an endoplasmic reticulum (ER)-targeting signal sequence, expressed in AAV vector, in 3xTg-AD mice resulted in reduced Aβ accumulation in neurons, and, interestingly, in reduced tau pathology as well [63]. Another study in 3xTg-AD mice showed reduced Aβ and tau accumulation and improved cognitive performance after intrahippocampal administration of a human anti-Aβ scFv expressed in AAV vector [64]. These observations together with other studies further suggest that inhibition of intra-neuronal accumulation of Aβ may lead to reduced tau pathology [see a recent review 65]. Interestingly, AAV constructs coding for anti-Aβ scFvs had a protective effect in APP Tg mice after intra-muscle injection, probably by increasing Aβ efflux from the brain due to peripheral clearance of the peptide [66, 67]. Although rAAV-based gene therapy has been approved recently for clinical use, a single study, that demonstrated hepatic genotoxicity, raised concerns over the clinical use of AAV vectors [68-70]. Careful design of safer AAV vectors and development of novel methods of recombinant antibody delivery merit further research [69]. Thus, naked DNA plasmids encoding protective Abs may have advantages because they do not represent a risk of genome integration observed with AAV [71-73].

Another efficient strategy for delivery of recombinant immunoglobulin fragments to the brain was described by Poduslo and collaborators [74]. Authors demonstrated that a polyamine-modified F(ab´)2 fragment of a monoclonal anti-fibrillar Aβ antibody has increased blood-brain barrier (BBB) permeability after intravenous administration [74]. Such modifications of recombinant antibody fragments may have potential diagnostic as well as immunotherapeutic applications.

Intraperitoneal administration of an anti-Aβ scFv-h3D6 has been shown to reduce amyloid deposits in the cortex and olfactory bulb but not in the hippocampus and to ameliorate learning and memory deficits in 3xTg-AD mice [75]. In addition, a single low dose of scFv-h3D6 protected deep cerebellar nuclei (DCN) neurons from death after intra-peritoneal administration in 3xTg-AD mice [76]. Chronic intranasal treatment with a scFv targeting C-terminus of Aβ ameliorated amyloid pathology in APPswe/PS1dE9 mice [77]. These studies give us hope that recombinant antibody fragments may be applied as therapeutics for AD by different routes, however, improved delivery strategies still need to be explored for future use in humans.

Numerous scFvs specifically targeting morphologically different Aβ aggregates were developed. Thus, a scFv A4, isolated from a human library using phage display technology and atomic force microscopy (AFM), was shown to bind to oligomeric Aβ but not to monomeric or fibrillar forms and to inhibit Aβ toxicity in vitro [78]. Such Abs represent useful tools for identification and targeting of pathological Aβ oligomers in human brain [79]. Another anti-oligomeric scFv antibody specifically binding to a smaller earlier stage oligomeric form of Aβ was isolated and shown to stabilize non-toxic low-n Aβ forms [80]. Finally, anti-oligomeric Aβ scFv 11A5 decreased cerebral amyloid burden and improved behavioral performance in the Morris water maze in APP/PS1 mice after intracerebroventricular injection [81].

An interesting Ab format consisting of a single VH domain with grafted Aβ hydrophobic region (residues 18-21 or residues 34-42) in CDR3 and referred to as grafted amyloid-motif antibody (gammabody) was described [82-84]. Authors demonstrated that Aβ18-21 bearing gammabodies bind selectively to Aβ fibrils while Aβ34-42 gammabodies bind to oligomeric and fibrillary forms [82]. Importantly, these studies showed that oligomer-binding gammabodies inhibit Aβ toxicity in vitro, block oligomeric hippocampal Aβ and attenuate or reverse cognitive impairment in an animal model of diet-induced obesity [83, 84].

An alternative approach for reducing amyloid accumulation in the brain is to promote Aβ proteolysis, and scFvs with increased catalytic activity towards Aβ were obtained after affinity maturation of a corresponding parental antibody fragment [85]. A proteolytic scFv, Asec-1A, prevented Aβ aggregation and reduced Aβ-induced cytotoxicity in human neuroblastoma cells [86]. It has been demonstrated that the levels of two Aβ-degrading proteases, insulin-degrading enzyme (IDE) and neprilysin (NEP), are reduced in the hippocampus of APP Tg mice and humans as function of age, and this may explain increased Aβ accumulation [87]. Various IDE- and NEP-based therapeutic strategies, aimed to up-regulate their expression and/or restore their activity to normal levels were proposed [reviewed in 88]; however, these enzymes participate in other biological processes and caution should be taken. Thus, specifically targeting Aβ proteolysis by catalytic scFvs represents a promising approach for reducing amyloid deposits in the brain without potential adverse effects. On the other hand, one may reduce amyloid load by selectively inhibiting amyloidogenic processing of APP and thus reducing Aβ production. The iBSEC1 scFv isolated from human scFv yeast display library was shown to reduce both intracellular and extracellular Aβ levels by around 50% in Chinese hamster ovary (CHO) cells overexpressing APP [89]. Furthermore, authors showed that a bispecific tandem scFv, combining iBSEC1 with the Asec-1A, simultaneously inhibits amyloidogenic processing of APP and increases Aβ proteolysis [90]. Recently, another catalytic antibody fragment was described by Planque and collaborators [91]. Authors demonstrated that the catalytic IgV construct 2E6 composed of VL1 and VL2 domains reduces brain Aβ deposits in 5xFAD mice after intravenous injection [91].

Although much of the research on AD immunotherapy has been focused on Aβ, recent studies are developing both active and passive immunization strategies targeting hyperphosphorylated, aggregated and insoluble toxic forms of tau as well [reviewed in 65, 92, 93]. Similar approaches have been applied to isolate scFvs that selectively bind toxic tau aggregates [94]. These anti-tau scFvs detected oligomeric tau at earlier stages when neurofibrillary tangles are not observed yet [94]. Potential biomarkers based on such recombinant antibody fragments may be developed for early detection of AD. Thus, a peripheral injection of phosphor-tau-specific scFv resulted in a strong brain signal in Tg mice but not in wild type animals [95]. However, there is an urgent need for expansion of research on therapeutics targeting different forms of phosphorylated and/or truncated tau aggregates involved in AD pathology [93, 96, 97].

Parkinson’s Disease

The accumulation of pathological aggregates of α-synuclein in the Lewy bodies and Lewy neurites with the subsequent progressive loss of dopaminergic neurons in the brain is linked to the pathology of PD [reviewed extensively elsewhere 98-100]. Immunotherapy approaches inhibiting α-synuclein aggregation and preventing their toxic effects on cells were broadly studied, and a number of protective specific anti-C- and anti-N-terminus Abs were discovered and tested in animal models [reviewed in 28, 29, 101]. Importantly, α-synuclein, a cytosolic neuronal protein, participates in the regulation of synaptic vesicle trafficking, fusion and neurotransmitter release [see a recent review 98]. However, at high concentrations and in aggregated form α-synuclein acquires toxic properties leading to a number of pathological pathways and neurodegeneration, hence specific immunotherapeutics targeting toxic forms without inter-fering with physiological function of the protein should be developed [98]. All above discussed properties of recombinant antibody fragments and the possibility of intracellular expression make them suitable candidates for future therapies for PD.

Using phage display technology alone or in combination with atomic force microscopy, various human scFvs specifically binding to morphologically distinct oligomeric and/or fibrillary forms of α-synuclein were described [102-109]. Interestingly, while some of these scFvs were binding only to early oligomeric forms of α-synuclein, others recognized larger later stage oligomers, however, all of them inhibited in vitro aggregation and toxicity of α-synuclein [105, 108]. In addition, selected scFvs specifically recognized naturally occurring aggregates in PD brain [108]. Importantly, one of these anti-oligomeric α-synuclein scFv antibodies also blocked the formation of fibrillary huntingtin (htt) aggregates involved in HD, but stabilized cytotoxic oligomeric forms [107]. Moreover, another scFv selected against the fibrillar α-synuclein and targeting misfolded htt, also increased htt aggregation and cytotoxicity [109]. Therefore, caution should be taken when proposing immunotherapy strategies for targeting different misfolded proteins using the same immunogen or antibody/antibody fragment.

It is worth mentioning that one of the possible drawbacks of intrabodies may be their limited cytoplasmic solubility, and an interesting approach for increasing the solubility and for simultaneously enhancing the degradation of α-synuclein was proposed recently [110]. Authors showed that fusion of a proteasome-targeting PEST motif to a set of four diverse, poorly soluble anti-α-synuclein intrabodies increases their solubility and significantly enhances degradation of the target protein [104, 110].

Some common mutations in the gene coding for leucine-rich repeat kinase 2 (LRRK2) have been linked to early-onset familial and late-onset sporadic PD, and a number of small-molecule kinase inhibitors with improved specificity, pharmacokinetics and brain penetration were tested in pre-clinical models [111, 112]. Similar to anti-α-synuclein intrabodies, LRRK2-specific recombinant antibody fragments may have potential therapeutic value.

Despite numerous promising pre-clinical and clinical studies on passive immunotherapy using anti-α-synuclein full length monoclonal and polyclonal antibodies [reviewed in 101], there are few reports on in vivo evaluation of α-synuclein-specific recombinant antibody fragments. In an interesting study by Spencer et al., anti-oligomeric α-synuclein scFv, fused to the low-density lipoprotein (LDL) receptor-binding domain of apolipoprotein B (ApoB), showed enhanced brain penetration, reduced the accumulation of pathogenic α-synuclein accumulation in neurons and ameliorated behavioral deficits in a mouse model of PD/DLB [113]. We think that many of scFvs mentioned above and shown to target α-synuclein and/or LRRK2 warrant further in vivo evaluation and may represent a promising therapeutic approach for PD. Importantly, recombinant antibody fragments targeting α-synuclein may also be applied for the treatment of other synucleinopathies, such as multiple system atrophy (MSA) and DLB.

Huntington´s Disease (HD)

Misfolded and aggregated N-terminal fragments of mutant huntingtin (mhtt) accumulate in the neuronal nuclei and processes and lead to neurodegeneration, although the exact pathways involved in this process remain unclear [reviewed in 114]. Intrabody-mediated modulation of toxic htt aggregates represent an alternative therapeutic approach for HD [24, 35, 115]. Thus, it has been shown that the anti-N-terminal htt (residues 1-17) C4 scFv intrabody inhibits aggregate formation in cell cultures and prevents toxicity in an organotypic slice culture model of HD [116-118]. Subsequently, it has been demonstrated in a Drosophila model of HD that C4 intrabody slows the progression of neurodegeneration and formation of htt aggregates, increases survival to adulthood and significantly prolongs adult lifespan [119]. In addition, C4 intrabody reduced pathological features in B6.HDR6/1 transgenic mice after intracranial delivery using adeno-associated viral vectors [120]. To enhance efficacy, C4 intrabody was fused to a proteasome-targeting PEST motif and promising results were obtained in cell cultures [121]. Finally, the crystal structure of the complex of C4 intrabody and htt1-17 was determined and provided important insights into the mechanism of pathogenic htt aggregates formation [122].

Importantly, anti-htt antibodies or their fragments of various specificities showed different effect on mutant htt aggregation and toxicity: intrabodies binding to the proline-rich domains of htt were protective while antibody fragments recognizing the polyglutamine (polyQ) sequence stimulated htt aggregation and apoptosis [123, 124]. Subsequently, it has been demonstrated that VL12.3 intrabody, recognizing the N terminus of htt, has no beneficial effect in YAC128 HD Tg mice after intracranial injection and, moreover, increases mortality in R6/2 HD Tg mice [125]. On the other hand, Happ1 intrabody recognizing the proline-rich domain of htt strongly ameliorated the neuropathology and cognitive deficits and significantly prolonged the lifespan in multiple HD Tg mouse strains [125]. Finally, Wang and collaborators engineered an intrabody (scFv-EM48) that binds to a unique epitope in mutant htt and selectively reduces its toxic effect without interfering with normal htt functions [126]. In addition, authors showed that scFv-EM48 suppresses mutant htt accumulation in the neuronal processes and ameliorates neuronal dysfunction in a mouse model of HD [126].

Interestingly, VL single-domain antibodies more effectively blocked aggregation and toxicity of htt in a cellular model of HD compared with a parental scFv, and their affinity and function were further improved by deletion of a disulfide bond [127, 128].

To the best of our knowledge, none of these antibody fragments are being tested in clinical trials yet.

Prion Diseases

Prion diseases are lethal neurological disorders caused by the pathological scrapie-associated form (PrPSc) of the normal cellular prion protein (PrPc) [129]. Previous in vitro and in vivo studies suggested that immunotherapy may represent a realistic strategy against prion diseases [130-133]. Although several groups demonstrated that anti-prion nanobodies and intrabodies (scFvs, VHH or their CDRs) prevent PrPC conversion to its toxic PrPSc form in cell cultures [134-140], there are very few studies in animal models. Thus, it has been demonstrated that rAAV vector-expressed anti-PrPSc scFvs significantly extended incubation periods, decreased CNS PrPSc burden and improved clinical signs and rotarod performance in scrapie-infected mice without inflammatory or neurotoxic effects [141, 142]. An interesting approach has been reported recently by Fujita and collaborators [143]. Authors established a Ra2 microglial cell line expressing anti-PrP 3S9 scFv antibody and demonstrated that intracerebral injection of these cells before or at an early time point after scrapie infection significantly prolongs survival times of mice [143].

An alternative promising target for the prevention/treatment of prion diseases is the non-integrin 37kDa/67kDa laminin receptor (LRP/LR), a cell surface receptor involved in PrPSc propagation in scrapie infected cells [144, 145]. It has been demonstrated that a scFv antibody (S18) directed against LRP/LR reduced by 40% PrPSc levels in the spleen of scrapie infected C57BL/6J mice after intraperitoneal administration [144]. However, authors didn’t observe a significant prolongation of the incubation and survival times in S18 treated mice, and proposed that higher amounts of scFv for a longer period of time might be required to achieve a regression of the disease [144]. Subsequently, authors used in vivo gene delivery system based on rAAV vectors expressing anti-LRP/LR scFvs, but did not observe protective effect against disease progression after intracerebral administration of antibody fragments despite the reduction of peripheral PrPSc propagation [145].

CONCLUSION

Therapeutic antibodies represent one of the fastest growing segments in the pharmaceutical industry. The development of new tools for a successful delivery of Ab fragments into the brain and the design of fusion peptides/proteins for targeting them to the cells/cell compartments of interest might enhance immunotherapy efficacy [146, 147]. Also, novel methods for optimizing the properties of Ab fragments such as affinity, stability and solubility merit further research [110, 148]. Finally, application of elegant tools such as the use of cellular implants for controlled and continuous delivery might be of interest [149, 150]. All above mentioned approaches may hopefully someday prevent or slow the progression of neurodegenerative diseases with known shared pathology-extra-and intracellular accumulation of misfolded proteins.

ACKNOWLEDGEMENTS

Funding provided by DGAPA-UNAM (IN201116) and CONACyT, MEXICO (177269) to G.G.

CONFLICT OF INTEREST

The authors confirm that this article content has no conflict of interest.

REFERENCES

  • 1.Lieberman J.A., Chehade M. Use of omalizumab in the treatment of food allergy and anaphylaxis. Curr. Allergy Asthma Rep. 2013;13(1):78–84. doi: 10.1007/s11882-012-0316-x. [http://dx.doi.org/10.1007/s11882-012-0316-x]. [PMID: 23065311]. [DOI] [PubMed] [Google Scholar]
  • 2.Malviya G., Salemi S., Laganà B., Diamanti A.P., DAmelio R., Signore A. Biological therapies for rheumatoid arthritis: progress to date. BioDrugs. 2013;27(4):329–345. doi: 10.1007/s40259-013-0021-x. [http://dx.doi.org/10. 1007/s40259-013-0021-x]. [PMID: 23558378]. [DOI] [PubMed] [Google Scholar]
  • 3.Wingerchuk D.M., Carter J.L. Multiple sclerosis: current and emerging disease-modifying therapies and treatment strategies. Mayo Clin. Proc. 2014;89(2):225–240. doi: 10.1016/j.mayocp.2013.11.002. [http://dx.doi.org/10.1016/j.mayocp. 2013.11.002]. [PMID: 24485135]. [DOI] [PubMed] [Google Scholar]
  • 4.Ecker D.M., Jones S.D., Levine H.L. The therapeutic monoclonal antibody market. MAbs. 2015;7(1):9–14. doi: 10.4161/19420862.2015.989042. [http://dx.doi.org/10. 4161/19420862.2015.989042]. [PMID: 25529996]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Landolina N., Levi-Schaffer F. Monoclonal antibodies: the new magic bullets for allergy: IUPHAR Review 17. Br. J. Pharmacol. 2016;173(5):793–803. doi: 10.1111/bph.13396. [http://dx.doi.org/10.1111/bph.13396]. [PMID: 26620589]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Bird R.E., Walker B.W. Single chain antibody variable regions. Trends Biotechnol. 1991;9(4):132–137. doi: 10.1016/0167-7799(91)90044-i. [http://dx.doi.org/10. 1016/0167-7799(91)90044-I]. [PMID: 1367550]. [DOI] [PubMed] [Google Scholar]
  • 7.Morrison S.L. In vitro antibodies: strategies for production and application. Annu. Rev. Immunol. 1992;10:239–265. doi: 10.1146/annurev.iy.10.040192.001323. [http://dx. doi.org/10.1146/annurev.iy.10.040192.001323]. [PMID: 1590987]. [DOI] [PubMed] [Google Scholar]
  • 8.Huston J.S., McCartney J., Tai M.S., Mottola-Hartshorn C., Jin D., Warren F., Keck P., Oppermann H. Medical applications of single-chain antibodies. Int. Rev. Immunol. 1993;10(2-3):195–217. doi: 10.3109/08830189309061696. [http://dx.doi.org/10.3109/08830189309061696]. [PMID: 8360586]. [DOI] [PubMed] [Google Scholar]
  • 9.Owens R.J., Young R.J. The genetic engineering of monoclonal antibodies. J. Immunol. Methods. 1994;168(2):149–165. doi: 10.1016/0022-1759(94)90051-5. [http://dx. doi.org/10.1016/0022-1759(94)90051-5]. [PMID: 8308291]. [DOI] [PubMed] [Google Scholar]
  • 10.Richardson J.H., Marasco W.A. Intracellular antibodies: development and therapeutic potential. Trends Biotechnol. 1995;13(8):306–310. doi: 10.1016/S0167-7799(00)88970-2. [http://dx.doi.org/10.1016/S0167-7799(00)88970-2]. [PMID: 7662306]. [DOI] [PubMed] [Google Scholar]
  • 11.Plückthun A., Pack P. New protein engineering approaches to multivalent and bispecific antibody fragments. Immunotechnology. 1997;3(2):83–105. doi: 10.1016/s1380-2933(97)00067-5. [http://dx.doi.org/10.1016/S1380-2933(97)00067-5]. [PMID: 9237094]. [DOI] [PubMed] [Google Scholar]
  • 12.Tanaka T., Lobato M.N., Rabbitts T.H. Single domain intra-cellular antibodies: a minimal fragment for direct in vivo selection of antigen-specific intrabodies. J. Mol. Biol. 2003;331(5):1109–1120. doi: 10.1016/s0022-2836(03)00836-2. [http://dx.doi.org/10.1016/S0022-2836(03)00836-2]. [PMID: 12927545]. [DOI] [PubMed] [Google Scholar]
  • 13.Lobato M.N., Rabbitts T.H. Intracellular antibodies and challenges facing their use as therapeutic agents. Trends Mol. Med. 2003;9(9):390–396. doi: 10.1016/s1471-4914(03)00163-1. [http://dx.doi.org/10.1016/S1471-4914(03)00163-1]. [PMID: 13129705]. [DOI] [PubMed] [Google Scholar]
  • 14.Ahmad Z.A., Yeap S.K., Ali A.M., Ho W.Y., Alitheen N.B., Hamid M. scFv antibody: principles and clinical application. Clin. Dev. Immunol. 2012;2012 doi: 10.1155/2012/980250. 980250. [http://dx.doi.org/10.1155/2012/980250] [PMID: 22474489] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Doerner A., Rhiel L., Zielonka S., Kolmar H. Therapeutic antibody engineering by high efficiency cell screening. FEBS Lett. 2014;588(2):278–287. doi: 10.1016/j.febslet.2013.11.025. [http://dx.doi.org/10.1016/j.febslet.2013.11.025]. [PMID: 24291259]. [DOI] [PubMed] [Google Scholar]
  • 16.Lameris R., de Bruin R.C., Schneiders F.L., van Bergen en Henegouwen P.M., Verheul H.M., de Gruijl T.D., van der Vliet H.J. Bispecific antibody platforms for cancer immunotherapy. Crit. Rev. Oncol. Hematol. 2014;92(3):153–165. doi: 10.1016/j.critrevonc.2014.08.003. [http://dx.doi.org/ 10.1016/j.critrevonc.2014.08.003]. [PMID: 25195094]. [DOI] [PubMed] [Google Scholar]
  • 17.Demarest S.J., Glaser S.M. Antibody therapeutics, antibody engineering, and the merits of protein stability. Curr. Opin. Drug Discov. Devel. 2008;11(5):675–687. [PMID: 18729019]. [PubMed] [Google Scholar]
  • 18.Weisser N.E., Hall J.C. Applications of single-chain variable fragment antibodies in therapeutics and diagnostics. Biotechnol. Adv. 2009;27(4):502–520. doi: 10.1016/j.biotechadv.2009.04.004. [http://dx.doi.org/10.1016/j.biotechadv. 2009.04.004]. [PMID: 19374944]. [DOI] [PubMed] [Google Scholar]
  • 19.Maleki L.A., Baradaran B., Majidi J., Mohammadian M., Shahneh F.Z. Future prospects of monoclonal antibodies as magic bullets in immunotherapy. Hum. Antibodies. 2013;22(1-2):9–13. doi: 10.3233/HAB-130266. [PMID: 24284304]. [DOI] [PubMed] [Google Scholar]
  • 20.Messer A., Joshi S.N. Intrabodies as neuroprotective therapeutics. Neurotherapeutics. 2013;10(3):447–458. doi: 10.1007/s13311-013-0193-6. [http://dx.doi.org/10. 1007/s13311-013-0193-6]. [PMID: 23649691]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Kijanka M., Dorresteijn B., Oliveira S. van Bergen en Henegouwen, P.M. Nanobody-based cancer therapy of solid tumors. Nanomedicine (Lond.) 2015;10(1):161–174. doi: 10.2217/nnm.14.178. [http://dx.doi.org/10. 2217/nnm.14.178]. [PMID: 25597775]. [DOI] [PubMed] [Google Scholar]
  • 22.Foltz I.N., Gunasekaran K., King C.T. Discovery and bio-optimization of human antibody therapeutics using the XenoMouse® transgenic mouse platform. Immunol. Rev. 2016;270(1):51–64. doi: 10.1111/imr.12409. [http://dx.doi.org/10.1111/imr.12409]. [PMID: 26864104]. [DOI] [PubMed] [Google Scholar]
  • 23.Brody D.L., Holtzman D.M. Active and passive immunotherapy for neurodegenerative disorders. Annu. Rev. Neurosci. 2008;31:175–193. doi: 10.1146/annurev.neuro.31.060407.125529. [http://dx.doi.org/10.1146/annurev.neuro.31.060407.125529]. [PMID: 18352830]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Ali K., Southwell A.L., Bugg C.W., Ko J.C., Patterson P.H. Recombinant intrabodies as molecular tools and potential therapeutics for Huntington’s disease. In: Lo D.C., Hughes R.E., editors. Neurobiology of Hantington’s disease: applications to drug discovery. Boca raton, FL: CRC Press/Taylor&Francis; 2011. [PubMed] [Google Scholar]
  • 25.Huang L., Su X., Federoff H.J. Single-chain fragment variable passive immunotherapies for neurodegenerative diseases. Int. J. Mol. Sci. 2013;14(9):19109–19127. doi: 10.3390/ijms140919109. [http://dx.doi.org/10.3390/ijms140919109]. [PMID: 24048248]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Valera E., Masliah E. Immunotherapy for neurodegenerative diseases: focus on α-synucleinopathies. Pharmacol. Ther. 2013;138(3):311–322. doi: 10.1016/j.pharmthera.2013.01.013. [http://dx.doi.org/10.1016/j.pharmthera.2013.01. 013]. [PMID: 23384597]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Cardinale A., Merlo D., Giunchedi P., Biocca S. Therapeutic application of intrabodies against age-related neurodegenerative disorders. Curr. Pharm. Des. 2014;20(38):6028–6036. doi: 10.2174/1381612820666140314121444. [http://dx. doi.org/10.2174/1381612820666140314121444]. [PMID: 24641233]. [DOI] [PubMed] [Google Scholar]
  • 28.Lindström V., Ihse E., Fagerqvist T., Bergström J., Nordström E., Möller C., Lannfelt L., Ingelsson M. Immunotherapy targeting α-synuclein, with relevance for future treatment of Parkinsons disease and other Lewy body disorders. Immunotherapy. 2014;6(2):141–153. doi: 10.2217/imt.13.162. [http://dx.doi.org/10.2217/imt.13. 162]. [PMID: 24491088]. [DOI] [PubMed] [Google Scholar]
  • 29.Miraglia F., Betti L., Palego L., Giannaccini G. Parkinsons disease and alpha-synucleinopathies: from arising pathways to therapeutic challenge. Cent. Nerv. Syst. Agents Med. Chem. 2015;15(2):109–116. doi: 10.2174/1871524915666150421114338. [http://dx.doi.org/10.2174/1871524915666150421114338]. [PMID: 25896035]. [DOI] [PubMed] [Google Scholar]
  • 30.Valera E., Spencer B., Masliah E. Immunotherapeutic approaches targeting amyloid-β, α-synuclein, and tau for the treatment of neurodegenerative disorders. Neurotherapeutics. 2016;13(1):179–189. doi: 10.1007/s13311-015-0397-z. [http://dx.doi.org/10.1007/s13311-015-0397-z]. [PMID: 26494242]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Valera E., Masliah E. Combination therapies: The next logical Step for the treatment of synucleinopathies? Mov. Disord. 2016;31(2):225–234. doi: 10.1002/mds.26428. [http://dx.doi.org/10.1002/mds.26428]. [PMID: 26388203]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Wootla B., Watzlawik J.O., Stavropoulos N., Wittenberg N.J., Dasari H., Abdelrahim M.A., Henley J.R., Oh S.H., Warrington A.E., Rodriguez M. Recent advances in monoclonal antibody therapies for multiple sclerosis. Expert Opin. Biol. Ther. 2016;16(6):827–839. doi: 10.1517/14712598.2016.1158809. [http://dx.doi.org/10.1517/14712598.2016.1158809]. [PMID: 26914737]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Zhou C., Przedborski S. Intrabody and Parkinson´s disease. Biochim. Biophys. Acta. 2009;1792:634–642. doi: 10.1016/j.bbadis.2008.09.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Messer A., Lynch S.M., Butler D.C. Developing intrabodies for the therapeutic suppression of neurodegenerative pathology. Expert Opin. Biol. Ther. 2009;9(9):1189–1197. doi: 10.1517/14712590903176387. [http://dx.doi.org/10. 1517/14712590903176387]. [PMID: 19653865]. [DOI] [PubMed] [Google Scholar]
  • 35.Butler D.C., McLear J.A., Messer A. Engineered antibody therapies to counteract mutant huntingtin and related toxic intracellular proteins. Prog. Neurobiol. 2012;97(2):190–204. doi: 10.1016/j.pneurobio.2011.11.004. [http:// dx.doi.org/10.1016/j.pneurobio.2011.11.004]. [PMID: 22120646]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Lulu S., Waubant E. Humoral-targeted immunotherapies in multiple sclerosis. Neurotherapeutics. 2013;10(1):34–43. doi: 10.1007/s13311-012-0164-3. [http:// dx.doi.org/10.1007/s13311-012-0164-3]. [PMID: 23208729]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.De Genst E., Messer A., Dobson C. M. Antibodies and protein misfolding: from structural research tools to therapeutic strategies. Biochim. Biophys. Acta. 2014;1844:1907–1919. doi: 10.1016/j.bbapap.2014.08.016. [http://dx.doi.org/10.1016/j.bbapap.2014.08.016] [DOI] [PubMed] [Google Scholar]
  • 38.Walsh D.M., Selkoe D.J. A critical appraisal of the pathogenic protein spread hypothesis of neurodegeneration. Nat. Rev. Neurosci. 2016;17(4):251–260. doi: 10.1038/nrn.2016.13. [http://dx.doi.org/10.1038/nrn. 2016.13]. [PMID: 26988744]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Selkoe D.J. Altered structural proteins in plaques and tangles: what do they tell us about the biology of Alzheimers disease? Neurobiol. Aging. 1986;7(6):425–432. doi: 10.1016/0197-4580(86)90055-2. [http://dx.doi.org/10.1016/0197-4580 (86)90055-2]. [PMID: 3104810]. [DOI] [PubMed] [Google Scholar]
  • 40.Selkoe D.J. Physiological production of the beta-amyloid protein and the mechanism of Alzheimers disease. Trends Neurosci. 1993;16(10):403–409. doi: 10.1016/0166-2236(93)90008-a. [http://dx.doi.org/10.1016/0166-2236(93)90008-A]. [PMID: 7504355]. [DOI] [PubMed] [Google Scholar]
  • 41.LaFerla F.M., Green K.N., Oddo S. Intracellular amyloid-beta in Alzheimers disease. Nat. Rev. Neurosci. 2007;8(7):499–509. doi: 10.1038/nrn2168. [http://dx.doi.org/10.1038/nrn2168]. [PMID: 17551515]. [DOI] [PubMed] [Google Scholar]
  • 42.Münch G., Robinson S.R. Alzheimers vaccine: a cure as dangerous as the disease? J. Neural Transm. (Vienna) 2002;109(4):537–539. doi: 10.1007/s007020200044. [http://dx.doi.org/10.1007/s007020200044]. [PMID: 11956972]. [DOI] [PubMed] [Google Scholar]
  • 43.Gilman S., Koller M., Black R.S., Jenkins L., Griffith S.G., Fox N.C., Eisner L., Kirby L., Rovira M.B., Forette F., Orgogozo J.M. Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology. 2005;64(9):1553–1562. doi: 10.1212/01.WNL.0000159740.16984.3C. [http://dx.doi.org/10.1212/01.WNL.0000159740.16984. 3C]. [PMID: 15883316]. [DOI] [PubMed] [Google Scholar]
  • 44.Lemere C.A. Immunotherapy for Alzheimers disease: hoops and hurdles. Mol. Neurodegener. 2013;8:36. doi: 10.1186/1750-1326-8-36. [http://dx.doi.org/10. 1186/1750-1326-8-36]. [PMID: 24148220]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Wisniewski T., Goñi F. Immunotherapeutic approaches for Alzheimers disease. Neuron. 2015;85(6):1162–1176. doi: 10.1016/j.neuron.2014.12.064. [http://dx. doi.org/10.1016/j.neuron.2014.12.064]. [PMID: 25789753]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Pfeifer M., Boncristiano S., Bondolfi L., Stalder A., Deller T., Staufenbiel M., Mathews P.M., Jucker M. Cerebral hemorrhage after passive anti-Abeta immunotherapy. Science. 2002;298(5597):1379. doi: 10.1126/science.1078259. [http://dx.doi.org/10.1126/science.1078259]. [PMID: 12434053]. [DOI] [PubMed] [Google Scholar]
  • 47.Wilcock D.M., Rojiani A., Rosenthal A., Subbarao S., Freeman M.J., Gordon M.N., Morgan D. Passive immunotherapy against Abeta in aged APP-transgenic mice reverses cognitive deficits and depletes parenchymal amyloid deposits in spite of increased vascular amyloid and microhemorrhage. J. Neuroinflammation. 2004;1(1):24. doi: 10.1186/1742-2094-1-24. [http://dx.doi.org/10.1186/1742-2094-1-24]. [PMID: 15588287]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Lee E.B., leng L. Z., Lee V. M., Trojanowski J. Q. Meningoencephalitis associated with passive immunization of a transgenic murine model of Alzheimers amyloidosis. FEBS Lett. 2005;579:2564–2568. doi: 10.1016/j.febslet.2005.03.070. [http://dx.doi.org/10.1016/j.febslet.2005. 03.070]. [PMID: 15862291]. [DOI] [PubMed] [Google Scholar]
  • 49.Frenkel D., Solomon B., Benhar I. Modulation of Alzheimers beta-amyloid neurotoxicity by site-directed single-chain antibody. J. Neuroimmunol. 2000;106(1-2):23–31. doi: 10.1016/s0165-5728(99)00232-5. [http://dx.doi.org/10. 1016/S0165-5728(99)00232-5]. [PMID: 10814779]. [DOI] [PubMed] [Google Scholar]
  • 50.Frenkel D., Solomon B. Filamentous phage as vector-mediated antibody delivery to the brain. Proc. Natl. Acad. Sci. USA. 2002;99(8):5675–5679. doi: 10.1073/pnas.072027199. [http://dx.doi.org/10.1073/pnas.072027199]. [PMID: 11960022]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Tammer A.H., Coia G., Cappai R., Fuller S., Masters C.L., Hudson P., Underwood J.R. Generation of a recombinant Fab antibody reactive with the Alzheimers disease-related Abeta peptide. Clin. Exp. Immunol. 2002;129(3):453–463. doi: 10.1046/j.1365-2249.2002.01905.x. [http://dx.doi. org/10.1046/j.1365-2249.2002.01905.x]. [PMID: 12197886]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Manoutcharian K., Acero G., Munguia M.E., Montero J.A., Govezensky T., Cao C., Ugen K., Gevorkian G. Amyloid-beta peptide-specific single chain Fv antibodies isolated from an immune phage display library. J. Neuroimmunol. 2003;145(1-2):12–17. doi: 10.1016/j.jneuroim.2003.08.038. [http://dx.doi.org/10.1016/j.jneuroim.2003.08.038]. [PMID: 14644026]. [DOI] [PubMed] [Google Scholar]
  • 53.Medecigo M., Manoutcharian K., Vasilevko V., Govezensky T., Munguia M.E., Becerril B., Luz-Madrigal A., Vaca L., Cribbs D.H., Gevorkian G. Novel amyloid-beta specific scFv and VH antibody fragments from human and mouse phage display antibody libraries. J. Neuroimmunol. 2010;223(1-2):104–114. doi: 10.1016/j.jneuroim.2010.03.023. [http://dx. doi.org/10.1016/j.jneuroim.2010.03.023]. [PMID: 20451261]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Liu R., Yuan B., Emadi S., Zameer A., Schulz P., McAllister C., Lyubchenko Y., Goud G., Sierks M.R. Single chain variable fragments against β-amyloid (Abeta) can inhibit Abeta aggregation and prevent abeta-induced neurotoxicity. Biochemistry. 2004;43(22):6959–6967. doi: 10.1021/bi049933o. [http://dx.doi.org/10.1021/bi049933o]. [PMID: 15170333]. [DOI] [PubMed] [Google Scholar]
  • 55.Manoutcharian K., Acero G., Munguia M.E., Becerril B., Massieu L., Govezensky T., Ortiz E., Marks J.D., Cao C., Ugen K., Gevorkian G. Human single chain Fv antibodies and a complementarity determining region-derived peptide binding to amyloid-beta 142. Neurobiol. Dis. 2004;17(1):114–121. doi: 10.1016/j.nbd.2004.06.005. [http://dx.doi.org/10.1016/j.nbd.2004.06.005]. [PMID: 15350972]. [DOI] [PubMed] [Google Scholar]
  • 56.Fukuchi K., Accavitti-Loper M.A., Kim H.D., Tahara K., Cao Y., Lewis T.L., Caughey R.C., Kim H., Lalonde R. Amelioration of amyloid load by anti-Abeta single-chain antibody in Alzheimer mouse model. Biochem. Biophys. Res. Commun. 2006;344(1):79–86. doi: 10.1016/j.bbrc.2006.03.145. [http://dx.doi.org/10.1016/j.bbrc.2006.03.145]. [PMID: 16630540]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Zameer A., Schulz P., Wang M.S., Sierks M.R. Single chain Fv antibodies against the 2535 Abeta fragment inhibit aggregation and toxicity of Abeta42. Biochemistry. 2006;45(38):11532–11539. doi: 10.1021/bi060601o. [http://dx.doi.org/10.1021/bi060601o]. [PMID: 16981713]. [DOI] [PubMed] [Google Scholar]
  • 58.Marcus W.D., Wang H., Lindsay S.M., Sierks M.R. Characterization of an antibody scFv that recognizes fibrillar insulin and beta-amyloid using atomic force microscopy. Nanomedicine (Lond.) 2008;4(1):1–7. doi: 10.1016/j.nano.2007.11.003. [PMID: 18201941]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Solórzano-Vargas R.S., Vasilevko V., Acero G., Ugen K.E., Martinez R., Govezensky T., Vazquez-Ramirez R., Kubli-Garfias C., Cribbs D.H., Manoutcharian K., Gevorkian G. Epitope mapping and neuroprotective properties of a human single chain FV antibody that binds an internal epitope of amyloid-beta 142. Mol. Immunol. 2008;45(4):881–886. doi: 10.1016/j.molimm.2007.08.008. [http://dx.doi.org/10. 1016/j.molimm.2007.08.008]. [PMID: 17889938]. [DOI] [PubMed] [Google Scholar]
  • 60.Fukuchi K., Tahara K., Kim H.D., Maxwell J.A., Lewis T.L., Accavitti-Loper M.A., Kim H., Ponnazhagan S., Lalonde R. Anti-Abeta single-chain antibody delivery via adeno-associated virus for treatment of Alzheimers disease. Neurobiol. Dis. 2006;23(3):502–511. doi: 10.1016/j.nbd.2006.04.012. [http://dx.doi.org/10.1016/j.nbd.2006.04.012]. [PMID: 16766200]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Levites Y., Jansen K., Smithson L.A., Dakin R., Holloway V.M., Das P., Golde T.E. Intracranial adeno-associated virus-mediated delivery of anti-pan amyloid beta, amyloid beta40, and amyloid beta42 single-chain variable fragments attenuates plaque pathology in amyloid precursor protein mice. J. Neurosci. 2006;26(46):11923–11928. doi: 10.1523/JNEUROSCI.2795-06.2006. [http://dx.doi.org/10.1523/JNEUROSCI. 2795-06.2006]. [PMID: 17108166]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Kou J., Kim H., Pattanayak A., Song M., Lim J.E., Taguchi H., paul S., Cirrito J. R., Ponnazhagan S., Fukuchi K. Anti-amyloid-b single-chain antibody brain delivery via AAV reduces amyloid load but may increase cerebral hemorrhages in an Alzheimers disease mouse model. J. Alzheimers Dis. 2011;27:23–38. doi: 10.3233/JAD-2011-110230. [PMID: 21709371]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Sudol K.L., Mastrangelo M.A., Narrow W.C., Frazer M.E., Levites Y.R., Golde T.E., Federoff H.J., Bowers W.J. Generating differentially targeted amyloid-β specific intrabodies as a passive vaccination strategy for Alzheimer’s disease. Mol. Ther. 2009;17:2031–2040. doi: 10.1038/mt.2009.174. [http://dx.doi.org/10.1038/mt.2009.174]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Ryan D.A., mastrangelo M. A., Narrow W. C., Sullivan M. A., Federoff H. J., Bowers W. J. Abeta-directed single-chain antibody delivery via a serotype-1 AAV vector improves learning behavior and pathology in Alzheimer’s disease mice. Mol. Ther. 2010;18:1471–1481. doi: 10.1038/mt.2010.111. [http://dx.doi.org/10.1038/mt.2010.111]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Nisbet R.M., Polanco J.C., Ittner L.M., Götz J. Tau aggregation and its interplay with amyloid-β. Acta Neuropathol. 2015;129(2):207–220. doi: 10.1007/s00401-014-1371-2. [http://dx.doi.org/10.1007/s00401-014-1371-2]. [PMID: 25492702]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Wang Y.J., Gao C.Y., Yang M., Liu X.H., Sun Y., Pollard A., Dong X.Y., Wu X.B., Zhong J.H., Zhou H.D., Zhou X.F. Intramuscular delivery of a single chain antibody gene prevents brain Aβ deposition and cognitive impairment in a mouse model of Alzheimers disease. Brain Behav. Immun. 2010;24(8):1281–1293. doi: 10.1016/j.bbi.2010.05.010. [http://dx.doi.org/10.1016/j.bbi.2010.05.010]. [PMID: 20595065]. [DOI] [PubMed] [Google Scholar]
  • 67.Yang J., Pattanayak A., Song M., Kou J., Taguchi H., Paul S., Ponnazhagan S., Lalonde R., Fukuchi K. Muscle-directed anti-Aβ single-chain antibody delivery via AAV1 reduces cerebral Aβ load in an Alzheimers disease mouse model. J. Mol. Neurosci. 2013;49(2):277–288. doi: 10.1007/s12031-012-9877-3. [http://dx.doi.org/10.1007/s12031-012-9877-3]. [PMID: 22945846]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Donsante A., Miller D.G., Li Y., Vogler C., Brunt E.M., Russell D.W., Sands M.S. AAV vector integration sites in mouse hepatocellular carcinoma. Science. 2007;317(5837):477. doi: 10.1126/science.1142658. [http://dx.doi.org/10.1126/science.1142658]. [PMID: 17656716]. [DOI] [PubMed] [Google Scholar]
  • 69.Chandler R.J., LaFave M.C., Varshney G.K., Trivedi N.S., Carrillo-Carrasco N., Senac J.S., Wu W., Hoffmann V., Elkahloun A.G., Burgess S.M., Venditti C.P. Vector design influences hepatic genotoxicity after adeno-associated virus gene therapy. J. Clin. Invest. 2015;125(2):870–880. doi: 10.1172/JCI79213. [http://dx.doi.org/ 10.1172/JCI79213]. [PMID: 25607839]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Gil-Farina I., Fronza R., Kaeppel C., Lopez-Franco E., Ferreira V., DAvola D., Benito A., Prieto J., Petry H., Gonzalez-Aseguinolaza G., Schmidt M. Recombinant AAV integration is not associated with hepatic genotoxicity in nonhuman primates and patients. Mol. Ther. 2016;24(6):1100–1105. doi: 10.1038/mt.2016.52. [http://dx.doi.org/ 10.1038/mt.2016.52]. [PMID: 26948440]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Flingai S., Plummer E.M., Patel A., Shresta S., Mendoza J.M., Broderick K.E., Sardesai N.Y., Muthumani K., Weiner D.B. Protection against dengue disease by synthetic nucleic acid antibody prophylaxis/immunotherapy. Sci. Rep. 2015;5:12616. doi: 10.1038/srep12616. [http://dx.doi.org/10.1038/srep12616]. [PMID: 26220099]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Muthumani K., Flingai S., Wise M., Tingey C., Ugen K.E., Weiner D.B. Optimized and enhanced DNA plasmid vector based in vivo construction of a neutralizing anti-HIV-1 envelope glycoprotein Fab. Hum. Vaccin. Immunother. 2013;9(10):2253–2262. doi: 10.4161/hv.26498. [http://dx.doi.org/10.4161/hv.26498]. [PMID: 24045230]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Muthumani K., Block P., Flingai S., Muruganantham N., Chaaithanya I.K., Tingey C., Wise M., Reuschel E.L., Chung C., Muthumani A., Sarangan G., Srikanth P., Khan A.S., Vijayachari P., Sardesai N.Y., Kim J.J., Ugen K.E., Weiner D.B. Rapid and long-term immunity elicited by DNA-encoded antibody prophylaxis and DNA vaccination against Chikungunya virus. J. Infect. Dis. 2016;214(3):369–378. doi: 10.1093/infdis/jiw111. [http://dx.doi.org/ 10.1093/infdis/jiw111]. [PMID: 27001960]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Poduslo J.F., Ramakrishnan M., Holasek S.S., Ramirez-Alvarado M., Kandimalla K.K., Gilles E.J., Curran G.L., Wengenack T.M. In vivo targeting of antibody fragments to the nervous system for Alzheimers disease immunotherapy and molecular imaging of amyloid plaques. J. Neurochem. 2007;102(2):420–433. doi: 10.1111/j.1471-4159.2007.04591.x. [http://dx.doi.org/10.1111/j.1471-4159.2007.04591. x]. [PMID: 17596213]. [DOI] [PubMed] [Google Scholar]
  • 75.Giménez-Llort L., Rivera-Hernández G., Marin-Argany M., Sánchez-Quesada J.L., Villegas S. Early intervention in the 3xTg-AD mice with an amyloid β-antibody fragment ameliorates first hallmarks of Alzheimer disease. MAbs. 2013;5(5):665–677. doi: 10.4161/mabs.25424. [http://dx.doi.org/10.4161/mabs.25424]. [PMID: 23884018]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Esquerda-Canals G., Marti J., Rivera-Hernández G., Giménez-Llort L., Villegas S. Loss of deep cerebellar nuclei neurons in the 3xTg-AD mice and protection by an anti-amyloid β antibody fragment. MAbs. 2013;5(5):660–664. doi: 10.4161/mabs.25428. [http://dx.doi.org/10.4161/ mabs.25428]. [PMID: 23884149]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Cattepoel S., Hanenberg M., Kulic L., Nitsch R.M. Chronic intranasal treatment with an anti-Aβ(3042) scFv antibody ameliorates amyloid pathology in a transgenic mouse model of Alzheimers disease. PLoS One. 2011;6(4):e18296. doi: 10.1371/journal.pone.0018296. [http://dx. doi.org/10.1371/journal.pone.0018296]. [PMID: 21483675]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Zameer A., Kasturirangan S., Emadi S., Nimmagadda S.V., Sierks M.R. Anti-oligomeric Abeta single-chain variable domain antibody blocks Abeta-induced toxicity against human neuro-blastoma cells. J. Mol. Biol. 2008;384(4):917–928. doi: 10.1016/j.jmb.2008.09.068. [http://dx. doi.org/10.1016/j.jmb.2008.09.068]. [PMID: 18929576]. [DOI] [PubMed] [Google Scholar]
  • 79.Kasturirangan S., Reasoner T., Schulz P., Boddapati S., Emadi S., Valla J., Sierks M.R. Isolation and characterization of antibody fragments selective for specific protein morphologies from nanogram antigen samples. Biotechnol. Prog. 2013;29(2):463–471. doi: 10.1002/btpr.1698. [http://dx.doi.org/10.1002/btpr.1698]. [PMID: 23359572]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.Kasturirangan S., Li L., Emadi S., Boddapati S., Schulz P., Sierks M.R. Nanobody specific for oligomeric β-amyloid stabilizes nontoxic form. Neurobiol. Aging. 2012;33(7):1320–1328. doi: 10.1016/j.neurobiolaging.2010.09.020. [http://dx.doi.org/10.1016/j.neurobiolaging.2010.09.020]. [PMID: 21067847]. [DOI] [PubMed] [Google Scholar]
  • 81.Wang J., Li N., Ma J., Gu Z., Yu L., Fu X., Liu X., Wang J. Effects of an amyloid-beta 142 oligomers antibody screened from a phage display library in APP/PS1 transgenic mice. Brain Res. 2016;1635:169–179. doi: 10.1016/j.brainres.2016.01.028. [http://dx.doi.org/10.1016/j.brainres.2016. 01.028]. [PMID: 26820640]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Perchiacca J.M., Ladiwala A.R., Bhattacharya M., Tessier P.M. Structure-based design of conformation- and sequence-specific antibodies against amyloid β. Proc. Natl. Acad. Sci. USA. 2012;109(1):84–89. doi: 10.1073/pnas.1111232108. [http://dx.doi.org/10.1073/pnas.1111232108]. [PMID: 22171009]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Ladiwala A.R., Bhattacharya M., Perchiacca J.M., Cao P., Raleigh D.P., Abedini A., Schmidt A.M., Varkey J., Langen R., Tessier P.M. Rational design of potent domain antibody inhibitors of amyloid fibril assembly. Proc. Natl. Acad. Sci. USA. 2012;109(49):19965–19970. doi: 10.1073/pnas.1208797109. [http://dx.doi.org/10.1073/pnas.1208797109]. [PMID: 23161913]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Osborne D. M., Fitzgerald D. P. Intrahippocampal administration of a domain antibody that binds aggregated amyloid-β reverses cognitive deficits produced by diet-induced obesity. Biochim. Biophys. Acta. 2016;1860:1291–1298. doi: 10.1016/j.bbagen.2016.03.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Kasturirangan S., Brune D., Sierks M. Promoting α-secretase cleavage of beta-amyloid with engineered proteolytic antibody fragments. Biotechnol. Prog. 2009;25(4):1054–1063. doi: 10.1002/btpr.190. [http://dx.doi.org/10.1002/btpr.190]. [PMID: 19572401]. [DOI] [PubMed] [Google Scholar]
  • 86.Kasturirangan S., Boddapati S., Sierks M.R. Engineered proteolytic nanobodies reduce Abeta burden and ameliorate Abeta-induced cytotoxicity. Biochemistry. 2010;49(21):4501–4508. doi: 10.1021/bi902030m. [http://dx.doi.org/10.1021/bi902030m]. [PMID: 20429609]. [DOI] [PubMed] [Google Scholar]
  • 87.Caccamo A., Oddo S., Sugarman M.C., Akbari Y., LaFerla F.M. Age- and region-dependent alterations in Abeta-degrading enzymes: implications for Abeta-induced disorders. Neurobiol. Aging. 2005;26(5):645–654. doi: 10.1016/j.neurobiolaging.2004.06.013. [http://dx.doi.org/10.1016/j.neurobiolaging. 2004.06.013]. [PMID: 15708439]. [DOI] [PubMed] [Google Scholar]
  • 88.Jha N.K., Jha S.K., Kumar D., Kejriwal N., Sharma R., Ambasta R.K., Kumar P. Impact of insulin degrading enzyme and neprilysisn in Alzheimers disease biology: characterization of putative cognates for therapeutic applications. J. Alzheimers Dis. 2015;48(4):891–917. doi: 10.3233/JAD-150379. [http://dx.doi.org/10.3233/JAD-150379]. [PMID: 26444774]. [DOI] [PubMed] [Google Scholar]
  • 89.Boddapati S., Levites Y., Sierks M.R. Inhibiting β-secretase activity in Alzheimers disease cell models with single-chain antibodies specifically targeting APP. J. Mol. Biol. 2011;405(2):436–447. doi: 10.1016/j.jmb.2010.10.054. [http://dx.doi.org/10.1016/j.jmb.2010.10.054]. [PMID: 21073877]. [DOI] [PubMed] [Google Scholar]
  • 90.Boddapati S., levites Y., Suryadi V., Kastirurangan S., Sierks M. R. Bispecific tandem single chain antibody simultaneously inhibits β-secretase and promotes α-secretase processing of AbPP. J. Alzheimers Dis. 2012;28:961–969. doi: 10.3233/JAD-2011-111196. [PMID: 22156046]. [DOI] [PubMed] [Google Scholar]
  • 91.Planque S.A., Nishiyama Y., Sonoda S., Lin Y., Taguchi H., Hara M., Kolodziej S., Mitsuda Y., Gonzalez V., Sait H.B., Fukuchi K., Massey R.J., Friedland R.P., ONuallain B., Sigurdsson E.M., Paul S. Specific amyloid β clearance by a catalytic antibody construct. J. Biol. Chem. 2015;290(16):10229–10241. doi: 10.1074/jbc.M115.641738. [http://dx.doi.org/10.1074/jbc.M115.641738]. [PMID: 25724648]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Gerson J.E., Castillo-Carranza D.L., Kayed R. Advances in therapeutics for neurodegenerative tauopathies: moving toward the specific targeting of the most toxic tau species. ACS Chem. Neurosci. 2014;5(9):752–769. doi: 10.1021/cn500143n. [http://dx.doi.org/10.1021/cn500143n]. [PMID: 25075869]. [DOI] [PubMed] [Google Scholar]
  • 93.Iqbal K., Gong C.X., Liu F. Microtubule-associated protein tau as a therapeutic target in Alzheimers disease. Expert Opin. Ther. Targets. 2014;18(3):307–318. doi: 10.1517/14728222.2014.870156. [http://dx.doi.org/10.1517/ 14728222.2014.870156]. [PMID: 24387228]. [DOI] [PubMed] [Google Scholar]
  • 94.Tian H., Davidowitz E., Lopez P., He P., Schulz P., Moe J., Sierks M.R. Isolation and characterization of antibody fragments selective for toxic oligomeric tau. Neurobiol. Aging. 2015;36(3):1342–1355. doi: 10.1016/j.neurobiolaging.2014.12.002. [http://dx.doi.org/10.1016/j.neurobiolaging.2014.12. 002]. [PMID: 25616912]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Krishnaswamy S., Lin Y., Rajamohamedsait W.J., Rajamohamedsait H.B., Krishnamurthy P., Sigurdsson E.M. Antibody-derived in vivo imaging of tau pathology. J. Neurosci. 2014;34(50):16835–16850. doi: 10.1523/JNEUROSCI.2755-14.2014. [http://dx.doi.org/10.1523/JNEUROSCI. 2755-14.2014]. [PMID: 25505335]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96.Iqbal K., Liu F., Gong C.X. Tau and neurodegenerative disease: the story so far. Nat. Rev. Neurol. 2016;12(1):15–27. doi: 10.1038/nrneurol.2015.225. [http:// dx.doi.org/10.1038/nrneurol.2015.225]. [PMID: 26635213]. [DOI] [PubMed] [Google Scholar]
  • 97.Khan S.S., Bloom G.S. Tau: the center of a signaling nexus in Alzheimers disease. Front. Neurosci. 2016;10:31. doi: 10.3389/fnins.2016.00031. [http://dx. doi.org/10.3389/fnins.2016.00031]. [PMID: 26903798]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98.Wang T., Hay J.C. Alpha-synuclein toxicity in the early secretory pathway. How it drives neurodegeneration in Parkinsons disease. Front. Neurosci. 2015;9:433. doi: 10.3389/fnins.2015.00433. [http://dx.doi.org/10.3389/fnins. 2015.00433]. [PMID: 26617485]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99.Brundin P., Atkin G., Lamberts J.T. Basic science breaks through: New therapeutic advances in Parkinsons disease. Mov. Disord. 2015;30(11):1521–1527. doi: 10.1002/mds.26332. [http://dx.doi.org/10.1002/mds. 26332]. [PMID: 26177603]. [DOI] [PubMed] [Google Scholar]
  • 100.Del Tredici K., Braak H. Sporadic Parkinson’s disease: development and distribution of α-synuclein pathology. Neuropathol. Appl. Neurobiol. 2016;42(1):33–50. doi: 10.1111/nan.12298. [DOI] [PubMed] [Google Scholar]
  • 101.Bergström A.L., Kallunki P., Fog K. Development of passive immunotherapies for synucleinopathies. Mov. Disord. 2016;31(2):203–213. doi: 10.1002/mds.26481. [http://dx.doi.org/10.1002/mds.26481]. [PMID: 26704735]. [DOI] [PubMed] [Google Scholar]
  • 102.Zhou C., Emadi S., Sierks M.R., Messer A. A human single-chain Fv intrabody blocks aberrant cellular effects of overexpressed alpha-synuclein. Mol. Ther. 2004;10(6):1023–1031. doi: 10.1016/j.ymthe.2004.08.019. [http://dx. doi.org/10.1016/j.ymthe.2004.08.019]. [PMID: 15564134]. [DOI] [PubMed] [Google Scholar]
  • 103.Emadi S., Liu R., Yuan B., Schulz P., McAllister C., Lyubchenko Y., Messer A., Sierks M.R. Inhibiting aggregation of alpha-synuclein with human single chain antibody fragments. Biochemistry. 2004;43(10):2871–2878. doi: 10.1021/bi036281f. [http://dx.doi.org/10. 1021/bi036281f]. [PMID: 15005622]. [DOI] [PubMed] [Google Scholar]
  • 104.Barkhordarian H., Emadi S., Schulz P., Sierks M.R. Isolating recombinant antibodies against specific protein morphologies using atomic force microscopy and phage display technologies. Protein Eng. Des. Sel. 2006;19(11):497–502. doi: 10.1093/protein/gzl036. [http://dx.doi.org/10.1093/ protein/gzl036]. [PMID: 16984950]. [DOI] [PubMed] [Google Scholar]
  • 105.Emadi S., Barkhordarian H., Wang M.S., Schulz P., Sierks M.R. Isolation of a human single chain antibody fragment against oligomeric α-synuclein that inhibits aggregation and prevents α-synuclein-induced toxicity. J. Mol. Biol. 2007;368(4):1132–1144. doi: 10.1016/j.jmb.2007.02.089. [http://dx.doi.org/10.1016/j.jmb.2007.02.089]. [PMID: 17391701]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.Lynch S.M., Zhou C., Messer A. An scFv intrabody against the nonamyloid component of alpha-synuclein reduces intracellular aggregation and toxicity. J. Mol. Biol. 2008;377(1):136–147. doi: 10.1016/j.jmb.2007.11.096. [http://dx.doi.org/10.1016/j.jmb.2007.11.096]. [PMID: 18237741]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.Nannenga B.L., Zameer A., Sierks M.R. Anti-oligomeric single chain variable domain antibody differentially affects huntingtin and alpha-synuclein aggregates. FEBS Lett. 2008;582(4):517–522. doi: 10.1016/j.febslet.2008.01.014. [http://dx.doi.org/10.1016/j.febslet.2008.01.014]. [PMID: 18230361]. [DOI] [PubMed] [Google Scholar]
  • 108.Emadi S., Kasturirangan S., Wang M.S., Schulz P., Sierks M.R. Detecting morphologically distinct oligomeric forms of alpha-synuclein. J. Biol. Chem. 2009;284(17):11048–11058. doi: 10.1074/jbc.M806559200. [http://dx. doi.org/10.1074/jbc.M806559200]. [PMID: 19141614]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109.Kvam E., Nannenga B.L., Wang M.S., Jia Z., Sierks M.R., Messer A. Conformational targeting of fibrillar polyglutamine proteins in live cells escalates aggregation and cytotoxicity. PLoS One. 2009;4(5):e5727. doi: 10.1371/journal.pone.0005727. [http://dx.doi.org/10.1371/journal.pone. 0005727]. [PMID: 19492089]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110.Joshi S.N., Butler D.C., Messer A. Fusion to a highly charged proteasomal retargeting sequence increases soluble cytoplasmic expression and efficacy of diverse anti-synuclein intrabodies. MAbs. 2012;4(6):686–693. doi: 10.4161/mabs.21696. [http://dx.doi.org/10.4161/mabs.21696]. [PMID: 22929188]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111.Cookson M.R. LRRK2 pathways leading to neurodegeneration. Curr. Neurol. Neurosci. Rep. 2015;15(7):42. doi: 10.1007/s11910-015-0564-y. [http://dx.doi.org/ 10.1007/s11910-015-0564-y]. [PMID: 26008812]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112.Gilligan P.J. Inhibitors of leucine-rich repeat kinase 2 (LRRK2): progress and promise for the treatment of Parkinsons disease. Curr. Top. Med. Chem. 2015;15(10):927–938. doi: 10.2174/156802661510150328223655. [http://dx.doi.org/10. 2174/156802661510150328223655]. [PMID: 25832719]. [DOI] [PubMed] [Google Scholar]
  • 113.Spencer B., Emadi S., Desplats P., Eleuteri S., Michael S., Kosberg K., Shen J., Rockenstein E., Patrick C., Adame A., Gonzalez T., Sierks M., Masliah E. ESCRT-mediated uptake and degradation of brain-targeted α-synuclein single chain antibody attenuates neuronal degeneration in vivo. Mol. Ther. 2014;22(10):1753–1767. doi: 10.1038/mt.2014.129. [http://dx.doi.org/10.1038/mt.2014.129]. [PMID: 25008355]. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • 114.Rüb U., Vonsattel J.P., Heinsen H., Korf H.W. The Neuro-pathology of Huntington’s disease: classical findings, recent developments and correlation to functional neuroanatomy. Adv. Anat. Embryol. Cell Biol. 2015;217:1–146. [http://dx.doi.org/10. 1007/978-3-319-19285-7]. [PMID: 26767207]. [PubMed] [Google Scholar]
  • 115.Khoshnan A., Ou S., Ko J., Patterson P.H. Antibodies and intrabodies against huntingtin: production and screening of monoclonals and single-chain recombinant forms. Methods Mol. Biol. 2013;1010:231–251. doi: 10.1007/978-1-62703-411-1_15. [http://dx.doi.org/10.1007/978-1-62703-411-1_15]. [PMID: 23754229]. [DOI] [PubMed] [Google Scholar]
  • 116.Lecerf J.M., Shirley T.L., Zhu Q., Kazantsev A., Amersdorfer P., Housman D.E., Messer A., Huston J.S. Human single-chain Fv intrabodies counteract in situ huntingtin aggregation in cellular models of Huntingtons disease. Proc. Natl. Acad. Sci. USA. 2001;98(8):4764–4769. doi: 10.1073/pnas.071058398. [http://dx.doi.org/10.1073/pnas.071058398]. [PMID: 11296304]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 117.Murphy R.C., Messer A. A single-chain Fv intrabody provides functional protection against the effects of mutant protein in an organotypic slice culture model of Huntingtons disease. Brain Res. Mol. Brain Res. 2004;121(1-2):141–145. doi: 10.1016/j.molbrainres.2003.11.011. [http://dx.doi.org/10. 1016/j.molbrainres.2003.11.011]. [PMID: 14969746]. [DOI] [PubMed] [Google Scholar]
  • 118.Miller T.W., Zhou C., Gines S., MacDonald M.E., Mazarakis N.D., Bates G.P., Huston J.S., Messer A. A human single-chain Fv intrabody preferentially targets amino-terminal Huntingtins fragments in striatal models of Huntingtons disease. Neurobiol. Dis. 2005;19(1-2):47–56. doi: 10.1016/j.nbd.2004.11.003. [http://dx.doi.org/10.1016/j.nbd.2004. 11.003]. [PMID: 15837560]. [DOI] [PubMed] [Google Scholar]
  • 119.Wolfgang W.J., Miller T.W., Webster J.M., Huston J.S., Thompson L.M., Marsh J.L., Messer A. Suppression of Huntingtons disease pathology in Drosophila by human single-chain Fv antibodies. Proc. Natl. Acad. Sci. USA. 2005;102(32):11563–11568. doi: 10.1073/pnas.0505321102. [http://dx.doi.org/10.1073/pnas.0505321102]. [PMID: 16061794]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120.Snyder-Keller A., McLear J.A., Hathorn T., Messer A. Early or late-stage anti-N-terminal Huntingtin intrabody gene therapy reduces pathological features in B6.HDR6/1 mice. J. Neuropathol. Exp. Neurol. 2010;69(10):1078–1085. doi: 10.1097/NEN.0b013e3181f530ec. [http://dx.doi.org/10.1097/ NEN.0b013e3181f530ec]. [PMID: 20838238]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121.Butler D.C., Messer A. Bifunctional anti-huntingtin proteasome-directed intrabodies mediate efficient degradation of mutant huntingtin exon 1 protein fragments. PLoS One. 2011;6(12):e29199. doi: 10.1371/journal.pone.0029199. [http://dx.doi.org/10.1371/journal.pone.0029199]. [PMID: 22216210]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 122.De Genst E., Chirgadze D.Y., Klein F.A., Butler D.C., Matak-Vinković D., Trottier Y., Huston J.S., Messer A., Dobson C.M. Structure of a single-chain Fv bound to the 17 N-terminal residues of huntingtin provides insights into pathogenic amyloid formation and suppression. J. Mol. Biol. 2015;427(12):2166–2178. doi: 10.1016/j.jmb.2015.03.021. [http://dx.doi.org/10.1016/j.jmb.2015.03.021]. [PMID: 25861763]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 123.Khoshnan A., Ko J., Patterson P.H. Effects of intracellular expression of anti-huntingtin antibodies of various specificities on mutant huntingtin aggregation and toxicity. Proc. Natl. Acad. Sci. USA. 2002;99(2):1002–1007. doi: 10.1073/pnas.022631799. [http://dx.doi.org/10.1073/pnas.022631799]. [PMID: 11792860]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124.Southwell A.L., Khoshnan A., Dunn D.E., Bugg C.W., Lo D.C., Patterson P.H. Intrabodies binding the proline-rich domains of mutant huntingtin increase its turnover and reduce neurotoxicity. J. Neurosci. 2008;28(36):9013–9020. doi: 10.1523/JNEUROSCI.2747-08.2008. [http://dx.doi.org/10.1523/ JNEUROSCI.2747-08.2008]. [PMID: 18768695]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 125.Southwell A.L., Ko J., Patterson P.H. Intrabody gene therapy ameliorates motor, cognitive, and neuropathological symptoms in multiple mouse models of Huntingtons disease. J. Neurosci. 2009;29(43):13589–13602. doi: 10.1523/JNEUROSCI.4286-09.2009. [http://dx.doi.org/10.1523/JNEUROSCI. 4286-09.2009]. [PMID: 19864571]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 126.Wang C.E., Zhou H., McGuire J.R., Cerullo V., Lee B., Li S.H., Li X.J. Suppression of neuropil aggregates and neurological symptoms by an intracellular antibody implicates the cytoplasmic toxicity of mutant huntingtin. J. Cell Biol. 2008;181(5):803–816. doi: 10.1083/jcb.200710158. [http://dx.doi.org/10.1083/jcb.200710158]. [PMID: 18504298]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 127.Colby D.W., Garg P., Holden T., Chao G., Webster J.M., Messer A., Ingram V.M., Wittrup K.D. Development of a human light chain variable domain (V(L)) intracellular antibody specific for the amino terminus of huntingtin via yeast surface display. J. Mol. Biol. 2004;342(3):901–912. doi: 10.1016/j.jmb.2004.07.054. [http://dx.doi.org/10.1016/j.jmb. 2004.07.054]. [PMID: 15342245]. [DOI] [PubMed] [Google Scholar]
  • 128.Colby D.W., Chu Y., Cassady J.P., Duennwald M., Zazulak H., Webster J.M., Messer A., Lindquist S., Ingram V.M., Wittrup K.D. Potent inhibition of huntingtin aggregation and cytotoxicity by a disulfide bond-free single-domain intracellular antibody. Proc. Natl. Acad. Sci. USA. 2004;101(51):17616–17621. doi: 10.1073/pnas.0408134101. [http://dx.doi. org/10.1073/pnas.0408134101]. [PMID: 15598740]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 129.Mikol J. Neuropathology of prion diseases. Biomed. Pharmacother. 1999;53(1):19–26. doi: 10.1016/s0753-3322(99)80056-0. [http://dx.doi.org/10.1016/S0753-3322(99) 80056-0]. [PMID: 10221164]. [DOI] [PubMed] [Google Scholar]
  • 130.Sigurdsson E.M., Brown D.R., Daniels M., Kascsak R.J., Kascsak R., Carp R., Meeker H.C., Frangione B., Wisniewski T. Immunization delays the onset of prion disease in mice. Am. J. Pathol. 2002;161(1):13–17. doi: 10.1016/S0002-9440(10)64151-X. [http://dx.doi.org/10.1016/S0002-9440(10)64151-X]. [PMID: 12107084]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 131.Heppner F.L., Aguzzi A. Recent developments in prion immuno-therapy. Curr. Opin. Immunol. 2004;16(5):594–598. doi: 10.1016/j.coi.2004.07.008. [http://dx. doi.org/10.1016/j.coi.2004.07.008]. [PMID: 15342005]. [DOI] [PubMed] [Google Scholar]
  • 132.Müller-Schiffmann A., Korth C. Vaccine approaches to prevent and treat prion infection: progress and challenges. BioDrugs. 2008;22(1):45–52. doi: 10.2165/00063030-200822010-00005. [http://dx.doi.org/10.2165/00063030-200822010-00005]. [PMID: 18215090]. [DOI] [PubMed] [Google Scholar]
  • 133.Roettger Y., Du Y., Bacher M., Zerr I., Dodel R., Bach J.P. Immunotherapy in prion disease. Nat. Rev. Neurol. 2013;9(2):98–105. doi: 10.1038/nrneurol.2012.258. [http://dx.doi.org/10.1038/nrneurol.2012.258]. [PMID: 23247613]. [DOI] [PubMed] [Google Scholar]
  • 134.Vetrugno V., Cardinale A., Filesi I., Mattei S., Sy M.S., Pocchiari M., Biocca S. KDEL-tagged anti-prion intrabodies impair PrP lysosomal degradation and inhibit scrapie infectivity. Biochem. Biophys. Res. Commun. 2005;338(4):1791–1797. doi: 10.1016/j.bbrc.2005.10.146. [http://dx.doi.org/10.1016/j.bbrc.2005.10.146]. [PMID: 16288721]. [DOI] [PubMed] [Google Scholar]
  • 135.Filesi I., Cardinale A., Mattei S., Biocca S. Selective re-routing of prion protein to proteasomes and alteration of its vesicular secretion prevent PrP(Sc) formation. J. Neurochem. 2007;101(6):1516–1526. doi: 10.1111/j.1471-4159.2006.04439.x. [http://dx.doi.org/10.1111/j.1471-4159.2006.04439.x]. [PMID: 17542810]. [DOI] [PubMed] [Google Scholar]
  • 136.Campana V., Zentilin L., Mirabile I., Kranjc A., Casanova P., Giacca M., Prusiner S.B., Legname G., Zurzolo C. Development of antibody fragments for immunotherapy of prion diseases. Biochem. J. 2009;418(3):507–515. doi: 10.1042/BJ20081541. [http://dx.doi.org/10.1042/ BJ20081541]. [PMID: 19000036]. [DOI] [PubMed] [Google Scholar]
  • 137.Müller-Schiffmann A., Petsch B., Leliveld S.R., Muyrers J., Salwierz A., Mangels C., Schwarzinger S., Riesner D., Stitz L., Korth C. Complementarity determining regions of an anti-prion protein scFv fragment orchestrate conformation specificity and antiprion activity. Mol. Immunol. 2009;46(4):532–540. doi: 10.1016/j.molimm.2008.07.023. [http://dx.doi.org/10.1016/j.molimm.2008.07.023]. [PMID: 18973947]. [DOI] [PubMed] [Google Scholar]
  • 138.Jones D.R., Taylor W.A., bate C., David M., Tayebi M. A camelid anti-PrP antibody abrogates PrPSc replication in prion-permissive neuroblastoma cell lines. PLoS One. 2010;5:e9804. doi: 10.1371/journal.pone.0009804. [http://dx.doi.org/10.1371/journal.pone.0009804]. [PMID: 20339552]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 139.Shimizu Y., Kaku-Ushiki Y., Iwamaru Y., Muramoto T., Kitamoto T., Yokoyama T., Mohri S., Tagawa Y. A novel anti-prion protein monoclonal antibody and its single-chain fragment variable derivative with ability to inhibit abnormal prion protein accumulation in cultured cells. Microbiol. Immunol. 2010;54(2):112–121. doi: 10.1111/j.1348-0421.2009.00190.x. [http://dx.doi.org/10.1111/j.1348-0421.2009.00190.x]. [PMID: 20377745]. [DOI] [PubMed] [Google Scholar]
  • 140.Rovis T.L., Legname G. Prion protein-specific antibodies-development, modes of action and therapeutics application. Viruses. 2014;6(10):3719–3737. doi: 10.3390/v6103719. [http://dx.doi.org/10.3390/ v6103719]. [PMID: 25275428]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 141.Wuertzer C.A., Sullivan M.A., Qiu X., Federoff H.J. CNS delivery of vectored prion-specific single-chain antibodies delays disease onset. Mol. Ther. 2008;16(3):481–486. doi: 10.1038/sj.mt.6300387. [http://dx.doi.org/ 10.1038/sj.mt.6300387]. [PMID: 18180775]. [DOI] [PubMed] [Google Scholar]
  • 142.Moda F., Vimercati C., Campagnani I., Ruggerone M., Giaccone G., Morbin M., Zentilin L., Giacca M., Zucca I., Legname G., Tagliavini F. Brain delivery of AAV9 expressing an anti-PrP monovalent antibody delays prion disease in mice. Prion. 2012;6(4):383–390. doi: 10.4161/pri.20197. [http://dx.doi.org/10.4161/pri.20197]. [PMID: 22842862]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 143.Fujita K., Yamaguchi Y., Mori T., Muramatsu N., Miyamoto T., Yano M., Miyata H., Ootsuyama A., Sawada M., Matsuda H., Kaji R., Sakaguchi S. Effects of a brain-engraftable microglial cell line expressing anti-prion scFv antibodies on survival times of mice infected with scrapie prions. Cell. Mol. Neurobiol. 2011;31(7):999–1008. doi: 10.1007/s10571-011-9696-z. [http://dx.doi.org/10.1007/s10571-011-9696-z]. [PMID: 21516351]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 144.Zuber C., Knackmuss S., Rey C., Reusch U., Röttgen P., Fröhlich T., Arnold G.J., Pace C., Mitteregger G., Kretzschmar H.A., Little M., Weiss S. Single chain Fv antibodies directed against the 37 kDa/67 kDa laminin receptor as therapeutic tools in prion diseases. Mol. Immunol. 2008;45(1):144–151. doi: 10.1016/j.molimm.2007.04.030. [http:// dx.doi.org/10.1016/j.molimm.2007.04.030]. [PMID: 17576014]. [DOI] [PubMed] [Google Scholar]
  • 145.Zuber C., Mitteregger G., Schuhmann N., Rey C., Knackmuss S., Rupprecht W., Reusch U., Pace C., Little M., Kretzschmar H.A., Hallek M., Büning H., Weiss S. Delivery of single-chain antibodies (scFvs) directed against the 37/67 kDa laminin receptor into mice via recombinant adeno-associated viral vectors for prion disease gene therapy. J. Gen. Virol. 2008;89(Pt 8):2055–2061. doi: 10.1099/vir.0.83670-0. [http://dx.doi.org/10.1099/vir.0.83670-0]. [PMID: 18632978]. [DOI] [PubMed] [Google Scholar]
  • 146.Skrlj N., Drevenšek G., Hudoklin S., Romih R., Curin Š.V., Dolinar M. Recombinant single-chain antibody with the Trojan peptide penetratin positioned in the linker region enables cargo transfer across the blood-brain barrier. Appl. Biochem. Biotechnol. 2013;169(1):159–169. doi: 10.1007/s12010-012-9962-7. [http://dx.doi.org/10.1007/s12010-012-9962-7]. [PMID: 23160949]. [DOI] [PubMed] [Google Scholar]
  • 147.Rotman M., Welling M.M., Bunschoten A., de Backer M.E., Rip J., Nabuurs R.J., Gaillard P.J., van Buchem M.A., van der Maarel S.M., van der Weerd L. Enhanced glutathione PEGylated liposomal brain delivery of an anti-amyloid single domain antibody fragment in a mouse model for Alzheimers disease. J. Control. Release. 2015;203:40–50. doi: 10.1016/j.jconrel.2015.02.012. [http://dx.doi.org/10.1016/j.jconrel. 2015.02.012]. [PMID: 25668771]. [DOI] [PubMed] [Google Scholar]
  • 148.Waraho-Zhmayev D., Meksiriporn B., Portnoff A.D., DeLisa M.P. Optimizing recombinant antibodies for intracellular function using hitchhiker-mediated survival selection. Protein Eng. Des. Sel. 2014;27(10):351–358. doi: 10.1093/protein/gzu038. [http://dx.doi.org/10.1093/protein/gzu038]. [PMID: 25225416]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 149.Lathuilière A., Mach N., Schneider B.L. Encapsulated cellular implants for recombinant protein delivery and therapeutic modulation of the immune system. Int. J. Mol. Sci. 2015;16(5):10578–10600. doi: 10.3390/ijms160510578. [http://dx.doi.org/10.3390/ijms160510578]. [PMID: 26006227]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 150.Lathuilière A., Laversenne V., Astolfo A., Kopetzki E., Jacobsen H., Stampanoni M., Bohrmann B., Schneider B.L., Aebischer P. A subcutaneous cellular implant for passive immunization against amyloid-β reduces brain amyloid and tau pathologies. Brain. 2016;139(Pt 5):1587–1604. doi: 10.1093/brain/aww036. [http://dx.doi.org/10.1093/ brain/aww036]. [PMID: 26956423]. [DOI] [PubMed] [Google Scholar]

Articles from Current Neuropharmacology are provided here courtesy of Bentham Science Publishers

RESOURCES