Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Jan 1;74(Pt 1):10–14. doi: 10.1107/S2056989017017479

Crystal structure of 3-benzyl-2-[(E)-2-(furan-2-yl)ethen­yl]-2,3-di­hydro­quinazolin-4(1H)-one and 3-benzyl-2-[(E)-2-(thio­phen-2-yl)ethen­yl]-2,3-di­hydro­quinazolin-4(1H)-one from synchrotron X-ray diffraction

Flavien A A Toze a,*, Vladimir P Zaytsev b, Lala V Chervyakova b, Elisaveta A Kvyatkovskaya b, Pavel V Dorovatovskii c, Victor N Khrustalev d
PMCID: PMC5778476  PMID: 29416882

The mol­ecular and crystal structures of two 3-benzyl-2-[(E)-2-(2-ar­yl)ethen­yl]-2,3-di­hydro­quinazolin-4-ones – products of three-component reactions between benzyl­amine, isatoic anhydride and furyl- or thienyl-acrolein in the presence of catalytic qu­antity of p-TsOH – were studied by X-ray diffraction.

Keywords: crystal structure, 2-ethenylquinazolines, furyl-acrolein, thienyl-acrolein, three-component reaction, synchrotron radiation

Abstract

The chiral title compounds, C21H18N2O2, (I), and C21H18N2OS, (II) – products of the three-component reaction between benzyl­amine, isatoic anhydride and furyl- or thienyl-acrolein – are isostructural and form isomorphous racemic crystals. The tetra­hydro­pyrimidine ring in (I) and (II) adopts a sofa conformation. The amino N atom has a trigonal–pyramidal geometry [sum of the bond angles is 347.0° for both (I) and (II)], whereas the amido N atom is flat [sum of the bond angles is 359.3° for both (I) and (II)]. The furyl- and thienylethenyl substituents in (I) and (II) are planar and the conformation about the bridging C=C bond is E. These bulky fragments occupy the axial position at the quaternary C atom of the tetra­hydro­pyrimidine ring, apparently, due to steric reasons. In the crystals, mol­ecules of (I) and (II) form hydrogen-bonded helicoidal chains propagating along [010] by strong inter­molecular N—H⋯O hydrogen bonds.

Chemical context  

The synthesis and chemistry of quinazoline and quinazolinone derivatives have remained at the focus of biochemical research over the past decade owing to their high and diverse physiological activities (for recent reviews, see: Jafari et al., 2016; Wang & Gao, 2013; Selvam & Kumar, 2011). A large part of these studies has been aimed at the development of methods for the synthesis of 2-aryl-substituted quinazolines. However, 2-ethenylquinazolines are much more attractive synthons for subsequent modifications of the heterocyclic skeleton.

Two synthetic approaches A and B (Fig. 1) are known for 2-ethenylphenyl-substituted heterocycles (Mohammadpoor-Baltork et al., 2011; Ramesh et al., 2012; Cheng et al., 2012; Ghorbani-Choghamarani & Norouzi, 2014; Zhang et al., 2014, 2016; Deng et al., 2015; Noori et al., 2017; Alinezhad et al., 2017). However, up to date, there is practically no information about the synthesis of 2-ethenylhetaryl-substituted quinazolines (Frackenpohl et al., 2016; Zaytsev et al., 2015; Celltech & Limited, 2004; Kundu & Chaudhuri, 2001). Taking into account the high biological activity of furan, thio­phene, and pyrrole derivatives, it appeared very attractive to obtain quinazolines of this type. It is well known that, for biological researches, the conformation of a mol­ecule plays a key role. In this connection, the present work is aimed at revealing the conformational features of 2-ethenylhetaryl-substituted quinazolines.

Figure 1.

Figure 1

The two general methods, A and B, for the synthesis of 3-benzyl-2-[(E)-2-(2-ar­yl)ethen­yl]-2,3-di­hydro­quinazolin-4(1H)-ones (I) and (II).

Using method A, the three-component reaction between benzyl­amine, isatoic anhydride and furyl- or thienylacrolein in the presence of a catalytic qu­antity of p-TsOH afforded the 3-benzyl-2-[(E)-2-(furan-2-yl)ethen­yl]-2,3-di­hydro­quinazolin-4(1H)-one (I) and 3-benzyl-2-[(E)-2-(thio­phen-2-yl)ethen­yl]-2,3-di­hydro­quinazolin-4(1H)-one (II) in moderate yields.graphic file with name e-74-00010-scheme1.jpg

Structural commentary  

Compounds (I), C21H18N2O2, and (II), C21H18N2OS – the products of the three-component reaction between benzyl­amine, isatoic anhydride and furyl- or thienyl-acrolein are isostructural and crystallize in the ortho­rhom­bic space group Pbca (Figs. 2 and 3).

Figure 2.

Figure 2

The mol­ecular structure of (I). Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Figure 3.

Figure 3

The mol­ecular structure of (II). Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

The tetra­hydro­pyrimidine ring in (I) and (II) adopts a sofa conformation, with the C2 carbon atom deviating from the mean plane of the other atoms of the ring by 0.526 (1) and 0.528 (2) Å for (I) and (II), respectively. The nitro­gen N1 atom has a trigonal-pyramidal geometry [sum of the bond angles is 347° for both (I) and (II)], whereas the nitro­gen N3 atom is flattened [sum of the bond angles is 359.3° for both (I) and (II)]. The furyl- and thienyl-ethenyl substituents in (I) and (II) are planar and have the E-conformation at the C9=C10 double bond. Remarkably, these bulky fragments occupy the axial position at the quaternary C2 carbon atom of the tetra­hydro­pyrimidine ring, apparently, due to the steric inter­action with the benzyl substituent.

The mol­ecules of (I) and (II) possess an asymmetric center at the C2 carbon atom. The crystals of (I) and (II) are racemates.

Supra­molecular features  

In the crystals of (I) and (II), mol­ecules form hydrogen-bonded helicoidal chains propagating along the [010] direction by strong inter­molecular N—H⋯O hydrogen bonds (Tables 1 and 2, Figs. 4 and 5).

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.897 (15) 2.111 (15) 2.9557 (14) 156.7 (12)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.87 (3) 2.14 (3) 2.978 (2) 161 (2)

Symmetry code: (i) Inline graphic.

Figure 4.

Figure 4

The crystal structure of (I), demonstrating the hydrogen-bonded helicoidal chains propagating in the [010] direction. Dashed lines indicate the inter­molecular N—H⋯O hydrogen bonds.

Figure 5.

Figure 5

The crystal structure of (II), demonstrating the hydrogen-bonded helicoidal chains propagating in the [010] direction. Dashed lines indicate the inter­molecular N—H⋯O hydrogen bonds.

Synthesis and crystallization  

3-Benzyl-2-[(E)-2-(2-ar­yl)ethen­yl]-2,3-di­hydro­quinazolin-4-ones (I) and (II) were synthesized using a method similar to the recently described procedure (Fig. 6) (Zaytsev et al., 2017).

Figure 6.

Figure 6

Syntheses of 3-benzyl-2-[(E)-2-(furan-2-yl)ethen­yl]-2,3-di­hydro­quin­az­o­lin-4(1H)-one (I) and 3-benzyl-2-[(E)-2-(thio­phen-2-yl)ethen­yl]-2,3-di­hydro­quinazolin-4(1H)-one (II).

General procedure. p-TsOH (0.79 g, 4.6 mmol) was added to a mixture of isatoic anhydride (1.5 g, 9.2 mmol), benzyl­amine (1.2 mL, 11.0 mmol), and furyl- or thienylacrolein (9.2 mmol) in 50 mL EtOH. The reaction mixture was heated under reflux for 4 h. The progress of the reaction was monitored by TLC. When the reaction completed, the mixture was diluted with H2O (100 mL) and extracted with EtOAc (3 × 50 mL). The organic layers were combined, dried (MgSO4), concentrated in vacuo and the residue was purified by column chromatography on SiO2 (3 × 20 cm) using hexane and then EtOAc/hexane (1/10→1/5) mixtures as eluent. The resulting product was recrystallized from a mixture of hexa­ne–EtOAc [for (I)] or EtOAc–EtOH [for (II)] to afford the analytically pure samples of the target products.

3-Benzyl-2-[( E )-2-(furan-2-yl)ethen­yl]-2,3-di­hydro­quin­az­olin-4(1 H )-one (I). Colourless prisms. Yield is 2.31 g (76%). M.p. = 427.1 K (hexa­ne–EtOAc). IR (KBr), ν (cm−1): 3376, 1645, 1611. 1H NMR (CDCl3, 600.2 MHz, 301 K): δ = 3.86 (d, 1H, CH2N, J = 15.1), 4.61 (br s, 1H, NH), 4.98 (br d, 1H, H2, J = 5.5), 5.59 (d, 1H, CH2N, J = 15.1), 6.24 (d, 1H, H3, furyl, J = 3.1), 6.25 (d, 1H, CH=CH, J = 6.2), 6.34 (dd, 1H, H4, furyl, J = 2.1, J = 3.1), 6.59 (d, 1H, H8, J = 8.2), 6.83 (t, 1H, H6, J = 7.6), 7.24–7.34 (m, 7H, HAr), 7.96 (dd, 1H, H5, J = 1.4, J = 7.6). 13C NMR (CDCl3, 100 MHz, 301 K): δ = 46.7 (CH2N), 69.8 (C2), 109.9, 111.5, 114.8, 119.1, 121.1, 123.6, 127.5, 127.9, 128.7, 128.7, 133.6, 115.7, 136.9, 145.4, 151.1, 142.7 (CAr, CH=CH), 162.9 (NCO). MS (EI, 70 eV): m/z = 330 [M]+ (93), 239 (100), 197 (71), 170 (20), 160 (19), 120 (40), 106 (55), 91 (81), 76 (58), 65 (45), 51 (37), 43 (20).

3-Benzyl-2-[( E )-2-(thio­phen-2-yl)ethen­yl]-2,3-di­hydro­quinazolin-4(1 H )-one (II). Yellow prisms. Yield is 2.39 g (75%). M.p. = 434.1–435.1 K (EtOAc–EtOH). IR (KBr), ν (cm−1): 3306, 1625, 1506. 1H NMR (DMSO, 600.2 MHz, 301 K): δ = 4.05 (d, 1H, CH2N, J = 15.8), 5.15-5.17 (m, 2H, H2, CH2N), 6.00 (dd, 1H, CH=CH, J = 6.8, J = 15.1), 6.69–6.76 (m, 3H, H6, H8, CH=CH), 6.96 (dd, 1H, H4, thienyl, J = 3.4, J = 5.2), 7.07 (br d, 1H, H3, thienyl, J = 3.4), 7.07 (br s, 1H, NH), 7.23–7.32 (m, 6H, HAr), 7.38 (br d, 1H, H2, thienyl, J = 5.2), 7.66 (dd, 1H, H5, J = 1.4, J = 8.2). 13C NMR (DMSO, 150.9 MHz, 301 K): δ = 47.0 (CH2N), 69.6 (C2), 115.1, 115.2, 118.0, 125.7 (2C), 126.4, 127.7, 127.9, 128.1, 128.3, 128.4, 129.0, 134.0, 138.3, 140.8, 147.1 (CAr, CH=CH), 162.4 (NCO). MS (EI, 70 eV): m/z = 346 [M]+ (76), 255 (100), 237 (93), 213 (37), 106 (14), 91 (99), 65 (13).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. X-ray diffraction studies were carried out on the "Belok" beamline of the National Research Center "Kurchatov Institute" (Moscow, Russian Federation) using a Rayonix SX165 CCD detector. A total of 360 images for each compounds were collected using an oscillation range of 1.0° (φ scan mode, two different crystal orientations) and corrected for absorption using the SCALA program (Evans, 2006). The data were indexed, integrated and scaled using the utility iMOSFLM in the CCP4 program (Battye et al., 2011).

Table 3. Experimental details.

  (I) (II)
Crystal data
Chemical formula C21H18N2O2 C21H18N2OS
M r 330.37 346.43
Crystal system, space group Orthorhombic, P b c a Orthorhombic, P b c a
Temperature (K) 100 100
a, b, c (Å) 14.292 (3), 13.729 (3), 17.230 (3) 14.245 (3), 13.855 (3), 17.629 (4)
V3) 3380.8 (12) 3479.3 (13)
Z 8 8
Radiation type Synchrotron, λ = 0.96260 Å Synchrotron, λ = 0.96260 Å
μ (mm−1) 0.17 0.44
Crystal size (mm) 0.30 × 0.25 × 0.15 0.30 × 0.25 × 0.25
 
Data collection
Diffractometer Rayonix SX165 CCD Rayonix SX165 CCD
Absorption correction Multi-scan (SCALA; Evans, 2006) Multi-scan (SCALA; Evans, 2006)
T min, T max 0.940, 0.970 0.870, 0.890
No. of measured, independent and observed [I > 2σ(I)] reflections 34783, 3705, 3017 20322, 3594, 3024
R int 0.079 0.064
(sin θ/λ)max−1) 0.646 0.647
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.042, 0.112, 1.08 0.050, 0.147, 1.08
No. of reflections 3705 3594
No. of parameters 230 217
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.28, −0.17 0.71, −0.72

Computer programs: Marccd (Doyle, 2011), i MOSFLM (Battye et al., 2011), SHELXT (Sheldrick, 2015), SHELXL2014 (Sheldrick, 2015) and SHELXTL (Sheldrick, 2015).

The hydrogen atoms of the amino groups were localized in difference-Fourier maps and refined isotropically with fixed displacement parameters [U ĩso(H) = 1.2U eq(N)]. The other hydrogen atoms were placed in calculated positions with C—H = 0.95–1.00 Å and refined in the riding model with fixed isotropic displacement parameters [U ĩso(H) = 1.2U eq(C)].

A relatively large number of reflections (a few dozen) were omitted due to the following reasons: (1) In order to achieve better I/σ statistics for high-angle reflections we selected a larger exposure time, which resulted in some intensity overloads in the low-angle part of the area. These corrupted intensities were excluded from final steps of the refinement. (2) In the current setup of the instrument, the low-temperature device eclipses a small region of the detector near its high-angle limit. This resulted in zero intensity of some reflections. (3) In the case of (II), the quality of the single crystal chosen for the diffraction experiment was far from perfect. Some systematic intensity deviations can be due to extinction and defects present in the crystal.

Supplementary Material

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989017017479/ld2142sup1.cif

e-74-00010-sup1.cif (1.7MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017017479/ld2142Isup2.hkl

e-74-00010-Isup2.hkl (295.9KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989017017479/ld2142IIsup3.hkl

e-74-00010-IIsup3.hkl (287.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017017479/ld2142Isup4.cml

Supporting information file. DOI: 10.1107/S2056989017017479/ld2142IIsup5.cml

CCDC references: 1589395, 1589394

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

3-Benzyl-2-[(E)-2-(furan-2-yl)ethenyl]-2,3-dihydroquinazolin-4(1H)-one (I) . Crystal data

C21H18N2O2 Dx = 1.298 Mg m3
Mr = 330.37 Synchrotron radiation, λ = 0.96260 Å
Orthorhombic, Pbca Cell parameters from 600 reflections
a = 14.292 (3) Å θ = 3.0–36.0°
b = 13.729 (3) Å µ = 0.17 mm1
c = 17.230 (3) Å T = 100 K
V = 3380.8 (12) Å3 Prism, colourless
Z = 8 0.30 × 0.25 × 0.15 mm
F(000) = 1392

3-Benzyl-2-[(E)-2-(furan-2-yl)ethenyl]-2,3-dihydroquinazolin-4(1H)-one (I) . Data collection

Rayonix SX165 CCD diffractometer 3017 reflections with I > 2σ(I)
/f scan Rint = 0.079
Absorption correction: multi-scan (Scala; Evans, 2006) θmax = 38.5°, θmin = 3.2°
Tmin = 0.940, Tmax = 0.970 h = −18→18
34783 measured reflections k = −17→17
3705 independent reflections l = −21→21

3-Benzyl-2-[(E)-2-(furan-2-yl)ethenyl]-2,3-dihydroquinazolin-4(1H)-one (I) . Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0539P)2 + 0.539P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.001
3705 reflections Δρmax = 0.28 e Å3
230 parameters Δρmin = −0.17 e Å3
0 restraints Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: difference Fourier map Extinction coefficient: 0.0041 (8)

3-Benzyl-2-[(E)-2-(furan-2-yl)ethenyl]-2,3-dihydroquinazolin-4(1H)-one (I) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

3-Benzyl-2-[(E)-2-(furan-2-yl)ethenyl]-2,3-dihydroquinazolin-4(1H)-one (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.94874 (5) 0.38755 (6) 0.80431 (5) 0.0290 (2)
O2 0.78370 (6) 0.74574 (6) 0.58408 (5) 0.0324 (2)
N1 0.75445 (7) 0.45360 (8) 0.55253 (6) 0.0259 (3)
H1 0.7542 (10) 0.3883 (11) 0.5507 (8) 0.031*
C2 0.73864 (8) 0.49053 (9) 0.63117 (7) 0.0245 (3)
H2 0.6772 0.4641 0.6493 0.029*
N3 0.72977 (6) 0.59857 (7) 0.62784 (6) 0.0241 (2)
C4 0.78346 (8) 0.65486 (9) 0.57961 (7) 0.0243 (3)
C4A 0.83803 (7) 0.60140 (8) 0.51944 (7) 0.0239 (3)
C5 0.89993 (8) 0.65246 (9) 0.47069 (8) 0.0287 (3)
H5 0.9115 0.7196 0.4800 0.034*
C6 0.94453 (8) 0.60605 (10) 0.40899 (8) 0.0336 (3)
H6 0.9863 0.6409 0.3763 0.040*
C7 0.92651 (9) 0.50687 (10) 0.39610 (8) 0.0343 (3)
H7 0.9564 0.4747 0.3541 0.041*
C8 0.86562 (8) 0.45466 (9) 0.44362 (7) 0.0296 (3)
H8 0.8545 0.3875 0.4338 0.036*
C8A 0.82023 (7) 0.50135 (9) 0.50644 (7) 0.0240 (3)
C9 0.81224 (8) 0.45883 (8) 0.68936 (7) 0.0243 (3)
H9 0.8760 0.4743 0.6798 0.029*
C10 0.78969 (8) 0.40943 (9) 0.75408 (7) 0.0253 (3)
H10 0.7251 0.3963 0.7618 0.030*
C11 0.85346 (8) 0.37393 (9) 0.81353 (7) 0.0252 (3)
C12 0.83634 (9) 0.32594 (9) 0.88182 (7) 0.0295 (3)
H12 0.7769 0.3077 0.9017 0.035*
C13 0.92549 (9) 0.30860 (9) 0.91761 (8) 0.0328 (3)
H13 0.9367 0.2768 0.9657 0.039*
C14 0.99049 (9) 0.34671 (9) 0.86917 (8) 0.0321 (3)
H14 1.0560 0.3456 0.8784 0.039*
C15 0.67156 (8) 0.64346 (9) 0.68802 (7) 0.0271 (3)
H15A 0.6881 0.7133 0.6921 0.032*
H15B 0.6860 0.6125 0.7385 0.032*
C16 0.56621 (8) 0.63468 (8) 0.67274 (7) 0.0232 (3)
C17 0.52921 (8) 0.59729 (9) 0.60354 (7) 0.0255 (3)
H17 0.5702 0.5750 0.5639 0.031*
C18 0.43186 (8) 0.59258 (9) 0.59243 (8) 0.0287 (3)
H18 0.4074 0.5664 0.5456 0.034*
C19 0.37128 (8) 0.62615 (9) 0.64965 (8) 0.0319 (3)
H19 0.3055 0.6233 0.6418 0.038*
C20 0.40750 (9) 0.66416 (9) 0.71896 (8) 0.0316 (3)
H20 0.3663 0.6876 0.7580 0.038*
C21 0.50438 (8) 0.66754 (9) 0.73049 (7) 0.0272 (3)
H21 0.5286 0.6923 0.7779 0.033*

3-Benzyl-2-[(E)-2-(furan-2-yl)ethenyl]-2,3-dihydroquinazolin-4(1H)-one (I) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0247 (4) 0.0273 (5) 0.0350 (5) −0.0009 (3) −0.0026 (4) 0.0020 (4)
O2 0.0333 (5) 0.0183 (5) 0.0457 (6) 0.0014 (3) 0.0002 (4) −0.0013 (4)
N1 0.0288 (5) 0.0170 (5) 0.0319 (6) −0.0020 (4) −0.0042 (4) −0.0008 (4)
C2 0.0222 (5) 0.0201 (6) 0.0311 (7) −0.0013 (4) −0.0017 (5) 0.0008 (5)
N3 0.0208 (5) 0.0193 (5) 0.0322 (6) 0.0012 (4) −0.0011 (4) −0.0016 (4)
C4 0.0208 (5) 0.0188 (6) 0.0335 (7) 0.0010 (4) −0.0060 (5) 0.0002 (5)
C4A 0.0200 (5) 0.0213 (6) 0.0303 (7) 0.0016 (4) −0.0045 (5) 0.0009 (5)
C5 0.0231 (5) 0.0247 (7) 0.0385 (7) 0.0003 (5) −0.0042 (5) 0.0036 (5)
C6 0.0256 (6) 0.0383 (8) 0.0370 (8) 0.0006 (5) 0.0015 (5) 0.0044 (6)
C7 0.0283 (6) 0.0421 (8) 0.0326 (7) 0.0059 (6) −0.0002 (5) −0.0057 (6)
C8 0.0274 (6) 0.0263 (7) 0.0351 (7) 0.0033 (5) −0.0062 (5) −0.0055 (5)
C8A 0.0215 (5) 0.0219 (6) 0.0285 (7) 0.0018 (4) −0.0075 (5) 0.0007 (5)
C9 0.0214 (5) 0.0212 (6) 0.0305 (7) −0.0006 (4) −0.0013 (5) −0.0027 (5)
C10 0.0224 (5) 0.0225 (6) 0.0311 (7) 0.0001 (4) −0.0002 (5) −0.0031 (5)
C11 0.0248 (5) 0.0220 (6) 0.0289 (7) −0.0002 (5) 0.0008 (5) −0.0042 (5)
C12 0.0326 (6) 0.0285 (7) 0.0274 (7) −0.0013 (5) 0.0018 (5) −0.0019 (5)
C13 0.0430 (7) 0.0279 (7) 0.0276 (7) −0.0010 (6) −0.0090 (6) −0.0003 (5)
C14 0.0308 (6) 0.0262 (7) 0.0394 (8) 0.0004 (5) −0.0122 (6) 0.0010 (6)
C15 0.0234 (6) 0.0266 (7) 0.0312 (7) 0.0010 (5) −0.0025 (5) −0.0047 (5)
C16 0.0232 (5) 0.0192 (6) 0.0273 (6) 0.0000 (4) −0.0018 (5) 0.0032 (5)
C17 0.0263 (6) 0.0234 (6) 0.0268 (7) 0.0019 (5) −0.0015 (5) 0.0021 (5)
C18 0.0287 (6) 0.0253 (7) 0.0320 (7) −0.0016 (5) −0.0070 (5) 0.0049 (5)
C19 0.0200 (5) 0.0332 (7) 0.0426 (8) −0.0018 (5) −0.0019 (5) 0.0100 (6)
C20 0.0275 (6) 0.0312 (7) 0.0360 (8) 0.0004 (5) 0.0090 (5) 0.0063 (6)
C21 0.0296 (6) 0.0246 (7) 0.0274 (7) −0.0016 (5) 0.0018 (5) 0.0033 (5)

3-Benzyl-2-[(E)-2-(furan-2-yl)ethenyl]-2,3-dihydroquinazolin-4(1H)-one (I) . Geometric parameters (Å, º)

O1—C11 1.3836 (14) C9—H9 0.9500
O1—C14 1.3854 (16) C10—C11 1.4551 (17)
O2—C4 1.2501 (15) C10—H10 0.9500
N1—C8A 1.3943 (16) C11—C12 1.3707 (18)
N1—C2 1.4643 (17) C12—C13 1.4354 (18)
N1—H1 0.897 (15) C12—H12 0.9500
C2—N3 1.4898 (16) C13—C14 1.3540 (19)
C2—C9 1.5169 (16) C13—H13 0.9500
C2—H2 1.0000 C14—H14 0.9500
N3—C4 1.3699 (16) C15—C16 1.5334 (16)
N3—C15 1.4653 (15) C15—H15A 0.9900
C4—C4A 1.4905 (17) C15—H15B 0.9900
C4A—C5 1.4069 (17) C16—C17 1.4017 (17)
C4A—C8A 1.4149 (17) C16—C21 1.4051 (17)
C5—C6 1.3938 (19) C17—C18 1.4058 (16)
C5—H5 0.9500 C17—H17 0.9500
C6—C7 1.403 (2) C18—C19 1.3907 (18)
C6—H6 0.9500 C18—H18 0.9500
C7—C8 1.3934 (19) C19—C20 1.4023 (19)
C7—H7 0.9500 C19—H19 0.9500
C8—C8A 1.4154 (17) C20—C21 1.3996 (17)
C8—H8 0.9500 C20—H20 0.9500
C9—C10 1.3445 (17) C21—H21 0.9500
C11—O1—C14 106.06 (9) C9—C10—H10 116.5
C8A—N1—C2 117.92 (10) C11—C10—H10 116.5
C8A—N1—H1 116.9 (9) C12—C11—O1 109.83 (10)
C2—N1—H1 112.2 (9) C12—C11—C10 130.80 (11)
N1—C2—N3 108.80 (9) O1—C11—C10 119.37 (10)
N1—C2—C9 113.91 (9) C11—C12—C13 106.86 (11)
N3—C2—C9 111.72 (9) C11—C12—H12 126.6
N1—C2—H2 107.4 C13—C12—H12 126.6
N3—C2—H2 107.4 C14—C13—C12 106.27 (11)
C9—C2—H2 107.4 C14—C13—H13 126.9
C4—N3—C15 120.66 (10) C12—C13—H13 126.9
C4—N3—C2 122.51 (9) C13—C14—O1 110.99 (11)
C15—N3—C2 116.09 (10) C13—C14—H14 124.5
O2—C4—N3 121.82 (11) O1—C14—H14 124.5
O2—C4—C4A 122.20 (11) N3—C15—C16 113.75 (10)
N3—C4—C4A 115.92 (10) N3—C15—H15A 108.8
C5—C4A—C8A 120.15 (11) C16—C15—H15A 108.8
C5—C4A—C4 119.93 (11) N3—C15—H15B 108.8
C8A—C4A—C4 119.61 (10) C16—C15—H15B 108.8
C6—C5—C4A 121.02 (12) H15A—C15—H15B 107.7
C6—C5—H5 119.5 C17—C16—C21 118.87 (11)
C4A—C5—H5 119.5 C17—C16—C15 123.05 (11)
C5—C6—C7 118.70 (12) C21—C16—C15 118.07 (11)
C5—C6—H6 120.6 C16—C17—C18 120.40 (11)
C7—C6—H6 120.6 C16—C17—H17 119.8
C8—C7—C6 121.38 (12) C18—C17—H17 119.8
C8—C7—H7 119.3 C19—C18—C17 120.28 (12)
C6—C7—H7 119.3 C19—C18—H18 119.9
C7—C8—C8A 120.18 (12) C17—C18—H18 119.9
C7—C8—H8 119.9 C18—C19—C20 119.82 (11)
C8A—C8—H8 119.9 C18—C19—H19 120.1
N1—C8A—C4A 119.18 (11) C20—C19—H19 120.1
N1—C8A—C8 122.12 (11) C21—C20—C19 119.90 (12)
C4A—C8A—C8 118.57 (11) C21—C20—H20 120.1
C10—C9—C2 121.78 (10) C19—C20—H20 120.1
C10—C9—H9 119.1 C20—C21—C16 120.72 (12)
C2—C9—H9 119.1 C20—C21—H21 119.6
C9—C10—C11 127.06 (11) C16—C21—H21 119.6
C8A—N1—C2—N3 45.76 (13) C7—C8—C8A—C4A 0.11 (17)
C8A—N1—C2—C9 −79.59 (13) N1—C2—C9—C10 −122.41 (12)
N1—C2—N3—C4 −38.41 (13) N3—C2—C9—C10 113.81 (12)
C9—C2—N3—C4 88.20 (13) C2—C9—C10—C11 179.09 (11)
N1—C2—N3—C15 151.40 (9) C14—O1—C11—C12 −0.15 (13)
C9—C2—N3—C15 −81.99 (12) C14—O1—C11—C10 179.98 (10)
C15—N3—C4—O2 −1.24 (16) C9—C10—C11—C12 177.81 (13)
C2—N3—C4—O2 −171.00 (10) C9—C10—C11—O1 −2.35 (18)
C15—N3—C4—C4A −178.63 (9) O1—C11—C12—C13 0.14 (14)
C2—N3—C4—C4A 11.61 (15) C10—C11—C12—C13 179.99 (12)
O2—C4—C4A—C5 6.86 (17) C11—C12—C13—C14 −0.07 (14)
N3—C4—C4A—C5 −175.76 (10) C12—C13—C14—O1 −0.02 (15)
O2—C4—C4A—C8A −166.71 (11) C11—O1—C14—C13 0.10 (14)
N3—C4—C4A—C8A 10.66 (15) C4—N3—C15—C16 111.21 (12)
C8A—C4A—C5—C6 0.12 (17) C2—N3—C15—C16 −78.40 (13)
C4—C4A—C5—C6 −173.42 (11) N3—C15—C16—C17 −6.96 (16)
C4A—C5—C6—C7 0.08 (18) N3—C15—C16—C21 174.31 (10)
C5—C6—C7—C8 −0.18 (19) C21—C16—C17—C18 −0.21 (17)
C6—C7—C8—C8A 0.08 (19) C15—C16—C17—C18 −178.93 (11)
C2—N1—C8A—C4A −27.67 (15) C16—C17—C18—C19 0.82 (18)
C2—N1—C8A—C8 156.49 (11) C17—C18—C19—C20 −0.48 (18)
C5—C4A—C8A—N1 −176.20 (10) C18—C19—C20—C21 −0.45 (18)
C4—C4A—C8A—N1 −2.63 (15) C19—C20—C21—C16 1.06 (18)
C5—C4A—C8A—C8 −0.21 (16) C17—C16—C21—C20 −0.73 (17)
C4—C4A—C8A—C8 173.35 (10) C15—C16—C21—C20 178.06 (11)
C7—C8—C8A—N1 175.97 (11)

3-Benzyl-2-[(E)-2-(furan-2-yl)ethenyl]-2,3-dihydroquinazolin-4(1H)-one (I) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O2i 0.897 (15) 2.111 (15) 2.9557 (14) 156.7 (12)

Symmetry code: (i) −x+3/2, y−1/2, z.

3-Benzyl-2-[(E)-2-(thiophen-2-yl)ethenyl]-2,3-dihydroquinazolin-4(1H)-one (II) . Crystal data

C21H18N2OS Dx = 1.323 Mg m3
Mr = 346.43 Synchrotron radiation, λ = 0.96260 Å
Orthorhombic, Pbca Cell parameters from 600 reflections
a = 14.245 (3) Å θ = 3.0–33.0°
b = 13.855 (3) Å µ = 0.44 mm1
c = 17.629 (4) Å T = 100 K
V = 3479.3 (13) Å3 Prism, yellow
Z = 8 0.30 × 0.25 × 0.25 mm
F(000) = 1456

3-Benzyl-2-[(E)-2-(thiophen-2-yl)ethenyl]-2,3-dihydroquinazolin-4(1H)-one (II) . Data collection

Rayonix SX165 CCD diffractometer 3024 reflections with I > 2σ(I)
φ scan Rint = 0.064
Absorption correction: multi-scan (Scala; Evans, 2006) θmax = 38.5°, θmin = 3.1°
Tmin = 0.870, Tmax = 0.890 h = −15→16
20322 measured reflections k = −17→17
3594 independent reflections l = −15→22

3-Benzyl-2-[(E)-2-(thiophen-2-yl)ethenyl]-2,3-dihydroquinazolin-4(1H)-one (II) . Refinement

Refinement on F2 Primary atom site location: difference Fourier map
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: mixed
wR(F2) = 0.147 H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0669P)2 + 2.4P] where P = (Fo2 + 2Fc2)/3
3594 reflections (Δ/σ)max < 0.001
217 parameters Δρmax = 0.71 e Å3
0 restraints Δρmin = −0.72 e Å3

3-Benzyl-2-[(E)-2-(thiophen-2-yl)ethenyl]-2,3-dihydroquinazolin-4(1H)-one (II) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

3-Benzyl-2-[(E)-2-(thiophen-2-yl)ethenyl]-2,3-dihydroquinazolin-4(1H)-one (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.02475 (4) 0.39698 (3) 0.79544 (3) 0.02956 (19)
O1 0.22041 (10) 0.74793 (9) 0.57892 (8) 0.0307 (3)
N1 0.25131 (12) 0.45803 (11) 0.55151 (9) 0.0249 (4)
H1 0.2524 (17) 0.3954 (19) 0.5496 (12) 0.030*
C2 0.26696 (14) 0.49600 (12) 0.62814 (11) 0.0244 (4)
H2 0.3287 0.4706 0.6463 0.029*
N3 0.27450 (11) 0.60304 (10) 0.62410 (9) 0.0229 (4)
C4 0.22059 (13) 0.65770 (13) 0.57606 (10) 0.0231 (4)
C4A 0.16533 (14) 0.60308 (12) 0.51890 (10) 0.0228 (4)
C5 0.10052 (15) 0.65191 (14) 0.47233 (11) 0.0276 (4)
H5 0.0882 0.7184 0.4810 0.033*
C6 0.05414 (17) 0.60404 (15) 0.41351 (12) 0.0333 (5)
H6 0.0103 0.6371 0.3823 0.040*
C7 0.07389 (16) 0.50578 (16) 0.40152 (12) 0.0336 (5)
H7 0.0433 0.4727 0.3613 0.040*
C8 0.13683 (15) 0.45601 (14) 0.44685 (11) 0.0301 (5)
H8 0.1487 0.3896 0.4376 0.036*
C8A 0.18367 (13) 0.50393 (12) 0.50701 (10) 0.0234 (4)
C9 0.19299 (14) 0.46488 (12) 0.68451 (11) 0.0244 (4)
H9 0.1295 0.4819 0.6749 0.029*
C10 0.21254 (15) 0.41433 (13) 0.74758 (11) 0.0264 (4)
H10 0.2767 0.3995 0.7566 0.032*
C11 0.14428 (15) 0.37959 (13) 0.80424 (10) 0.0256 (4)
C12 0.16756 (16) 0.32822 (13) 0.87251 (11) 0.0304 (3)
H12 0.2292 0.3110 0.8879 0.037*
C13 0.08295 (16) 0.30680 (14) 0.91398 (11) 0.0304 (3)
H13 0.0830 0.2734 0.9610 0.037*
C14 0.00234 (17) 0.33875 (14) 0.87974 (11) 0.0304 (3)
H14 −0.0588 0.3298 0.9002 0.037*
C15 0.33187 (14) 0.64888 (13) 0.68295 (11) 0.0265 (4)
H15A 0.3163 0.6195 0.7326 0.032*
H15B 0.3156 0.7183 0.6856 0.032*
C16 0.43773 (14) 0.63919 (12) 0.66925 (10) 0.0224 (4)
C17 0.47531 (15) 0.60700 (13) 0.60001 (11) 0.0261 (4)
H17 0.4345 0.5901 0.5595 0.031*
C18 0.57301 (16) 0.59978 (14) 0.59048 (12) 0.0313 (5)
H18 0.5982 0.5765 0.5441 0.038*
C19 0.63326 (16) 0.62705 (15) 0.64953 (13) 0.0345 (5)
H19 0.6993 0.6232 0.6429 0.041*
C20 0.59602 (16) 0.66002 (14) 0.71824 (13) 0.0330 (5)
H20 0.6368 0.6793 0.7581 0.040*
C21 0.49895 (15) 0.66462 (13) 0.72819 (11) 0.0257 (4)
H21 0.4741 0.6852 0.7755 0.031*

3-Benzyl-2-[(E)-2-(thiophen-2-yl)ethenyl]-2,3-dihydroquinazolin-4(1H)-one (II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0350 (4) 0.0244 (3) 0.0293 (3) 0.00022 (19) 0.0016 (2) 0.00190 (17)
O1 0.0362 (9) 0.0153 (6) 0.0407 (8) −0.0011 (6) −0.0010 (6) −0.0009 (5)
N1 0.0316 (10) 0.0150 (7) 0.0280 (8) 0.0016 (6) 0.0027 (7) −0.0011 (6)
C2 0.0263 (11) 0.0178 (8) 0.0292 (9) 0.0015 (7) 0.0010 (8) 0.0008 (7)
N3 0.0224 (9) 0.0165 (7) 0.0298 (8) −0.0006 (6) −0.0011 (7) −0.0017 (6)
C4 0.0232 (10) 0.0177 (8) 0.0284 (9) 0.0001 (7) 0.0038 (7) 0.0004 (6)
C4A 0.0245 (11) 0.0186 (8) 0.0253 (9) −0.0016 (7) 0.0043 (8) 0.0010 (6)
C5 0.0306 (11) 0.0236 (8) 0.0285 (9) 0.0014 (8) 0.0029 (8) 0.0012 (7)
C6 0.0345 (13) 0.0369 (11) 0.0286 (10) 0.0016 (9) −0.0012 (9) 0.0013 (8)
C7 0.0358 (12) 0.0365 (11) 0.0287 (10) −0.0053 (9) −0.0014 (9) −0.0059 (8)
C8 0.0363 (12) 0.0237 (9) 0.0305 (10) −0.0043 (8) 0.0063 (8) −0.0050 (7)
C8A 0.0249 (10) 0.0203 (8) 0.0250 (9) −0.0031 (7) 0.0058 (7) 0.0005 (7)
C9 0.0237 (10) 0.0201 (8) 0.0295 (9) 0.0012 (7) 0.0022 (8) −0.0011 (7)
C10 0.0291 (11) 0.0213 (8) 0.0288 (9) 0.0005 (7) −0.0004 (8) −0.0020 (7)
C11 0.0325 (12) 0.0194 (8) 0.0248 (9) 0.0009 (8) −0.0008 (8) −0.0018 (7)
C12 0.0409 (7) 0.0244 (5) 0.0260 (5) 0.0018 (5) 0.0042 (5) −0.0015 (4)
C13 0.0409 (7) 0.0244 (5) 0.0260 (5) 0.0018 (5) 0.0042 (5) −0.0015 (4)
C14 0.0409 (7) 0.0244 (5) 0.0260 (5) 0.0018 (5) 0.0042 (5) −0.0015 (4)
C15 0.0272 (11) 0.0240 (8) 0.0283 (9) 0.0007 (8) 0.0004 (8) −0.0044 (7)
C16 0.0239 (10) 0.0173 (8) 0.0260 (9) −0.0003 (7) −0.0001 (7) 0.0028 (6)
C17 0.0282 (12) 0.0220 (9) 0.0281 (10) −0.0006 (7) 0.0025 (8) 0.0037 (7)
C18 0.0339 (12) 0.0258 (9) 0.0341 (10) 0.0020 (8) 0.0087 (9) 0.0066 (7)
C19 0.0259 (11) 0.0284 (9) 0.0492 (12) 0.0014 (8) 0.0031 (10) 0.0107 (9)
C20 0.0327 (13) 0.0254 (9) 0.0409 (11) −0.0002 (8) −0.0079 (9) 0.0048 (8)
C21 0.0279 (11) 0.0194 (8) 0.0297 (9) 0.0011 (8) −0.0022 (8) 0.0021 (7)

3-Benzyl-2-[(E)-2-(thiophen-2-yl)ethenyl]-2,3-dihydroquinazolin-4(1H)-one (II) . Geometric parameters (Å, º)

S1—C14 1.721 (2) C9—H9 0.9500
S1—C11 1.727 (2) C10—C11 1.475 (3)
O1—C4 1.251 (2) C10—H10 0.9500
N1—C8A 1.396 (3) C11—C12 1.437 (3)
N1—C2 1.467 (2) C12—C13 1.440 (3)
N1—H1 0.87 (3) C12—H12 0.9500
C2—N3 1.489 (2) C13—C14 1.371 (3)
C2—C9 1.511 (3) C13—H13 0.9500
C2—H2 1.0000 C14—H14 0.9500
N3—C4 1.371 (2) C15—C16 1.533 (3)
N3—C15 1.465 (2) C15—H15A 0.9900
C4—C4A 1.486 (3) C15—H15B 0.9900
C4A—C5 1.409 (3) C16—C21 1.402 (3)
C4A—C8A 1.414 (2) C16—C17 1.406 (3)
C5—C6 1.397 (3) C17—C18 1.405 (3)
C5—H5 0.9500 C17—H17 0.9500
C6—C7 1.406 (3) C18—C19 1.401 (3)
C6—H6 0.9500 C18—H18 0.9500
C7—C8 1.385 (3) C19—C20 1.399 (3)
C7—H7 0.9500 C19—H19 0.9500
C8—C8A 1.418 (3) C20—C21 1.395 (3)
C8—H8 0.9500 C20—H20 0.9500
C9—C10 1.343 (3) C21—H21 0.9500
C14—S1—C11 92.28 (10) C9—C10—H10 116.8
C8A—N1—C2 117.34 (15) C11—C10—H10 116.8
C8A—N1—H1 116.5 (16) C12—C11—C10 125.22 (19)
C2—N1—H1 113.1 (15) C12—C11—S1 111.83 (15)
N1—C2—N3 108.92 (14) C10—C11—S1 122.94 (14)
N1—C2—C9 113.41 (16) C11—C12—C13 109.51 (19)
N3—C2—C9 111.47 (15) C11—C12—H12 125.2
N1—C2—H2 107.6 C13—C12—H12 125.2
N3—C2—H2 107.6 C14—C13—C12 114.26 (18)
C9—C2—H2 107.6 C14—C13—H13 122.9
C4—N3—C15 120.68 (15) C12—C13—H13 122.9
C4—N3—C2 122.63 (15) C13—C14—S1 112.11 (17)
C15—N3—C2 115.99 (15) C13—C14—H14 123.9
O1—C4—N3 121.87 (17) S1—C14—H14 123.9
O1—C4—C4A 122.35 (17) N3—C15—C16 113.52 (15)
N3—C4—C4A 115.74 (15) N3—C15—H15A 108.9
C5—C4A—C8A 120.09 (17) C16—C15—H15A 108.9
C5—C4A—C4 119.86 (16) N3—C15—H15B 108.9
C8A—C4A—C4 119.83 (17) C16—C15—H15B 108.9
C6—C5—C4A 120.97 (18) H15A—C15—H15B 107.7
C6—C5—H5 119.5 C21—C16—C17 119.12 (18)
C4A—C5—H5 119.5 C21—C16—C15 118.25 (17)
C5—C6—C7 118.5 (2) C17—C16—C15 122.63 (17)
C5—C6—H6 120.8 C18—C17—C16 120.24 (19)
C7—C6—H6 120.8 C18—C17—H17 119.9
C8—C7—C6 121.66 (19) C16—C17—H17 119.9
C8—C7—H7 119.2 C19—C18—C17 119.90 (19)
C6—C7—H7 119.2 C19—C18—H18 120.0
C7—C8—C8A 120.21 (18) C17—C18—H18 120.0
C7—C8—H8 119.9 C20—C19—C18 119.9 (2)
C8A—C8—H8 119.9 C20—C19—H19 120.0
N1—C8A—C4A 119.13 (17) C18—C19—H19 120.0
N1—C8A—C8 122.14 (16) C21—C20—C19 120.0 (2)
C4A—C8A—C8 118.60 (17) C21—C20—H20 120.0
C10—C9—C2 123.27 (19) C19—C20—H20 120.0
C10—C9—H9 118.4 C20—C21—C16 120.79 (19)
C2—C9—H9 118.4 C20—C21—H21 119.6
C9—C10—C11 126.45 (19) C16—C21—H21 119.6
C8A—N1—C2—N3 −46.4 (2) C7—C8—C8A—C4A −0.6 (3)
C8A—N1—C2—C9 78.4 (2) N1—C2—C9—C10 120.5 (2)
N1—C2—N3—C4 37.7 (2) N3—C2—C9—C10 −116.17 (19)
C9—C2—N3—C4 −88.2 (2) C2—C9—C10—C11 −178.56 (17)
N1—C2—N3—C15 −151.91 (16) C9—C10—C11—C12 −177.92 (18)
C9—C2—N3—C15 82.2 (2) C9—C10—C11—S1 2.0 (3)
C15—N3—C4—O1 2.2 (3) C14—S1—C11—C12 0.19 (15)
C2—N3—C4—O1 172.24 (17) C14—S1—C11—C10 −179.70 (16)
C15—N3—C4—C4A −179.85 (16) C10—C11—C12—C13 179.56 (17)
C2—N3—C4—C4A −9.9 (3) S1—C11—C12—C13 −0.3 (2)
O1—C4—C4A—C5 −8.7 (3) C11—C12—C13—C14 0.4 (2)
N3—C4—C4A—C5 173.42 (17) C12—C13—C14—S1 −0.2 (2)
O1—C4—C4A—C8A 165.94 (18) C11—S1—C14—C13 0.02 (16)
N3—C4—C4A—C8A −11.9 (3) C4—N3—C15—C16 −112.23 (18)
C8A—C4A—C5—C6 −0.6 (3) C2—N3—C15—C16 77.1 (2)
C4—C4A—C5—C6 174.00 (18) N3—C15—C16—C21 −168.65 (15)
C4A—C5—C6—C7 −0.3 (3) N3—C15—C16—C17 12.1 (2)
C5—C6—C7—C8 0.7 (3) C21—C16—C17—C18 0.5 (3)
C6—C7—C8—C8A −0.3 (3) C15—C16—C17—C18 179.79 (16)
C2—N1—C8A—C4A 28.7 (2) C16—C17—C18—C19 −1.6 (3)
C2—N1—C8A—C8 −155.42 (18) C17—C18—C19—C20 1.0 (3)
C5—C4A—C8A—N1 177.06 (17) C18—C19—C20—C21 0.8 (3)
C4—C4A—C8A—N1 2.4 (3) C19—C20—C21—C16 −1.9 (3)
C5—C4A—C8A—C8 1.1 (3) C17—C16—C21—C20 1.2 (3)
C4—C4A—C8A—C8 −173.56 (17) C15—C16—C21—C20 −178.09 (17)
C7—C8—C8A—N1 −176.50 (18)

3-Benzyl-2-[(E)-2-(thiophen-2-yl)ethenyl]-2,3-dihydroquinazolin-4(1H)-one (II) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.87 (3) 2.14 (3) 2.978 (2) 161 (2)

Symmetry code: (i) −x+1/2, y−1/2, z.

Funding Statement

This work was funded by Ministry of Education and Science of the Russian Federation grant 4.1154.2017/4.6. Russian Foundation for Basic Research grant 16–03-00125.

References

  1. Alinezhad, H., Soleymani, E. & Zare, M. (2017). Res. Chem. Intermed. 43, 457–466.
  2. Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281. [DOI] [PMC free article] [PubMed]
  3. Celltech R. & D. Limited (2004). Patent WO2004/18462A1.
  4. Cheng, D.-J., Tian, Y. & Tian, S.-K. (2012). Adv. Synth. Catal. 354, 995–999.
  5. Deng, T., Wang, H. & Cai, C. (2015). J. Fluor. Chem. 169, 72–77.
  6. Doyle, R. A. (2011). Marccd software manual. Rayonix L. L. C. Evanston, IL 60201 USA.
  7. Evans, P. (2006). Acta Cryst. D62, 72–82. [DOI] [PubMed]
  8. Frackenpohl, J., Zeishans, J., Heinemann, I., Willms, L., Mueller, T., Busch, M., Vonkoskull, P. D., Haeuser-Hahn, I., Rosinger, C. H., Dittgen, J. & Schmitt, M. H. (2016). Patent CN103228141B, Bayer Intellectual Property GmbH.
  9. Ghorbani-Choghamarani, A. & Norouzi, N. (2014). J. Mol. Catal. A Chem. 395, 172–179.
  10. Jafari, E., Khajouei, M. R., Hassanzadeh, F., Hakimelahi, G. H. & Khodarahmi, G. A. (2016). Res. Pharm. Sci. 11, 1–14. [PMC free article] [PubMed]
  11. Kundu, N. G. & Chaudhuri, G. (2001). Tetrahedron, 57, 6833–6842.
  12. Mohammadpoor-Baltork, I., Khosropour, A. R., Moghadam, M., Tangestaninejad, S., Mirkhani, V., Soltani, M. & Mirjafari, A. (2011). J. Heterocycl. Chem. 48, 1419–1427.
  13. Noori, N., Nikoorazm, M. & Ghorbani-Choghamarani, A. (2017). Catal. Lett. 147, 204–214.
  14. Ramesh, K., Karnakar, K., Satish, G., Anil Kumar, B. S. P. & Nageswar, Y. V. D. (2012). Tetrahedron Lett. 53, 6936–6939.
  15. Selvam, T. P. & Kumar, P. V. (2011). Res. Pharm. 1, 1–21.
  16. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  17. Wang, D. & Gao, F. (2013). Chem. Cent. J. 7, 95. [DOI] [PMC free article] [PubMed]
  18. Zaytsev, V. P., Revutskaya, E. L., Kuz’menko, M. G., Novikov, R. A., Zubkov, F. I., Sorokina, E. A., Nikitina, E. V., Toze, F. A. A. & Varlamov, A. V. (2015). Russ. Chem. Bull. 64, 1345–1353.
  19. Zaytsev, V. P., Revutskaya, E. L., Nikanorova, T. V., Nikitina, E. V., Dorovatovskii, P. V., Khrustalev, V. N., Yagafarov, N. Z., Zubkov, F. I. & Varlamov, A. V. (2017). Synthesis, DOI: 10.1055/s-0036-1588812.
  20. Zhang, J., Liu, J., Ma, Y., Ren, D., Cheng, P., Zhao, J., Zhang, F. & Yao, Y. (2016). Bioorg. Med. Chem. Lett. 26, 2273–2277. [DOI] [PubMed]
  21. Zhang, J., Ren, D., Ma, Y., Wang, W. & Wu, H. (2014). Tetrahedron, 70, 5274–5282.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989017017479/ld2142sup1.cif

e-74-00010-sup1.cif (1.7MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017017479/ld2142Isup2.hkl

e-74-00010-Isup2.hkl (295.9KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989017017479/ld2142IIsup3.hkl

e-74-00010-IIsup3.hkl (287.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017017479/ld2142Isup4.cml

Supporting information file. DOI: 10.1107/S2056989017017479/ld2142IIsup5.cml

CCDC references: 1589395, 1589394

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES