Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Jan 1;74(Pt 1):6–9. doi: 10.1107/S2056989017017224

Crystal structure of a Zn complex with tereph­thalate and 1,6-bis­(1,2,4-triazol-1-yl)hexa­ne

Taisiya S Sukhikh a,b,*, Evgeny Yu Semitut c,a, Andrei S Potapov c
PMCID: PMC5778475  PMID: 29416881

A new Zn coordination polymer with bitopic rigid terephthalate and flexible 1,6-bis­(1,2,4-triazol-1-yl)hexane was synthesized and structurally characterized.

Keywords: crystal structure, flexible ligand, terephthalate, coordination polymer

Abstract

A new zinc coordination polymer with rigid benzene-1,4-di­carboxyl­ate (bdc) and flexible 1,6-bis­(1,2,4-triazol-1-yl)hexane (btrh), namely poly[[(μ2-benzene-1,4-di­carboxyl­ato)[μ2-1,6-bis­(1,2,4-triazol-1-yl)hexa­ne]zinc] di­methyl­form­amide monosolvate], [Zn(C8H4O4)(C10H16N6)]·C3H7NO, was synthesized. According to the single-crystal XRD analysis, the product crystallizes in the P-1 space group and has a layered structure. Analysis of the layered structure reveals {Zn(bdc)} chains which are connected by pairs of btrh ligands. The layers are packed tightly perpendicular to the [1-22] direction, separated by one non-disordered di­methyl­formamide solvent mol­ecule per formula unit. According to thermogravimetric analysis, the product completely loses this solvent at 453 K; the desolvated compound is stable up to 503 K. As a result of the lack of hydrogen-donor groups, hydrogen bonds are not observed in the structure of the complex; however, an inter­molecular C—H⋯π contact of 3.07 Å occurs.

Chemical context  

Coordination polymers with flexible bitopic ligands have attracted great inter­est as prospective materials for gas separation, sensing materials, electrochemical devices or catalysis (Pettinari et al., 2016). One of the favoured classes of bitopic ligands are bis­(azol-1-yl) alkanes, which have been used for the preparation of various transition metals coordin­ation polymers with different topologies (Alkorta et al., 2017; Pellei et al., 2017; Manzano et al., 2016; Liu et al., 2012). Bitopic bis­(azol-1-yl)alkanes have two separated metal-binding sites that allow them to form a wide variety of polymeric structures. Thus, coordination compounds based on these ligands could be applied in the design of various functional materials with a wide range of potential applications. Recently, we have synthesized three new Zn coordination polymers based on bis­(triazol-1-yl)propane and terephtalate anions (Semitut et al., 2017). By varying the conditions, it was possible to synthesize three different polymeric compounds, which have inter­esting luminescent properties. As part of our studies with the aim of preparing new coordination polymers with flexible bis­(triazol-1-yl)alkane ligands, we report herein the synthesis and crystal structure of [Zn(bdc)(btrh)]·DMF (bdc = benzene-1,4-di­carboxyl­ate, btrh = 1,6-bis­(1,2,4-triazol-1-yl)hexane, DMF = di­methyl­formamide).graphic file with name e-74-00006-scheme1.jpg

The btrh ligand (Fig. 1) was prepared by the reaction of 1,2,4-triazole with 1,6-di­bromo­hexane in a superbasic dimeth­yl sulfoxide–potassium hydroxide medium using our modified procedure reported for bis­(triazol­yl)propane (Semitut et al., 2017). Our proposed procedure does not require the use of toxic solvents and gives higher yields compared to the literature procedure (Liu et al., 2012). The title complex was prepared by the reaction of zinc nitrate, btrh and terephthalic acid under solvothermal conditions (368 K) in DMF. The product was formed after 48 h as a crystalline colourless solid of plate-like shape. The single crystal used for structure determination was collected from the filtered product. The polycrystalline compound was characterized by elemental (C, H, N) and powder XRD analysis (Fig. S1, Supporting information), indicating formation of this complex as a main phase.

Figure 1.

Figure 1

Synthesis of 1,6-bis­(1,2,4-triazol-1-yl)hexane.

Thermal stability  

The thermal stability of the synthesized coordination polymer was studied in oxidative O2/Ar (21%) atmosphere. Thermogravimetric measurements were carried out on a NETZSCH thermobalance TG 209 F1 Iris. Open Al2O3 crucibles were used (loads 7–10 mg, heating rate 10 K min−1). The thermal analysis of [Zn(btrh)(bdc)]·nDMF revealed that the synthesized compound has three thermolysis stages in an oxidative atmosphere (Fig. 2). The first stage of thermolysis is the process of the loss of solvate mol­ecules that runs in the range of 373–453 K and has a well-defined step on the TG curve. The mass loss of solvate mol­ecules corresponds to a composition with n ≃ 1, which is in good agreement with the crystal data. The desolvated compound is stable up to 503 K. The second and third stages run in the ranges 503–573 and 633–773 K, respectively. The second stage corresponds to partial degradation of btrh and terephtalate and third to further decomposition and the burning process of the formed carbon products, resulting in the formation of ZnO according to powder XRD analysis.

Figure 2.

Figure 2

Curves of thermal analysis for [Zn(btrh)(bdc)]·DMF in O2/Ar (21%) atmosphere; 1 TG, 2 DTG, 3 c-DTA.

Structural commentary  

The structure is a 2D coordination polymer crystallizing in space group P Inline graphic. The central Zn atom has a distorted tetra­hedral environment comprising two oxygen and two nitro­gen atoms. It is coordinated by two crystallographically independent (bdc)2− ligands (halves), forming zigzag chains along the [210] direction, which are linked by btrh ligands (Fig. 3). Contrary to our recently reported Zn complexes with 1,3-bis­(1,2,4-triazol-1-yl)propane containing a shorter alkyl bridge (Semitut et al., 2017), 1,3-bis­(pyrazol-1-yl)propane (Potapov et al., 2012) and bis­(imidazol-1-yl)alkanes (Barsukova, Samsonenko et al., 2016; Barsukova, Goncharova et al., 2016), the title compound is a 2D polymer, because the Zn atoms are connected by btrh ligands in pairs, not in chains, thus preventing the formation of a 3D net. Each Zn atom is linked with three others via (1) the first bdc2– ligand, (2) a second bdc2– ligand and (3) a pair of btrh ligands. The layers of the title compound are arranged perpendicular to the [1Inline graphic2] direction in such a way that the {Zn2(btrh)2} units lie between the hollows of neighboring layers (Figs. S2, S3).

Figure 3.

Figure 3

Displacement ellipsoid plot of a single layer of the coordination polymer showing ellispoids drawn at the 50% probability level.

Supra­molecular features  

Layers of the complex are packed tightly, revealing only one DMF solvent mol­ecule per formula unit. Analysis of the residual electron-density map clearly indicates the presence of a not or very slightly disordered DMF mol­ecule (Fig. S4). After refining DMF, only one peak of 0.60 e Å−3 (attributed to a C atom of occupancy ca 0.15) is observed, while the densities of other peaks coincide with those of holes (ca ±0.3 e Å−3). Thus, the DMF mol­ecule is rather not disordered. Besides disorder, atomic displacement parameters that are larger than those for other atoms can be due to partial loss of the solvent during the experiment. DMF mol­ecules are located in the channel voids, which occupy 26.4% of the structure (Fig. S5). As a result of the lack of H-donor groups, hydrogen bonds are not observed in the structure of the complex; however, inter­molecular C—H⋯π contacts of 3.07 Å (Table 1) occur between the aromatic rings of bdc ligands (Fig. S6). These contacts connect neighbouring layers.

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C24–C26/C241–C26i ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C36ii—H36iiCg 0.93 3.07 3.95 149

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Database survey  

A database survey showed that the majority of the known structures of polymers with flexible bis­(azol-1-yl)alkanes are compounds based on relatively short linkers (from methane to penta­ne) but that the number of polymers based on longer linkers (having a CH2-chain higher than six) is relatively low. The lack of structural information on long flexible ligands can be due to the fact that it is more difficult to obtain single crystals of good quality for these compounds. Such ligands tend to form inter­penetrated polymers with disorder and a variety of modifications. A search of the Cambridge Structural Database (CSD, Version 5.38, update May 2017; Groom et al., 2016) for compounds containing btrh and any metal gave 51 hits, of which only one contains both btrh and bdc ligands (refcode ETAKAM; Zhang et al., 2011). This Cd polymer also has a 2D structure, but the {Cd(bdc)} chains are linear and are inter­sected by {Cd(btrh)} chains. Thus, contrary to our case, the two central metal atoms are connected by only one btrh ligand.

Synthesis and crystallization  

Starting materials and experimental procedures

The starting reagents used for the synthesis of the coordination compound – Zn(NO3)2·6H2O (chemical grade), dimethyl formamide (analytical grade) and terephthalic acid (analytical grade) – were used as received.

NMR spectra were recorded on a Bruker AV300 instrument operating at 300 MHz for 1H and 75 MHz for 13C, solvent residual peaks were used as inter­nal standard. Elemental analyses were carried out on a Eurovector EuroEA 3000 analyser. Infrared (IR) spectra of solid samples as KBr pellets were recorded on a FT-801 spectrometer (4000–550 cm−1). The powder XRD data were collected with a DRON RM4 powder diffractometer equipped with a Cu Kα source (λ = 1.5418 Å) and graphite monochromator for the diffracted beam.

Synthesis of compound [Zn(btrh)(bdc)]· n DMF

35.2 mg (0.16 mmol) of btrh ligand and 4.0 ml of Zn(NO3)2·6H2O (0.04 M) were added to 0.4 ml of a DMF solution of H2bdc (0.4 M) in a glass vial. The resulting mixture was stirred for several minutes at room temperature for total ligand dissolution and placed into an oven at 368 K. After heating for 48 h, the vial was cooled to room temperature. Plate-like colourless crystals formed on the bottom of the vial; they where filtered and washed twice with 5 ml of DMF and dried in a vacuum. The yield was 39 mg (53%). IR bands, cm−1: 3115, 2948, 2861, 1680, 1611, 1530, 1499, 1437, 1391, 1345, 1287, 1217, 1136, 1098, 1017, 1001, 947, 905, 878, 828, 750, 743, 673, 642, 577. Elemental analysis: found, %: C 48.5, H 5.9, N 18.9; calculated ([Zn(btrh)(bdc)]·DMF), %: C 48.2, H 5.2, N 18.8.

Synthesis of 1,6-bis­(1,2,4-triazol-1-yl)hexane (btrh)

A suspension of 2.76 g (40 mmol) of 1,2,4-triazole and 4.48 g (80 mmol) of powdered KOH in 15 ml of DMSO was stirred vigorously at 353 K for 30 min. The reaction flask was then immersed into a cold water bath and, after cooling to room temperature, 4.88 g (20 mmol) of 1,6-di­bromo­hexane in 10 ml of DMSO were added dropwise over 30 min. After the addition was complete, the reaction mixture was stirred overnight at 353 K. It was then quenched with 200 ml of water and extracted with 1-butanol (5 × 20 ml), the extract was then washed with water (2 ×10 ml). Evaporation of solvents from the extract on a rotary evaporator and recrystallization from isopropyl alcohol gave 3.83 g (87%) of the product as colourless crystals. 1H NMR (CDCI3), δ, ppm: 1.24 (t, 4H, γ-CH2, J = 7 Hz), 1.79 (q, 4H, β-CH2, J = 7 Hz), 4.06 (t, 4H, α-CH2, J = 7 Hz), 7.83 (s, 2H, H3-Tr), 8.08 (s, 2H, H5-Tr). 13C NMR (CDCI3), δ, ppm: 25.6 (γ-CH2), 29.3 (β-CH2), 49.2 (α –CH2), 142.7 (Tr-C3), 151.6 (Tr-C5).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were refined as riding atoms (C—H = 0.97 Å with U iso(H) = 1.5U eq(C) for methyl H atoms and C—H = 0.93 Å 1.2U eq(C) for all others. Methyl H atoms were refined as rotating groups.

Table 2. Experimental details.

Crystal data
Chemical formula [Zn(C8H4O4)(C10H16N6)]·C3H7NO
M r 522.86
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 298
a, b, c (Å) 9.7803 (6), 10.4481 (5), 13.3708 (8)
α, β, γ (°) 101.438 (2), 101.015 (2), 109.073 (2)
V3) 1216.41 (12)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.06
Crystal size (mm) 0.1 × 0.05 × 0.02
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012)
T min, T max 0.665, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 12157, 4293, 2999
R int 0.049
(sin θ/λ)max−1) 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.047, 0.118, 1.00
No. of reflections 4293
No. of parameters 309
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.60, −0.33

Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXT (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017017224/eb2003sup1.cif

e-74-00006-sup1.cif (390.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017017224/eb2003Isup2.hkl

e-74-00006-Isup2.hkl (342KB, hkl)

Supplementary figures S1-S6. DOI: 10.1107/S2056989017017224/eb2003sup3.pdf

e-74-00006-sup3.pdf (1.5MB, pdf)

CCDC reference: 1588505

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[Zn(C8H4O4)(C10H16N6)]·C3H7NO Z = 2
Mr = 522.86 F(000) = 544
Triclinic, P1 Dx = 1.428 Mg m3
a = 9.7803 (6) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.4481 (5) Å Cell parameters from 2516 reflections
c = 13.3708 (8) Å θ = 2.3–22.4°
α = 101.438 (2)° µ = 1.06 mm1
β = 101.015 (2)° T = 298 K
γ = 109.073 (2)° Plate, colourless
V = 1216.41 (12) Å3 0.1 × 0.05 × 0.02 mm

Data collection

Bruker APEXII CCD diffractometer 2999 reflections with I > 2σ(I)
φ and ω scans Rint = 0.049
Absorption correction: multi-scan (SADABS; Bruker, 2012) θmax = 25.0°, θmin = 2.2°
Tmin = 0.665, Tmax = 0.745 h = −11→11
12157 measured reflections k = −12→9
4293 independent reflections l = −15→15

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047 H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.062P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max < 0.001
4293 reflections Δρmax = 0.60 e Å3
309 parameters Δρmin = −0.33 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.55113 (4) 0.42735 (4) 0.19802 (3) 0.04413 (17)
O21 0.6685 (3) 0.4028 (3) 0.0983 (2) 0.0588 (7)
O22 0.8610 (3) 0.5441 (3) 0.2351 (2) 0.0751 (9)
O31 0.3399 (3) 0.3182 (3) 0.1154 (3) 0.0745 (9)
O32 0.3836 (4) 0.1533 (3) 0.1758 (3) 0.0911 (11)
N111 0.6118 (3) 0.4320 (3) 0.3513 (2) 0.0476 (7)
N113 0.6160 (4) 0.3855 (4) 0.5075 (3) 0.0749 (11)
N114 0.7283 (4) 0.5081 (3) 0.5193 (3) 0.0586 (9)
N121 1.4483 (3) 1.3736 (3) 0.7898 (2) 0.0464 (7)
N123 1.4969 (4) 1.1793 (4) 0.7385 (3) 0.0701 (10)
N124 1.4569 (3) 1.1841 (3) 0.8295 (3) 0.0504 (8)
C23 0.8065 (4) 0.4779 (4) 0.1401 (3) 0.0486 (9)
C24 0.9064 (4) 0.4885 (3) 0.0678 (3) 0.0436 (9)
C25 1.0606 (4) 0.5593 (4) 0.1062 (3) 0.0654 (12)
H25 1.1032 0.6004 0.1788 0.078*
C26 1.1517 (4) 0.5703 (4) 0.0403 (3) 0.0637 (11)
H26 1.2551 0.6186 0.0688 0.076*
C33 0.3002 (4) 0.1957 (4) 0.1235 (3) 0.0540 (10)
C34 0.1434 (4) 0.0945 (4) 0.0602 (3) 0.0473 (9)
C35 0.0949 (4) −0.0457 (4) 0.0597 (3) 0.0544 (10)
H35 0.1584 −0.0773 0.1002 0.065*
C36 −0.0471 (4) −0.1389 (4) −0.0003 (3) 0.0547 (10)
H36 −0.0781 −0.2331 −0.0003 0.066*
C112 0.5502 (5) 0.3442 (4) 0.4054 (4) 0.0674 (12)
H112 0.4670 0.2605 0.3729 0.081*
C115 0.7231 (5) 0.5337 (4) 0.4267 (3) 0.0596 (11)
H115 0.7894 0.6132 0.4158 0.071*
C122 1.4891 (5) 1.2946 (4) 0.7177 (3) 0.0658 (12)
H122 1.5100 1.3199 0.6577 0.079*
C125 1.4289 (4) 1.2994 (4) 0.8595 (3) 0.0496 (9)
H125 1.3999 1.3247 0.9204 0.060*
C131 0.8254 (6) 0.5943 (5) 0.6262 (3) 0.0807 (14)
H13A 0.8279 0.5326 0.6714 0.097*
H13B 0.7810 0.6584 0.6554 0.097*
C132 0.9823 (5) 0.6778 (4) 0.6292 (3) 0.0662 (12)
H13C 0.9812 0.7343 0.5797 0.079*
H13D 1.0317 0.6146 0.6076 0.079*
C133 1.0684 (5) 0.7730 (4) 0.7397 (3) 0.0656 (12)
H13E 1.0744 0.7146 0.7871 0.079*
H13F 1.0118 0.8284 0.7629 0.079*
C134 1.2262 (5) 0.8728 (4) 0.7510 (3) 0.0628 (11)
H13G 1.2858 0.8186 0.7319 0.075*
H13H 1.2222 0.9302 0.7025 0.075*
C135 1.3004 (5) 0.9675 (4) 0.8631 (3) 0.0636 (12)
H13I 1.2358 1.0160 0.8823 0.076*
H13J 1.3056 0.9083 0.9100 0.076*
C136 1.4545 (5) 1.0756 (4) 0.8842 (3) 0.0654 (12)
H13K 1.4953 1.1204 0.9600 0.078*
H13L 1.5191 1.0290 0.8617 0.078*
O1S 1.2093 (8) 1.1555 (6) 0.4821 (6) 0.225 (4)
N3S 1.1710 (7) 0.9340 (5) 0.4102 (4) 0.1045 (16)
C2S 1.2272 (11) 1.0486 (9) 0.4748 (8) 0.179 (4)
H2S 1.3017 1.0532 0.5318 0.215*
C4S 1.1971 (10) 0.8107 (8) 0.4102 (7) 0.175 (4)
H4SA 1.2829 0.8303 0.4680 0.263*
H4SB 1.2159 0.7757 0.3443 0.263*
H4SC 1.1104 0.7411 0.4181 0.263*
C5S 1.0403 (15) 0.9099 (11) 0.3279 (8) 0.261 (7)
H5SA 0.9604 0.9146 0.3586 0.392*
H5SB 1.0094 0.8183 0.2790 0.392*
H5SC 1.0637 0.9807 0.2909 0.392*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.0345 (2) 0.0472 (3) 0.0430 (3) 0.00801 (18) 0.01047 (19) 0.00923 (18)
O21 0.0449 (16) 0.0665 (17) 0.0534 (18) 0.0082 (13) 0.0217 (14) 0.0061 (13)
O22 0.0524 (18) 0.100 (2) 0.052 (2) 0.0115 (16) 0.0196 (16) 0.0013 (17)
O31 0.0462 (17) 0.0557 (18) 0.097 (3) 0.0006 (13) 0.0069 (16) 0.0137 (16)
O32 0.061 (2) 0.070 (2) 0.104 (3) 0.0154 (16) −0.0199 (19) −0.0029 (18)
N111 0.0452 (18) 0.0493 (17) 0.0420 (19) 0.0111 (14) 0.0116 (16) 0.0114 (15)
N113 0.070 (3) 0.078 (2) 0.053 (3) 0.000 (2) 0.008 (2) 0.0255 (19)
N114 0.055 (2) 0.061 (2) 0.045 (2) 0.0058 (17) 0.0104 (17) 0.0148 (16)
N121 0.0449 (18) 0.0446 (17) 0.0431 (19) 0.0117 (14) 0.0118 (15) 0.0077 (15)
N123 0.093 (3) 0.069 (2) 0.063 (3) 0.041 (2) 0.037 (2) 0.0171 (19)
N124 0.0488 (19) 0.0504 (19) 0.046 (2) 0.0174 (15) 0.0054 (16) 0.0093 (15)
C23 0.045 (2) 0.055 (2) 0.051 (3) 0.0197 (19) 0.021 (2) 0.016 (2)
C24 0.038 (2) 0.046 (2) 0.043 (2) 0.0121 (16) 0.0134 (18) 0.0102 (17)
C25 0.042 (2) 0.092 (3) 0.040 (3) 0.011 (2) 0.008 (2) −0.001 (2)
C26 0.032 (2) 0.093 (3) 0.048 (3) 0.008 (2) 0.010 (2) 0.006 (2)
C33 0.039 (2) 0.056 (3) 0.060 (3) 0.017 (2) 0.017 (2) 0.002 (2)
C34 0.036 (2) 0.045 (2) 0.054 (3) 0.0101 (16) 0.0138 (18) 0.0059 (17)
C35 0.041 (2) 0.051 (2) 0.065 (3) 0.0149 (18) 0.008 (2) 0.0133 (19)
C36 0.048 (2) 0.042 (2) 0.068 (3) 0.0121 (18) 0.014 (2) 0.0144 (19)
C112 0.061 (3) 0.063 (3) 0.058 (3) −0.001 (2) 0.009 (2) 0.022 (2)
C115 0.061 (3) 0.059 (2) 0.048 (3) 0.007 (2) 0.017 (2) 0.017 (2)
C122 0.072 (3) 0.071 (3) 0.054 (3) 0.024 (2) 0.026 (2) 0.015 (2)
C125 0.044 (2) 0.053 (2) 0.047 (2) 0.0171 (18) 0.0098 (18) 0.0097 (19)
C131 0.087 (4) 0.083 (3) 0.044 (3) 0.006 (3) 0.008 (3) 0.010 (2)
C132 0.054 (3) 0.074 (3) 0.056 (3) 0.022 (2) 0.003 (2) 0.001 (2)
C133 0.071 (3) 0.057 (2) 0.052 (3) 0.016 (2) 0.002 (2) 0.008 (2)
C134 0.060 (3) 0.065 (3) 0.055 (3) 0.026 (2) 0.005 (2) 0.006 (2)
C135 0.076 (3) 0.055 (2) 0.049 (3) 0.021 (2) 0.001 (2) 0.0133 (19)
C136 0.077 (3) 0.057 (2) 0.054 (3) 0.028 (2) −0.003 (2) 0.012 (2)
O1S 0.253 (8) 0.094 (4) 0.257 (8) 0.083 (4) −0.056 (6) −0.012 (4)
N3S 0.146 (5) 0.079 (3) 0.084 (4) 0.049 (3) 0.020 (3) 0.013 (3)
C2S 0.214 (10) 0.096 (6) 0.187 (9) 0.047 (6) 0.008 (8) 0.017 (6)
C4S 0.199 (9) 0.149 (7) 0.189 (9) 0.099 (7) 0.052 (7) 0.017 (6)
C5S 0.345 (17) 0.179 (10) 0.186 (10) 0.104 (10) −0.075 (12) 0.026 (8)

Geometric parameters (Å, º)

Zn1—O21 1.950 (3) C36—H36 0.9300
Zn1—O31 1.969 (3) C112—H112 0.9300
Zn1—N111 2.008 (3) C115—H115 0.9300
Zn1—N121i 2.052 (3) C122—H122 0.9300
O21—C23 1.263 (4) C125—H125 0.9300
O22—C23 1.236 (4) C131—H13A 0.9700
O31—C33 1.244 (5) C131—H13B 0.9700
O32—C33 1.222 (5) C131—C132 1.485 (6)
N111—C112 1.340 (5) C132—H13C 0.9700
N111—C115 1.315 (5) C132—H13D 0.9700
N113—N114 1.344 (4) C132—C133 1.509 (5)
N113—C112 1.309 (5) C133—H13E 0.9700
N114—C115 1.314 (5) C133—H13F 0.9700
N114—C131 1.472 (5) C133—C134 1.513 (6)
N121—Zn1i 2.052 (3) C134—H13G 0.9700
N121—C122 1.348 (5) C134—H13H 0.9700
N121—C125 1.327 (5) C134—C135 1.510 (5)
N123—N124 1.343 (4) C135—H13I 0.9700
N123—C122 1.311 (5) C135—H13J 0.9700
N124—C125 1.324 (4) C135—C136 1.492 (6)
N124—C136 1.462 (5) C136—H13K 0.9700
C23—C24 1.495 (5) C136—H13L 0.9700
C24—C25 1.382 (5) O1S—C2S 1.174 (8)
C24—C26ii 1.376 (5) N3S—C2S 1.208 (9)
C25—H25 0.9300 N3S—C4S 1.393 (8)
C25—C26 1.363 (5) N3S—C5S 1.432 (10)
C26—C24ii 1.376 (5) C2S—H2S 0.9300
C26—H26 0.9300 C4S—H4SA 0.9600
C33—C34 1.508 (5) C4S—H4SB 0.9600
C34—C35 1.383 (5) C4S—H4SC 0.9600
C34—C36iii 1.374 (5) C5S—H5SA 0.9600
C35—H35 0.9300 C5S—H5SB 0.9600
C35—C36 1.379 (5) C5S—H5SC 0.9600
C36—C34iii 1.374 (5)
O21—Zn1—O31 105.00 (12) N124—C125—N121 110.0 (4)
O21—Zn1—N111 124.42 (12) N124—C125—H125 125.0
O21—Zn1—N121i 104.47 (12) N114—C131—H13A 108.7
O31—Zn1—N111 118.44 (13) N114—C131—H13B 108.7
O31—Zn1—N121i 98.53 (12) N114—C131—C132 114.2 (4)
N111—Zn1—N121i 101.66 (12) H13A—C131—H13B 107.6
C23—O21—Zn1 110.9 (2) C132—C131—H13A 108.7
C33—O31—Zn1 110.0 (3) C132—C131—H13B 108.7
C112—N111—Zn1 131.6 (3) C131—C132—H13C 109.6
C115—N111—Zn1 126.1 (3) C131—C132—H13D 109.6
C115—N111—C112 102.1 (3) C131—C132—C133 110.3 (4)
C112—N113—N114 102.6 (3) H13C—C132—H13D 108.1
N113—N114—C131 119.8 (3) C133—C132—H13C 109.6
C115—N114—N113 109.4 (3) C133—C132—H13D 109.6
C115—N114—C131 130.7 (4) C132—C133—H13E 108.5
C122—N121—Zn1i 128.6 (3) C132—C133—H13F 108.5
C125—N121—Zn1i 128.2 (3) C132—C133—C134 115.3 (4)
C125—N121—C122 102.5 (3) H13E—C133—H13F 107.5
C122—N123—N124 102.6 (3) C134—C133—H13E 108.5
N123—N124—C136 121.4 (3) C134—C133—H13F 108.5
C125—N124—N123 110.2 (3) C133—C134—H13G 109.4
C125—N124—C136 128.4 (4) C133—C134—H13H 109.4
O21—C23—C24 116.7 (3) H13G—C134—H13H 108.0
O22—C23—O21 123.9 (4) C135—C134—C133 111.3 (4)
O22—C23—C24 119.4 (3) C135—C134—H13G 109.4
C25—C24—C23 121.5 (4) C135—C134—H13H 109.4
C26ii—C24—C23 121.3 (3) C134—C135—H13I 108.1
C26ii—C24—C25 117.1 (3) C134—C135—H13J 108.1
C24—C25—H25 119.2 H13I—C135—H13J 107.3
C26—C25—C24 121.7 (4) C136—C135—C134 116.8 (4)
C26—C25—H25 119.2 C136—C135—H13I 108.1
C24ii—C26—H26 119.4 C136—C135—H13J 108.1
C25—C26—C24ii 121.2 (4) N124—C136—C135 113.0 (3)
C25—C26—H26 119.4 N124—C136—H13K 109.0
O31—C33—C34 117.3 (4) N124—C136—H13L 109.0
O32—C33—O31 123.2 (4) C135—C136—H13K 109.0
O32—C33—C34 119.4 (4) C135—C136—H13L 109.0
C35—C34—C33 120.5 (3) H13K—C136—H13L 107.8
C36iii—C34—C33 120.8 (3) C2S—N3S—C4S 130.5 (8)
C36iii—C34—C35 118.7 (3) C2S—N3S—C5S 116.7 (7)
C34—C35—H35 119.8 C4S—N3S—C5S 112.0 (6)
C36—C35—C34 120.4 (3) O1S—C2S—N3S 134.7 (10)
C36—C35—H35 119.8 O1S—C2S—H2S 112.7
C34iii—C36—C35 120.8 (3) N3S—C2S—H2S 112.7
C34iii—C36—H36 119.6 N3S—C4S—H4SA 109.5
C35—C36—H36 119.6 N3S—C4S—H4SB 109.5
N111—C112—H112 122.6 N3S—C4S—H4SC 109.5
N113—C112—N111 114.8 (4) H4SA—C4S—H4SB 109.5
N113—C112—H112 122.6 H4SA—C4S—H4SC 109.5
N111—C115—H115 124.4 H4SB—C4S—H4SC 109.5
N114—C115—N111 111.1 (4) N3S—C5S—H5SA 109.5
N114—C115—H115 124.4 N3S—C5S—H5SB 109.5
N121—C122—H122 122.6 N3S—C5S—H5SC 109.5
N123—C122—N121 114.8 (4) H5SA—C5S—H5SB 109.5
N123—C122—H122 122.6 H5SA—C5S—H5SC 109.5
N121—C125—H125 125.0 H5SB—C5S—H5SC 109.5
Zn1—O21—C23—O22 8.3 (5) C24—C25—C26—C24ii 0.1 (7)
Zn1—O21—C23—C24 −170.1 (2) C26ii—C24—C25—C26 −0.1 (7)
Zn1—O31—C33—O32 −0.1 (5) C33—C34—C35—C36 −178.3 (4)
Zn1—O31—C33—C34 −176.8 (3) C34—C35—C36—C34iii −0.5 (7)
Zn1—N111—C112—N113 −176.0 (3) C36iii—C34—C35—C36 0.5 (7)
Zn1—N111—C115—N114 176.7 (3) C112—N111—C115—N114 0.3 (5)
Zn1i—N121—C122—N123 170.8 (3) C112—N113—N114—C115 0.6 (5)
Zn1i—N121—C125—N124 −171.3 (2) C112—N113—N114—C131 176.1 (4)
O21—C23—C24—C25 −175.2 (3) C115—N111—C112—N113 0.0 (5)
O21—C23—C24—C26ii 5.7 (5) C115—N114—C131—C132 −36.4 (7)
O22—C23—C24—C25 6.4 (5) C122—N121—C125—N124 0.1 (4)
O22—C23—C24—C26ii −172.7 (4) C122—N123—N124—C125 −0.6 (4)
O31—C33—C34—C35 175.8 (4) C122—N123—N124—C136 −178.1 (3)
O31—C33—C34—C36iii −3.0 (6) C125—N121—C122—N123 −0.5 (5)
O32—C33—C34—C35 −1.0 (6) C125—N124—C136—C135 83.2 (5)
O32—C33—C34—C36iii −179.8 (4) C131—N114—C115—N111 −175.5 (4)
N113—N114—C115—N111 −0.6 (5) C131—C132—C133—C134 −175.0 (4)
N113—N114—C131—C132 149.1 (4) C132—C133—C134—C135 177.6 (3)
N114—N113—C112—N111 −0.4 (5) C133—C134—C135—C136 −177.4 (3)
N114—C131—C132—C133 174.5 (4) C134—C135—C136—N124 66.5 (5)
N123—N124—C125—N121 0.4 (4) C136—N124—C125—N121 177.7 (3)
N123—N124—C136—C135 −99.8 (5) C4S—N3S—C2S—O1S −177.8 (11)
N124—N123—C122—N121 0.7 (5) C5S—N3S—C2S—O1S −9.0 (19)
C23—C24—C25—C26 −179.3 (4)

Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) −x+2, −y+1, −z; (iii) −x, −y, −z.

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C24–C26/C24i–C26i ring.

D—H···A D—H H···A D···A D—H···A
C36iv—H36iv···Cg 0.93 3.07 3.95 149

Symmetry code: (iv) x+1, y+1, z.

Funding Statement

This work was funded by Russian Science Foundation grant 15–13-10023. Ministry of Education and Science of the Russian Federation grant .

References

  1. Alkorta, I., Claramunt, R. M., Díez-Barra, E., Elguero, J., de la Hoz, A. & López, C. (2017). Coord. Chem. Rev. 339, 153–182.
  2. Barsukova, M., Goncharova, T., Samsonenko, D., Dybtsev, D. & Potapov, A. (2016). Crystals, 6, 132/1–132/15.
  3. Barsukova, M. O., Samsonenko, D. G., Goncharova, T. V., Potapov, A. S., Sapchenko, S. A., Dybtsev, D. N. & Fedin, V. P. (2016). Russ. Chem. Bull. 65, 2914–2919.
  4. Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Liu, Y.-Y., Li, J., Ma, J.-F., Ma, J.-C. & Yang, J. (2012). CrystEngComm, 14, 169–177.
  8. Manzano, B. R., Jalón, F. A., Carrión, M. C. & Durá, G. (2016). Eur. J. Inorg. Chem. 2016, 2272–2295.
  9. Pellei, M., Santini, C., Marinelli, M., Trasatti, A. & Dias, H. V. R. (2017). Polyhedron, 125, 86–92.
  10. Pettinari, C., Tăbăcaru, A. & Galli, S. (2016). Coord. Chem. Rev. 307, 1–31.
  11. Potapov, A. S., Domina, G. A., Petrenko, T. V. & Khlebnikov, A. I. (2012). Polyhedron, 33, 150–157.
  12. Semitut, E. Y., Sukhikh, T. S., Filatov, E. Y., Anosova, G. A., Ryadun, A. A., Kovalenko, K. A. & Potapov, A. S. (2017). Cryst. Growth Des. 17, 5559–5567.
  13. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  14. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  15. Zhang, P., Li, D.-S., Zhao, J., Wu, Y.-P., Li, C., Zou, K. & Lu, J. Y. (2011). J. Coord. Chem. 64, 13, 2329–2341.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017017224/eb2003sup1.cif

e-74-00006-sup1.cif (390.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017017224/eb2003Isup2.hkl

e-74-00006-Isup2.hkl (342KB, hkl)

Supplementary figures S1-S6. DOI: 10.1107/S2056989017017224/eb2003sup3.pdf

e-74-00006-sup3.pdf (1.5MB, pdf)

CCDC reference: 1588505

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES